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Abstract

Stance Detection Task (SDT) aims at identify-
ing the stance of the sentence towards a specific
target and is usually modeled as a classification
problem. Backgound knowledge is often neces-
sary for stance detection with respect to a spe-
cific target, especially when there is no target
explicitly mentioned in text. This paper focuses
on the knowledge stimulation for low-resource
stance detection tasks. We firstly explore to
formalize stance detection as a prompt based
contrastive learning task. At the same time, to
make prompt learning suit to stance detection,
we design a template mechanism to incorpo-
rate corresponding target into instance repre-
sentation. Furthermore, we propose a masked
language prompt joint contrastive learning ap-
proach to stimulate the knowledge inherit from
the pre-trained model. The experimental re-
sults on three benchmarks show that knowl-
edge stimulation is effective in stance detection
accompanied with our proposed mechanism.

1 Introduction

Stance detection is one of the most challenging
NLP tasks, which aims to identify the stance of
a piece of text towards a given target. Recent
years have witnessed rapid progress on learning
an intent classification model for target stance de-
tection (Rasooli and Tetreault, 2015; Mohammad
et al., 2016; Baly et al., 2018; Stefanov et al.,
2020).Though such models in advanced neural ar-
chitectures (Kaushal et al., 2021) are capable of
replying with responses regarding to specific target
in a piece of text, to exactly detect the stance of
target, background knowledge is often necessary,
especially when there is no target explicitly men-
tioned in text. Take the tweet "I’m confused to hear
that Trump win the poll today." as example, the
stance detection system should detected the attitude
"Against" when given target "Trump". However,
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when target is "Biden", the stance detected should
became "Favour" correspondingly. Furthermore,
deep neural networks often require large-scale high-
quality labeled training data to achieve state-of-the-
art performance (Bowman et al., 2015). However,
the cost of labeled data collection is not trival. In
this paper, we study the low-resource stance detec-
tion tasks, including target-specific stance detection
and cross-target stance detection tasks, where only
small labeled data is available. Previous works of-
ten introduce external data for the models to learn.
He et al. (2022) propose to utilize external train-
ing knowledge data which could be expensive to
obtain.

To solve the above dilemma, many existing
stance detection works (Hardalov et al., 2021; He
et al., 2022) resort to fine tuning Pre-trained Lan-
guage Models (PLMs). However, we argue that,
in the low-resource stance detection tasks, directly
finetuning all parameters of PLMs with small train-
ing data (especially when there are less than 100
samples) could result in over-fitting and PLMs sim-
ply memorizes the training instances. Recently,
several works propose prompt tuning (Schick and
Schütze, 2020; Gao et al., 2020a), which only back-
propagates the error to Soft Prompts (i.e., a se-
quence of continuous vectors prepended to the in-
put of PLMs) instead of the entire model. They
show that prompt tuning is sufficient to be com-
petitive with full model tuning while significantly
reducing the amount of parameters to be tuned.
Thus, the prompt tuning is quite suitable to tackle
the above over-fitting issue in low-resource fine-
tuning.

Unfortunately, we find a major limitation of task-
based prompts that the prompts are too coarse-
grained and ignore fine-grained information in in-
put data. In state-of-the-art methods, all input data
within a tuning task shares an identical prompt im-
plying the task domain. However, besides the task,
the specific content in the input data also contains
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context that can help the PLM retrieve more rele-
vant knowledge, for example, the specific object
being talked about. Such knowledge behinds the
input data should be fully exploited to unleash the
potential of prompts. The key is that there is a
gap between prompt and pre training, because the
template in prompt is absent during pre training.
In order to make up for this defect, we propose to
use cloze task that more familiar with PLM, that is,
only do the mask method in the original input to
stimulate the richer knowledge learned by the orig-
inal PLMs. To make PLMs better understand the
stance detection task, we further propose a novel
contrastive learning objective to boost the PLM to
distinguish the different stance.

We conduct experiments with three benchmarks
of knowledge-grounded stance detection that are
constructed by crowd-sourcing. Evaluation results
in terms of both automatic metrics and human judg-
ment indicate that our model not only achieves
comparable performance with the state-of-the-art
model that is learned from crowd-sourced training
sets, even with a small amount of data, our model
surpasses the performance of the state-of-the-art
model that using whole data and external knowl-
edge, but also exhibits a good generalization ability
over different targets and different datasets.

Our contributions are four-fold: (1) exploration
of knowledge-grounded stance detection under a
low-resource setting; (2) proposal of a knowledge
stimulated method that bridge the gap between
PLM and prompt tuning; (3) proposal of a uni-
fied cloze contrastive prompting learning approach;
and (4) empirical verification of the effectiveness
of the proposed approach on three benchmarks of
knowledge-grounded stance detection.

