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Abstract

Math word problem solver requires both pre-
cise relation reasoning about quantities in the
text and reliable generation for the diverse equa-
tion. Current sequence-to-tree or relation ex-
traction methods regard this only from a fixed
view, struggling to simultaneously handle com-
plex semantics and diverse equations. However,
human solving naturally involves two consis-
tent reasoning views: top-down and bottom-up,
just as math equations also can be expressed in
multiple equivalent forms: pre-order and post-
order. We propose a multi-view consistent con-
trastive learning for a more complete semantics-
to-equation mapping. The entire process is de-
coupled into two independent but consistent
views: top-down decomposition and bottom-
up construction, and the two reasoning views
are aligned in multi-granularity for consistency,
enhancing global generation and precise reason-
ing. Experiments on multiple datasets across
two languages show our approach significantly
outperforms the existing baselines, especially
on complex problems 1. We also show after
consistent alignment, multi-view can absorb
the merits of both views and generate more di-
verse results consistent with the mathematical
laws.

1 Introduction

Math word problem (MWP) is a very signifi-
cant and challenging task with a wide range of
applications in both natural language processing
and general artificial intelligence (Bobrow, 1964).
The MWP is to predict the mathematical equa-
tion and the final answer based on a natural lan-
guage description of the scenario and a math prob-
lem. It requires mathematical reasoning over the
text (Mukherjee and Garain, 2008), which is very
challenging for conventional methods (Patel et al.,

†Corresponding author.
1Our source code and data are open

sourced at https://github.com/zwq2018/
Multi-view-Consistency-for-MWP
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Figure 1: Human solving has multiple reasoning views,
and math equation also can be expressed in multi-order.
Pre-order traversal can be seen as a top-down reason-
ing view. Post-order traversal corresponds exactly to
the bottom-up reasoning view. Consistent contrastive
learning aligns two views in the same latent space.

2021).
MWP tasks have attracted a great deal of re-

search attention. In the early days, MWP was
treated as a sequence-to-sequence (seq2seq) trans-
lation task, translating human language into mathe-
matical language (Wang et al., 2017, 2019). Then,
Xie and Sun (2019); Zhang et al. (2020); Faldu et al.
(2021) proposed that tree or graph structure was
more suitable for MWP. Those generation meth-
ods (Seq2Tree and Graph2Tree) further improved
generation capabilities through a specific structure.
Although very flexible in generating complex equa-
tion combinations, the fixed structure decoder also
limits its fine-grained mapping. Recently, Cao et al.
(2021); Jie et al. (2022) introduced an iterative rela-
tion extraction approach, providing a new solving
view for MWP. It performs well at capturing local
relations, but lacks global generation capabilities,
especially for complex mathematical problems.

From the seq2seq translation to the seq2tree gen-
eration and relation extraction, those are essentially
seeking a suitable solving view for MWP. However,
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MWP is more challenging than that as it requires
both precise relation reasoning about quantities and
reliable generation for diverse equation combina-
tions. Both are necessary for mathematical reason-
ing. Existing methods all consider the MWP from
a single view and thus bring certain limitations.

We argue that multiple views are required
to comprehensively solve the MWP. As shown
in Figure 1, the process of human solving in-
herently involves multiple reasoning views, i.e.,
top-down decomposition (remaining fruits

−→
total fruits

×→ pick rate
+→), and bottom-up

construction ( +→ pick rate
×→ total fruits

−→
remaining fruits). Two reasoning views
are reversed in the process but consistent
in results. Meanwhile, mathematical equa-
tion can be expressed in multi-order traversal,
i.e., pre-order (−,×,+, 2, 3, 4, 5) and post-order
(2, 3,+, 4,×, 5,−). Two sequences are quite dis-
similar in form but equivalent in logic. Two order
traversal equation corresponds exactly to the two
reasoning processes, i.e. , the pre-order equation
is a top-down reasoning view, while the post-order
can be seen as a bottom-up reasoning view.