2 Related Work

Stance Detection Early neural networks based
methods have achieved good performances in
stance detection task, and they attempt to introduce
attention mechanisms (Xue and Li, 2018; Allaway
and McKeown, 2020) to capture relationships be-
tween sentence and target. And previous works
on stance detection (Hardalov et al., 2021) fail to
incorporate knowledge in modeling stance. Re-
cently, He et al. (2022) propose to utilize back-
ground knowledge from Wikipedia about the target
as an external knowledge, the results show that
knowledge enhancement is a key factor to improve
the performance of stance detection. The wikipedia

information couldn’t align with the relationship be-
tween sentence and target. And the crawled infor-
mation couldn’t cover each target precisely, also
could lost sentence information when exceed the
max sequence length of model. Furthermore, ex-
pert label knowledge is very expensive, and can
not be easily obtained. Pre-trained Language Mod-
els (PLMs) have shown impressive performance
in various NLP tasks, these models usually trained
with enormous data to learning the knowledge of
each token, word, or entities (Sun et al., 2019).
Intuitively, without using the repeated external con-
textual data to ingest knowledge, we force model
to stimulate it’s knowledge when training. To the
best of our knowledge, no neural networks based
methods utilizes the previous potential knowledge
to improve their detection performance directly.

Prompt-tuning for PLMs There is an emerging
interest in using prompts to extract knowledge from
large language models (Chen et al., 2022; Scao and
Rush, 2021; Su et al., 2021; Ye et al., 2022; Zhou
et al., 2022). Prompt-tuning is a signicant research
in the past years. The GPT-3 (Brown et al., 2020)
fueled the development of prompt-based learning,
which relies on handcraft prompts and achieves
impressive per-formance. To further construct auto-
matic prompt, AutoPrompt (Shin et al., 2020) and
LM-BFF (Gao et al., 2020b) propose automatic
prompt construction through generate discrete to-
kens. Recently, Prefix-tuning (Li and Liang, 2021),
P-tuningV2(Liu et al., 2021), PTR (Han et al.,
2021), and soft-prompts (Qin and Eisner, 2021)
propose continuous prompt construction, which in-
troduce differential parameters to solve the issue.
Unlike previous work (Hardalov et al., 2021), our
prompt based framework mainly focuses on SDT,
which is the novel exploration of this challenging
task in low resource setting.

Contrastive learning Contrastive learning aims
to learn representations with self-supervision, so
that similar samples are embedded close to each
other (positive pair) while pushing away samples
that are dissimilar (negative pairs). Such repre-
sentations have been shown to capture the seman-
tic information of the samples by maximizing the
lower bound of the mutual information between
two augmented views (Bachman et al., 2019; Tian
et al., 2020b,a). Several methods for contrastive
learning have been developed so far (Oord et al.,
2018; Chen et al., 2020; Dwibedi et al., 2021; He
et al., 2020). SupCon (Khosla et al., 2020) is a spe-
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Figure 1: An illustration of (a) masked language model (MLM) pre-trianing, (b) fine-tuning, and (c) our proposed
knowledge stimulation prompt fine-tuning approach.

cial form of contrastive learning that clusters two
augmented batches at the class level in the feature
space. Thereby, SupCon generates more negative
pairs, which is often more efficient in practice.

3 Task Definition

Let D = {(xi, yi)}ni=1 is a dataset of instance,
xi = (si, ti) is the instance, where si, ti terms
on document sequence and target respectively,
yi ∈ {favor, against, neutral} is the label, where
n is the number of examples. The task is to learn a
model pθ(y∣x)without any oracles (e.g., a sentence
in Wikipedia) indicating the collation of a sentence,
target and the related knowledge.

4 Method

Heading for learning an effective knowledge stim-
ulation model for the task of knowledge-grounded
stance detection, we need to deal with several chal-
lenges: (1) how to stimulate knowledge without
inject external data in stance detection; (2) how to
stimulate knowledge with low-resource data.

This section first formulates our proposed
Knowledge Stimulated Contrastive Prompting
method (KSCP) for low-resource stance detection
task. We then introduce the three important compo-
nents in KSCP, including i) prompt-based learning
in pre-trained language models; ii) word cloze task
and iii) contrastive learning. Figure 1 shows the
overall of KSCP.

4.1 Low-Resource Learning Framework

Figure 2 gives the graphical model of our approach.
The model depicts dependency among three vari-
ables: dataset DT , sentence context S, target T ,
label Y, latent knowledge Zb

K stimulated by word
cloze task, and latent knowledge Zt

K stimulated by
prompt-based learning, where Zb

K and Zt
K bridges

S and T respectively, Zb
K and Zt

K stimulated each
other at the same time. prompt-based learning use
prompt to stimulate task related knowledge Zb

K ,
word cloze task bridges the gap between pretrain
and prompt, stimulated more enrichment knowl-
edge from PLMs. Furthermore, Zb

K is an unsuper-
vised knowledge, don’t need labeled data and have
a good extensibility. However, Zt

K is a supervisied
knowledge, need labeled data. Finally, Zb

K apply
it’s more enhanced knowledge inject to the Zt

K to
make detection of downstream task. Hence, vari-
ables endow us with the flexibility of methods, and
we can model the objectives of different knowl-
edge levels with respect to target (e.g., from an
absent target in the context to an informative state-
ment that delivers necessary content for continuing
the detection) in a unified framework. More ad-
vantages credited to joint learning include (1) the
model and contrast learning protected by each task
are more robust to the noise in Zt

K inferred in the
training process; and (2) in terms of prediction, the
model can automatically control the expression of
knowledge, so it can easily adapt to different sce-
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narios without too much extra effort. The overall
objective of learning can be formulated as

Lθ = E(S,T )∼DT
[logMθ

(S,T )] (1)

< 𝑆, 𝑇, 𝑌 >

𝑍𝐾𝑏

𝑍𝐾𝑡

< 𝑆, 𝑇 >

𝐷𝑇

Figure 2: Abstract Logic of the proposed approach.Solid
lines mean that there exists stimulation links in both the
probabilistic graph and the neural graph, different colors
means different strength of stimulation degree.

4.2 Prompt-based Learning

Fine-tuning is a general way to adapt PLM to spe-
cific downstream tasks (Devlin et al., 2019). How-
ever, for low resource data augmentation, we ex-
pect the stimulated synthetic knowledge KLM to
be different from K, and provide new information
for SDT model learning. Fine-tuning PLM may
not be an optimal solution, when biased towards a
small number of training examples.

Based on prompt learning, start from the zero
shot instructions in GPT3 (Brown et al., 2020),
keep the whole PLM parameters frozen, and add
discrete natural language task instructions (e.g.
"translate into English") only before task input.
Freezing PLM parameters may help with gener-
alization during training. However, to find a suit-
able discrete task introduction can not be easily
optimized in an end-to-end manner, which requires
additional manpower. Compared with the previ-
ous method (Brown et al., 2020; Gao et al., 2020b)
of generating templates by manual or neural net-
work, we find that the target T in SDT naturally
provides hints for prompt construction. Specifi-
cally, we design two template mapping based on
several heuristic rules: Gt represents the mapping
between the document sequence and the target, Gp
represents the mapping of stance detection.

Let Gt = Gt(x) denote a target template, and
Gp = Gp(x) denote a instance (contain sentence
and target) detection prompt. Then we get input:

xinput = [CLS] S [C] Gt [C] Gp [SEP] (2)

where [C] is a special separate token. Take in-
put of Figure 1 as example: "I do support Biden.
which target is Biden, it was [MASK]", Gt is
"which target is Biden", Gp is "it was [MASK]".
If a sentence does not conform to these rules,
multiple [MASK] tokens will be added directly
to the end of the sentence. The number of
[MASK] tokens in the prompt is treated as a pre-
defined hyper-parameter lmask. We use demon-
strations of label words to construct our input:
xd = s0, t0([MASK]), si, ti(wordi), where wordi
is the label word for sentence si towards target
ti, and si is sampled from the traing set. During
training, we update the parameters by MLM loss:

Lp = MLM(xinput, y) (3)

where y is the label word corresponding to xinput.

4.3 Word Cloze Task
Prompt-based learning approaches conventionally
only use one mask token to predict the label of
whole sentence, however, language model doesn’t
see the prompt template in the pretraining stage,
this will lead a gap to stimulate knowledge from
PLMs. To tackle the issue, we introduce word cloze
task to bridge the gap between pre train, prompt,
and fine-tune in SDT.

The word cloze task has a significant impact on
knowledge stimulation, especially in low-resource
stance detection task. Kawintiranon and Singh
(2021) proposes further pre-train the full PLMs pa-
rameters through external tweets to enhance knowl-
edge capability. However, this strategy (i.e., full
PLM pre-training) introduces huge data collection
costs and significant computing overhead. On
the contrary, we propose directly training parame-
ters through word cloze task without any external
training data. Suppose that knowledge stimulation
updates parameters based on partial information
(such as keywords) through MLM model, We pro-
pose Significant Keywords to Sentence cloze task.
Given a piece of text, we use the unsupervised key-
word extraction algorithm TF-IDF (Aizawa, 2003)
to extract keywords. Given these synonym key-
words, the Cloze Sequence is trained to reconstruct
original text blocks. When Cloze Task is applied to
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knowledge stimulation, we only need to fine-tune
the Cloze Sequence under the condition of unsuper-
vised learning. This training process is conducted
with an prompt-based learning process jointly. We
only use the few-shot training data.