Inspired by this, we design multi-view reason-
ing using multi-order traversal. The MWP solv-
ing is decoupled into two independent but consis-
tent views: top-down reasoning using pre-order
traversal to decompose problem from global to lo-
cal and a bottom-up process following post-order
traversal for relation construction from local to
global. Pre-order and post-order traversals should
be equivalent in math just as top-down decompo-
sition and bottom-up construction should be con-
sistent. In Figure 1, we add multi-granularity con-
trastive learning to align the intermediate expres-
sions generated by two views in the same latent
space. Through consistent alignment, two views
constrain each other and jointly learn a accurate
and complete representation for math reasoning.

Besides, math operator must conform to mathe-
matical laws (e.g., commutative law). We devise a
knowledge-enhanced augmentation to incorporate
mathematical rules into the learning process, pro-
moting multi-view reasoning more consistent with
mathematical rules.

Our contributions are threefold:

• We treat multi-order traversal as a multi-view
reasoning process, which contains a top-down
decomposition using pre-order traversal and
a down-up construction following post-order.

Both views are necessary for MWP.
• We introduce consistent contrastive learning

to align two views reasoning processes, fus-
ing flexible global generation and accurate
semantics-to-equation mapping. We also de-
sign an augmentation process for rules injec-
tion and understanding.

• Extensive experiments on multiple standard
datasets show our method significantly outper-
forms existing baselines. Our method can also
generate equivalent but non-annotated math
equations, demonstrating reliable reasoning
ability behind our multi-view framework.

2 Related Work

Automatically solving mathematical problems has
been studied for a long time, from rule-based meth-
ods (Fletcher, 1985; Bakman, 2007; Yuhui et al.,
2010) with hand-crafted features and templates-
based methods (Kushman et al., 2014; Roy and
Roth, 2018) to deep learning methods (Wang
et al., 2017; Ling et al., 2017) with the encoder-
decoder framework. The introduction of Trans-
former (Vaswani et al., 2017) and pre-trained lan-
guage models (Devlin et al., 2019; Liu et al., 2019b)
greatly improves the performance of MWPs. From
the perspective of proxy tasks, we divide the re-
cent works into three categories: seq2seq-based
translation, seq2structure generation, and iterative
relation extraction.

Seq2seq-based translation MWPs are treated
as a translation task, translating human language
into mathematical language (Liang and Zhang,
2021). Wang et al. (2017) proposed a large-scale
dataset Math23K and used the vanilla seq2seq
method (Chiang and Chen, 2019). Li et al. (2019)
introduced a group attention mechanism to en-
hance seq2seq method performance. Huang et al.
(2018) used reinforcement learning to optimize
translation task. Huang et al. (2017) incorporated
semantic-parsing methods to solve MWPs. Al-
though seq2seq-based methods have made great
progress in the field, the performance of these meth-
ods is still unsatisfying, since the generation of
mathematical equations requires relation reasoning
over quantities than natural language.

Seq2structure-based generation Liu et al.
(2019a); Xie and Sun (2019) introduced tree-
structured decoder to generate mathematical ex-
pressions. This explicit tree-based design rapidly
dominated the MWPs community. Other re-
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searchers have begun to explore reasonable struc-
tures for encoder. Li et al. (2020); Zhang et al.
(2020, 2022) used graph neural networks to ex-
tract effective logical information from the natu-
ral language problem. Liang and Zhang (2021)
adopted the teacher model using contrast learn-
ing to improve the encoder. Several researchers
have attempted to extract multi-level features from
the problems using the hierarchical encoder (Lin
et al., 2021) and pre-trained model (Yu et al., 2021).
Many auxiliary tasks are used to enhance the sym-
bolic reasoning ability (Qin et al., 2021). Wu
et al. (2020, 2021) tried to introduce mathemat-
ical knowledge to solve the difficult mathematical
reasoning. These structured generation approaches
show strong generation capabilities towards com-
plex mathematical reasoning tasks.