Formally, Significant Keywords to Sentence
cloze task creates a corrupted version xc for an
input xinput:

xc = [CLS] S
′

[C] G
′
t [C] [SEP] (4)

After constructing this corrupted version of the
sequence, MLM aims to predict the masked tokens
to recover the original tokens. Then the word cloze
task loss becomes:

LC = MLM(xc, xinput) (5)

Algorithm 1 Optimization Algorithm

Require: s:number of training iterations
1: D ∶ few-shot labeled dataset
2: M ∶ model
3: N ← 1
4: HI ← GEN(D, I) ▷ input view
5: HO ← GEN(HI ,O) ▷ output view
6: ĤLM ←HI ∪HO

7: while N ≠ s do
8: LS = SupCon(MN ,̂HLM)
9: LP = CE(MN , ĤLM)

10: LC = CE(MN , ĤLM)
11: L = LP + γLC + βLS
12: MN ← TRAIN(M, ĤLM)
13: N ← N + 1
14: end while
15: return M

4.4 Multi-View Constrastive Learning
Previous works often restrict the encoder inputs to
demonstration or view in a random strategy, such
as random demonstration (Gao et al., 2020b) and
random view (Jian et al., 2022). The relatively
random sample could mislead model with cross
target or event result in group together in the latent
space. To enrich the positive pairs construction,
we propose Multi-View to generate a positive pairs
from the input view (conditional on keywords in the
input statement) and the output view (conditional
on labels).

Figure 1 shows examples of these two views.
As shown in Algorithm 1 (line 4 to 5), after fine-
tuning the Word Close task in PLMs, KSCP first

generatesHI andHO from the input view and out-
put view respectively. KSCP then extracts labels
from HI and [MASK] statement from HO. We
choose sentences with the same [MASK] tokens
and the same label as positive instances, negative
instances conversely. In order to reduce the incon-
sistency caused by masking between training and
evaluation, we keep the probability δ mentioned
by a phrase unchanged in a direct alignment. In
this way, the resulting output text should maintain
a higher level of distinguishability and diversity in
latent space and stimulate more task/target agnostic
novel knowledge.

We use SupCon (Khosla et al., 2020) to compute
the contrastive learning loss. To apply SupCon on
multiple views of input text, we need to first obtain
two views of text:
x1 = s0,Gt0,Gp0, si,Gti,Gpi

x2 = s0,Gtk,Gpj , sj ,Gtk,Gpj

We create candidate demonstration for each input
instance according to different Gp and Gt. Let
x̃2b−1, x̃2b be two augmented views of input batch
xb, and r2b and r2b−1 are the features of x̃2b−1 , x̃2b,
then we can compute SupCon loss as:

LS = SupCon(r2b−1, r2b, yb) (6)

where yb is the label for xb.

4.5 Joint Learning

In order to make the word cloze task and prompt-
based learning activated knowledge work together,
we propose a joint training method:

L = LP + γLC + βLS (7)

where γ is loss balance weight of word cloze task,
and γ, β ∈ (0.0, 1.0). It is worth noting that γ > 0.0
is to ensure that the parameters of the word cloze
task can be optimized through back propagation.
γ < 1.0 is to prevent cloze task loss and reduce the
performance of prompt based learning (Zhang et al.,
2019). β is the loss balance weight of contrastive
learning.

5 Experiments

This section first introduces the experimental set-
tings in Sec 5.1, and then presents the main exper-
imental results in Sec 5.2. Ablation studies were
conducted in section 5.3. In section 5.4, we com-
pare KSCP and unlabeled data, and propose diver-
sity analysis.
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Model Trump Biden Sanders Avg.
Fully-supervised Result

TAN 77.1 77.6 71.6 75.1
BiCE 77.2 77.7 71.2 75.4
PGCNN 76.9 76.6 72.1 75.2
GCAE 79.0 78.0 71.8 76.3
BERT 78.3 78.7 72.5 76.5
BERTweet 82.5 81.0 78.1 80.5
BERTweet♣ 85.2 82.5 78.5 82.1
WS-BERT-Dual♣ 85.8 83.5 79.0 82.8

Low-resource Result
BERTweet♠ 55.1 35.9 50.3 47.1
WS-BERT-Dual♠ 46.2 45.4 52.8 48.1
Sup-Con♠ 61.7 68.8 64.3 64.9
KSCP 69.2 73.9 68.4 70.5
KSCP‡ 86.8 86.9 80.2 84.6

Table 1: Experiment Results of the target-specific
stance detection on P-Stance (K = 16). ♣ results taken
from (He et al., 2022). ♠ we run (He et al., 2022; Jian
et al., 2022)’s source code. ‡refers K = 2048.

5.1 Experimental Setup

We conduct experiments on PStance (Li et al.,
2021) and COVID-19-Stance (Glandt et al., 2021).
For each benchmark, we conduct shot-16, 32, 64,
128 experiment following (Gao et al., 2020b). We
repeated the experiment 5 times and averaged the
macro-F1 according to the previous works (Mo-
hammad et al., 2016, 2017). The Baseline model
is BERT-BASE model, which only uses a few-shot
training data D for training. We use the same
hyper-parameters set to train the same BERT-BASE
model. In P-Stance stance detection tasks, we
compare to the baselines TAN (Du et al., 2017),
BiCE (Augenstein et al., 2016), PGNN (Huang
and Carley, 2018), BERT, and BERTweet. We use
WS-BERT-Dual, a state-of-the-art stance detection
method, which requires additional external data,
and SupCon (Jian et al., 2022), a state-of-the-art
prompt learning method. For COVID-19-Stance
tasks, TAN, ATGRU (Zhou et al., 2017), GCAE
(Xue and Li, 2018), COVID-Twitter-BERT,
COVID-Twitter-BERT-NS (Xie et al., 2020), and
COVID-Twitter-BERT-DAN (Xu et al., 2020)
methods are used. We use the state-of-the-art
stance detection method WS-BERT-Dual (He et al.,
2022) as a knowledge enhanced method for all
tasks.

Implementation Details KSCP is built on the top
of the RoBERTa-base (Liu et al., 2019). We use
Adam optimizer with learning rate 1e-5, warm-up
rate of 0.1 and weight decay 1e-3 to train our model.
The number of [MASK] tokens in word cloze task

Model Fauci School Home Mask
Fully-supervised Result

TAN 0.547 0.534 0.536 0.546
ATRGU 0.612 0.527 0.521 0.599
GCAE 0.640 0.490 0.645 0.633
CT-BERT 0.818 0.755 0.800 0.803
CT-BERT-NS 0.821 0.753 0.784 0.833
CT-BERT-DAN 0.832 0.717 0.787 0.825
CT-BERT♣ 0.830 0.817 0.836 0.838
WS-BERT-Dual♣ 0.836 0.822 0.850 0.866

Low-resource Result
CT-BERT♠ 0.384 0.579 0.517 0.386
WS-BERT-Dual♠ 0.364 0.426 0.590 0.407
Sup-Con♠ 0.500 0.589 0.490 0.566
KSCP 0.525 0.658 0.504 0.574
KSCP‡ 0.838 0.835 0.851 0.876

Table 2: Macro-average F1 scores of target-specific
stance detection on COVID-19-Stance (K = 16). ♣
results taken from (He et al., 2022). ♠ we run (He et al.,
2022; Jian et al., 2022)’s source code. ‡refers K = 2048.

is lmask = 2. We set 16 as batch size. The train-
ing of KSCP is conducted on 8 Nvidia Tesla V100
32G GPU cards. Each step, we first training con-
trastive learning, then jointly train word cloze task
and prompt-based learning. The γ in Eq.7 is 0.1.
Early stopping on validation is adopted as a regular-
ization strategy. All the hyper parameters are deter-
mined by grid search. On target-specific stance de-
tection, we follow the standard train/validation/test
splits of the datasets. On cross-target stance de-
tection, the model is trained on the train set of the
source target, evaluated on the validation set of
the source target, and tested on the combination
of train, validation, and test set of the destination
target, following the setup in P-Stance.

5.2 Main Results
Target-specific Stance Detection For target-
specific stance detection on P-Stance and
COVID-19-Stance, we train a model for each
target and test it on the same target. Table 1 and
Table 2 summarizes the experiment results in
shot-16. In both settings, the performance of KSCP
are boosted up by a large margin (i.e., 28.5% and
23% for Biden and Trump, respectively). KSCP
also outperforms fully fine-tuned PLM methods
and wiki-enhanced PLM methods. In general,
PLM-based methods can stimulate knowledge
better than fine-tuned does. Surprisingly, KSCP
achieves better performance than WS-BERT Dual,
which uses external in-domain data. This shows
that KSCP can potentially reduce the additional
manpower required to collect unlabeled in-domain
data for low-resource NLU tasks. Figure 3 shows
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Figure 3: Results of sample efficiency analysis. We compare KSCP with strong baselines with different shot K over
Pstance detection task, base-tweet refers to BERTweet♠, Wiki-enhance represents WS-BERT-Dual♠.

the performance in shot-16, 32, 64, 128, 256, 512,
1024, 2048 settings. KSCP is always superior
to other systems in all settings. Compared with
Biden, Sanders’ improvement is smaller. This
may be due to the relatively high performance of
Sanders baseline.

Cross-target Stance Detection We use P-Stance
for cross-target stance detection, where the model
is trained on one target, and tested on another
target. Baselines. We use DualBERTweet and
WS-BERT-Dual as strong baselines, which is
reported in (Li et al., 2021) and (He et al., 2022).
Table 3 shows the experimental results in shot-16.
Similar to the results of target-specific stance
detection tasks, KSCP significantly improved
the performance of the model. KSCP is also
superior to various competitive methods, including
BERTweet, WS-BERT-D and fully supervised
BERTweet. Although WS-BERT-D has high
flexibility and introduces external background
knowledge data, its performance is lower than
BERTweet in low-resource setting. This may be
due to the over-fitting problem when using smaller
training data for fine tuning. Prompt empowered
KSCP successfully avoids this problem and
stimulate more knowledge to support model
training.