Iterative relation extraction Recently, some re-
searchers have borrowed ideas from the field of in-
formation extraction (Shen et al., 2021b), and have
designed iterative relation extraction frameworks
for predicting math relations between two numeric
tokens. Kim et al. (2020) designed an expression-
pointer transformer model to predict expression
fragmentation. Cao et al. (2021) introduced a DAG
structure to extract numerical token relation from
bottom to top. Jie et al. (2022) further treated the
MWP task as an iterative relation extraction task,
achieving impressive performance. These works
provide a new perspective to tackle MWP from
a local relation construction view, improving the
fine-grained relation reasoning between quantities.

The above proxy tasks are designed from differ-
ent solving views. The seq2seq is a left-to-right
consecutive view, while seq2tree is a tree view, and
the relation extraction method emphasizes a local
relation view. Unlike these single-view methods,
our approach employs multiple consistent reason-
ing views to address the challenges of MWP.

3 Approach

3.1 Overview

The MWP is to predict the equation Y and
the answer based on a problem description
T = {w1, w2 · · ·wn} containing n words and m
quantity words Q = {q1, q2, · · · , qm}. The equa-
tion Y is a sequence of constant words (e.g., 3.14),
mathematical operator op = {+,−,×,÷, · · · } and
quantity words from Q. Solving MWP is to find the
optimal mapping T → Ŷ , allowing predicted Ŷ to
derive the correct answer. Existing methods learn

this mapping from a single view, e.g., seq2tree
generation and iterative relation extraction. Our
consistent contrastive learning approach solves this
by reasoning from multiple views. Both top-down
and bottom-up view are necessary for a complete
semantics-to-equation mapping.

3.2 Multi-View using Multi-Order

We use the labeled mid-order equation to generate
two different sequences Y pre = {yf1 , yf2 , · · · , yfL}
and Y post = {yb1, yb2, · · · , ybL} using pre-order and
post-order traversal. As shown in Figure 1, we treat
the Y pre as the label for the top-down process and
the Y post is for the bottom-up process training.

Global shared Embedding Firstly, we design
three types of global shared embedding matrix: text
word embedding Ew, quantity word embedding
Eq, mathematical operator embedding Eop. Text
embedding and quantity word embedding are ex-
tracted from the pre-trained language model (De-
vlin et al., 2019; Liu et al., 2019b), and operator
embeddings are randomly initialized. Besides, all
constant word embeddings are also randomly ini-
tialized and added to Eq. As shown in Figure 2,
three global embeddings are shared by two rea-
soning processes. Then, text embeddings Ew are
fused into a target vector troot by the Bidirectional
Gated Recurrent Unit (GRU) (Cho et al., 2014),
where troot means the global target for top-down
reasoning. Quantity embeddings Eq is for quantity
relation construction in bottom-up reasoning.

Top-down view using Pre-order The top-
down view is a global-to-local decomposition
that follows the pre-order equation Y pre (e.g.,
−,×,+, 2, 3, 4, 5). This process is similar to Xie
and Sun (2019). Starting from the root node, each
node needs to conduct node prediction, and the
operator node also conduct node decomposition,
e.g., in Figure 1, root node predicts its node type
is “operator” and output token is “−” and then is
decomposed into two child nodes. Two child nodes
are predicted to “×” in step 2 and “5” in step 7.

Node prediction Each node has a target vector
tn decomposed from their parent (for root node,
tn = troot), and then calculates the node embed-
ding en and node output yn based on tn and global
shared embedding Ew, Eop, Eq:

en = Attention(MLPe(tn), E
w)

s(opi)=MLPs([en; e
op
i ; en◦eopi ]), eopi ∈Eop

s(qj)=MLPs([en; e
q
j ; en◦e

q
j ]), e

q
j ∈Eq

(1)
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where ; means the concatenation operation and ◦
denotes the element-wise product between two vec-
tors. MLPe calculates the node embedding from
target and MLPs computes the score of predicted
output (yn = opi or qj) using the node embed-
ding and the corresponding embedding (eopi or eqj ).
s(opi) and s(qj) are the scores of the current node
predicted to be opi and qj .