Discussion The performance of WS-BERT-Dual
is always inferior to that of KSCP. This is because
fully fine-tuned PLMs can easily memorize limited
labeled training data. In contrast, the prompt-based
learning allows KSCP to maintain high general-
ization ability and provides new training signals
for the model. Compared with the baseline model,
the results of KSCP were statistically significant
(paired student t-test, p<0.05). In the cross-target
attitude detection task. We see that WS-BERT Dual

Target BERTw† BERTw WS-BERT-D KSCP
Trump->Biden 58.9 47.2 37.4 71.7
Trump->Sanders 56.5 45.4 39.6 66.2
Biden->Trump 63.6 63.8 35.6 64.6
Biden->Sanders 67.0 56.7 35.3 61.7
Sanders->Trump 58.7 57.7 40.4 62.2
Sanders->Biden 73.0 55.4 51.0 73.2

Table 3: Macro-average F1 scores of cross-target stance
detection on P-Stance. Trump→Biden indicates that the
model is trained on “Donald Trump” and tested on “Joe
Biden”. †refers use Full data.

is lower than BERTweet in few-shot setting. Depict
that infusing Wikipedia knowledge will harm the
knowledge capacity of PLMs, however, KSCP is
superior to other systems. It is worth noting that
the transfer performance of "Trump" → "Biden" is
improved more than that of "Trump" → "Sanders".
We believe that this is because in the pre-training
corpus, the number of co-occurrences of "Trump"
and "Biden" is greater than that of "Trump" and
"Sanders", so the knowledge about the relationship
between "Trump" → "Biden" stored in PLMs is
greater than that of "Trump" → "Sanders". In this
case, the knowledge stimulus to "Biden" is greater
than the information gain brought by the knowl-
edge stimulus to "Sanders", which leads to the per-
formance difference of different target migration.
In addition, compared with the performance gain
of target-specific stance detection, the performance
gain of cross-target task is more significant, which
means that when the test target exceeds the training
set, knowledge stimulation is more important.

5.3 Ablation Study

We conduct ablation study on the componential
word cloze task and multi-view contrastive
learning of Biden, Trump and Sanders’ datasets
under the shot-16 setting.

1174



Model Trump Biden Sanders
Few-shot Baseline 46.2 45.4 52.8

KSCP 69.2 73.9 68.4
w/o. word cloze task 66.3 70.1 66.5

AblationforMulti − V iew Contrastive Learning
output 67.1 70.3 67.9
input 68.1 71.6 66.2

w/o. Multi-View Contrastive Learning 67.0 69.7 66.3

Table 4: The ablation F1 scores over PStance of KSCP
for few-shot learning setting. w/o. denotes that we only
remove one component from KSCP.

Word Cloze Task As shown in Table 4, word
cloze task outperforms the baselines by up to 2%.
The results verify the correctness of our motivation
and the effectiveness of the word knowledge
stimulation. This is probably because the word
knowledge pushes the model to focus on the
interactions between sentence semantic and its
items, and this kind of connection between global
information and local information can promote the
stance detection task.

Multi-View Contrastive Learning Next, we show
the effect of Multi-View Contrastive Learning in
KSCP. Input and output generate positive and neg-
ative pairs data via the input view and output view,
respectively. As shown in table 4, the data pairs in
these two single view models have successfully im-
proved the model performance. However, the per-
formance of their corresponding models is worse
than that supported by KSCP. This shows that data
from different views provide meaningful different
training signals for the SDT. Interestingly, models
trained in the "output" view perform better than
those trained in the "input" view, which indicates
that the output pair provides more beneficial pos-
itive and negative examples for the task, and can
guide the model to better conduct training proce-
dure of contrastive learning.

5.4 Discussion

KSCP with Roberta-Large We verify that KSCP
can work with different pre-trained language
models. We replace Roberta-base model with
Roberta-large model. The new KSCP can also
greatly improve the baseline model of few-shot
setting. In the Pstance shot-16 setting, the average
F1 score of this model is improved from 70.5 to
72.3, which is also better than other models in
Table 1.

KSCP in the high-resouce setting In order to
show the advantages of KSCP in the high-resource

γ 0.01 0.02 0.1 0.2 0.3 0.4 0.5 0.6
KSCP 69.9 71.3 73.9 72.2 71.3 69.6 69.5 68.3

Table 5: Impacts of loss balance weights on P-Stance.

setting, we replace the few-shot training data with
complete training data. We found that KSCP
can still improve the performance of the baseline
model. In Pstance, after knowledge stimulation,
the model performance is improved from 70.5 to
72.6 F1 score in average.

Joint Learning We examine the effect of Joint
Learning in KSCP. In Table 5, we show the model
performance with different loss balance weights. It
can be observed that, generally, better performance
can be achieved with a lower weight loss balance
weight in most cases. More specifically, Biden,
for example, is less sensitive to seeds because
of more training samples and longer sequence
length. As the loss balance weight decreases,
the advantages of word cloze task, prompt-based
learning and KSCP gradually increase. In Eq.7,
the loss balance weight of γ equal to 0.1 is always
better than other weights in Biden dataset. This is
probably because the weight of the word cloze task
should not be a huge value, so as to avoid inap-
propriate influence on prompt-based learning tasks.

Improvement Margin Difference As shown in
Table 1, Table 2 and Table 3, the improvement
range of cross-target stance detection task is usu-
ally greater than that of target-specific stance de-
tection task. This may be because i) the cross-
target stance detection task is more fine-grained
and knowledge intensive than target-specific stance
detection task; ii) The stimulation knowledge of
target-specific stance detection task includes more
detailed entity background knowledge and bound-
ary. Compared with cross-target stance detection
task, PLMs stimulation is more challenging, espe-
cially in low-resource settings.

6 Conclusion

In this paper, we present the first prompt-based
model KSCP for low-resource stance detection. Ex-
periments on three benchmarks show the effective-
ness of our proposed KSCP method. In the future,
we plan to expand KSCP to other NLP tasks and
other settings, including question answering, ma-
chine reading comprehension and text generation
tasks.
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Limitations

Since KSCP is currently applicable to SDT, more
extensive applications need to be considered. Also,
KSCP constructs different positive and negative
sample pairs based on templates, demonstrations,
and labels, it uses SupCon during training, which
requires a large GPU memory.

Acknowledgements

We thank for the work of the authors who pub-
lished the dataset, and anonymous reviewers for
their insightful suggestions to improve this paper.

References
Akiko Aizawa. 2003. An information-theoretic perspec-

tive of tf–idf measures. Information Processing &
Management, 39(1):45–65.

Emily Allaway and Kathleen McKeown. 2020. Zero-
shot stance detection: A dataset and model using
generalized topic representations. arXiv preprint
arXiv:2010.03640.

Isabelle Augenstein, Tim Rocktäschel, Andreas Vla-
chos, and Kalina Bontcheva. 2016. Stance detection
with bidirectional conditional encoding. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 876–885,
Austin, Texas. Association for Computational Lin-
guistics.

Philip Bachman, R Devon Hjelm, and William Buchwal-
ter. 2019. Learning representations by maximizing
mutual information across views. Advances in neural
information processing systems, 32.

Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov,
James Glass, and Preslav Nakov. 2018. Predict-
ing factuality of reporting and bias of news media
sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3528–3539, Brussels, Belgium. Association
for Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack

Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng,
Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, and
Huajun Chen. 2022. Knowprompt: Knowledge-
aware prompt-tuning with synergistic optimization
for relation extraction. In Proceedings of the ACM
Web Conference 2022, pages 2778–2788.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jiachen Du, Ruifeng Xu, Yulan He, and Lin Gui. 2017.
Stance classification with target-specific neural atten-
tion networks. International Joint Conferences on
Artificial Intelligence.

Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson,
Pierre Sermanet, and Andrew Zisserman. 2021. With
a little help from my friends: Nearest-neighbor con-
trastive learning of visual representations. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 9588–9597.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020a.
Making pre-trained language models better few-shot
learners.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020b.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Kyle Glandt, Sarthak Khanal, Yingjie Li, Doina
Caragea, and Cornelia Caragea. 2021. Stance de-
tection in covid-19 tweets. In ACL.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu,
and Maosong Sun. 2021. Ptr: Prompt tuning
with rules for text classification. arXiv preprint
arXiv:2105.11259.

Momchil Hardalov, Arnav Arora, Preslav Nakov, and
Isabelle Augenstein. 2021. Cross-domain label-
adaptive stance detection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 9011–9028, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

1176

https://doi.org/10.18653/v1/D16-1084
https://doi.org/10.18653/v1/D16-1084
https://doi.org/10.18653/v1/D18-1389
https://doi.org/10.18653/v1/D18-1389
https://doi.org/10.18653/v1/D18-1389
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/ARXIV.2012.15723
https://doi.org/10.48550/ARXIV.2012.15723
https://doi.org/10.18653/v1/2021.emnlp-main.710
https://doi.org/10.18653/v1/2021.emnlp-main.710


Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9729–9738.

Zihao He, Negar Mokhberian, and Kristina Lerman.
2022. Infusing knowledge from wikipedia to enhance
stance detection.

Binxuan Huang and Kathleen Carley. 2018. Parameter-
ized convolutional neural networks for aspect level
sentiment classification. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1091–1096, Brussels, Bel-
gium. Association for Computational Linguistics.

Yiren Jian, Chongyang Gao, and Soroush Vosoughi.
2022. Contrastive learning for prompt-based
few-shot language learners. arXiv preprint
arXiv:2205.01308.

Ayush Kaushal, Avirup Saha, and Niloy Ganguly. 2021.
twt–wt: A dataset to assert the role of target entities
for detecting stance of tweets. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3879–3889.

Kornraphop Kawintiranon and Lisa Singh. 2021.
Knowledge enhanced masked language model for
stance detection. In Proceedings of the 2021 confer-
ence of the north american chapter of the association
for computational linguistics: human language tech-
nologies.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. Advances in Neural
Information Processing Systems, 33:18661–18673.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Yingjie Li, Tiberiu Sosea, Aditya Sawant, Ajith Jayara-
man Nair, Diana Inkpen, and Cornelia Caragea. 2021.
P-stance: A large dataset for stance detection in po-
litical domain. In FINDINGS.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du,
Zhilin Yang, and Jie Tang. 2021. P-tuning v2:
Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. arXiv preprint
arXiv:2110.07602.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016.
SemEval-2016 task 6: Detecting stance in tweets.

In Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016), pages 31–
41, San Diego, California. Association for Computa-
tional Linguistics.

Saif M Mohammad, Parinaz Sobhani, and Svetlana
Kiritchenko. 2017. Stance and sentiment in tweets.
ACM Transactions on Internet Technology (TOIT),
17(3):1–23.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying lms with mixtures of soft prompts.
arXiv preprint arXiv:2104.06599.

Mohammad Sadegh Rasooli and Joel R. Tetreault. 2015.
Yara parser: A fast and accurate dependency parser.
Computing Research Repository, arXiv:1503.06733.
Version 2.

Teven Le Scao and Alexander M Rush. 2021. How
many data points is a prompt worth? arXiv preprint
arXiv:2103.08493.

Timo Schick and Hinrich Schütze. 2020. Exploiting
cloze questions for few shot text classification and
natural language inference.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Peter Stefanov, Kareem Darwish, Atanas Atanasov, and
Preslav Nakov. 2020. Predicting the topical stance
and political leaning of media using tweets. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 527–537,
Online. Association for Computational Linguistics.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,
Yankai Lin, Zhiyuan Liu, Peng Li, Juanzi Li, Lei
Hou, Maosong Sun, et al. 2021. On transferability
of prompt tuning for natural language understanding.
arXiv preprint arXiv:2111.06719.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced represen-
tation through knowledge integration. arXiv preprint
arXiv:1904.09223.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2020a.
Contrastive multiview coding. In European confer-
ence on computer vision, pages 776–794. Springer.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. 2020b. What
makes for good views for contrastive learning? Ad-
vances in Neural Information Processing Systems,
33:6827–6839.

1177

https://doi.org/10.48550/ARXIV.2204.03839
https://doi.org/10.48550/ARXIV.2204.03839
https://doi.org/10.18653/v1/D18-1136
https://doi.org/10.18653/v1/D18-1136
https://doi.org/10.18653/v1/D18-1136
https://doi.org/10.18653/v1/S16-1003
http://arxiv.org/abs/1503.06733
https://doi.org/10.48550/ARXIV.2001.07676
https://doi.org/10.48550/ARXIV.2001.07676
https://doi.org/10.48550/ARXIV.2001.07676
https://doi.org/10.18653/v1/2020.acl-main.50
https://doi.org/10.18653/v1/2020.acl-main.50


Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and
Quoc V Le. 2020. Self-training with noisy student
improves imagenet classification. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 10687–10698.

Chang Xu, Cécile Paris, Surya Nepal, Ross Sparks,
Chong Long, and Yafang Wang. 2020. Dan:
Dual-view representation learning for adapting
stance classifiers to new domains. arXiv preprint
arXiv:2003.06514.

Wei Xue and Tao Li. 2018. Aspect based sentiment
analysis with gated convolutional networks. arXiv
preprint arXiv:1805.07043.

Hongbin Ye, Ningyu Zhang, Shumin Deng, Xiang Chen,
Hui Chen, Feiyu Xiong, Xi Chen, and Huajun Chen.
2022. Ontology-enhanced prompt-tuning for few-
shot learning. In Proceedings of the ACM Web Con-
ference 2022, pages 778–787.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: Enhanced
language representation with informative entities.
arXiv preprint arXiv:1905.07129.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy,
and Ziwei Liu. 2022. Conditional prompt learning
for vision-language models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 16816–16825.

Yiwei Zhou, Alexandra I Cristea, and Lei Shi. 2017.
Connecting targets to tweets: Semantic attention-
based model for target-specific stance detection. In
International Conference on Web Information Sys-
tems Engineering, pages 18–32. Springer.

1178