Node decomposition After node prediction, any
operator node (yn = op) needs to be decomposed
into two child nodes using their target vector tn
and corresponding embedding Eop[yn]:

tnl
, tnr = MLPd([tn;E

op[yn]]) (2)

where MLPd is used for left and right child nodes
decomposition, and tnl

and tnr represent the target
vectors of two child nodes.

As shown in Figure 2, the top-down process re-
peats above two steps: each node first predicts its
own output, then the operator node is decomposed
into two child nodes, and child nodes continue its
node prediction. If any child node is still an oper-
ator node, the decomposition continues until the
quantity node. The objective is to minimize the neg-
ative log-likelihood of training data (T, Y ) using
the pre-order equation Y pre = {yf1 , yf2 , · · · , yfL}:

Lt2b =

D∑

T,Y

−log P (Y pre | T )

=
D∑

T,Y

−log
L∏

n=1

P
(
yfn | Ew,op,q, tn

) (3)

where P (yfn | ∗) is the predicted probability of yfn
in node prediction, which is computed from all pos-
sible s(op) and s(q) (Equation 1) by Softmax. The
pre-order equation has L tokens, so the top-down
process also requires L times of node prediction.

Bottom-up view using Post-order The down-
up view is a relation construction process that
follows the post-order expressions Y post (e.g.,
2, 3,+, 4,×, 5,−). Inspired by Jie et al. (2022),
we devise a concise bottom-up process. The sub-
expression is treated as a relation mapping, i.e. op-
erator is the math relation between two quantities,
e.g.,(2, 3) → +. Thus, as shown in Figure 2, in
each iteration we map two quantities to a specific
operator for a sub-expression, and then use this sub-
expression as a new quantity for the next iteration,
e.g., (q(2,3,+), 4 → ×). Specifically, in step t, a
quantity pairs (qi and qj) and a operator (opk) form

a relation mapping (qi, qj → opk), we get their em-
beddings from the Eq and Eop, i.e.,eqi , e

q
j ∈Eq

t and
eopk ∈Eop, where Eq

t is the embedding of the all
quantity words at step t. We first fuse two quantity
embeddings, and then with operator embedding:

hji =MLPh
(
[eqi ; e

q
j ; e

q
i ◦ e

q
j ]
)

eB2T
qi,qj ,opk

=MLPm
(
[hji ; e

op
k ;hji ◦ e

op
k ]

) (4)

where eB2T
qi,qj ,opk

means the embedding of the sub-
expression, MLPh fuses two quantity embeddings
into hji and MLPm fuses hji with operator opk.

Then, to select the best mapping from all possi-
ble combinations of quantity pairs and operators,
we score sub-expression based on its embedding:

s
(
eB2T
qi,qj ,opk

)
= MLPr

(
eB2T
qi,qj ,opk

)
(5)

where s(eB2T
qi,qj ,opk

) means the score assigned to this
sub-expression. Lastly, the selected sub-expression
is added to Eq

t and treated as a new quantity for
next iteration, i.e. ,Eq

t+1 = Eq
t ∪ {eB2T

qi,qj ,opk
}.

During training, we obtain the gold mapping
(ybi , y

b
j→ybk) from the post-order equation Y post =

{yb1, yb2, · · · , ybL} and select the highest scoring
mapping (qmi , qmj → opmk ) from all combinations.
The optimization is to maximize the score of the
gold mapping in all possible combinations:

Lb2t=
D∑

T,Y

K∑

t=1

s
(
eB2T,t
qmi ,qmj ,opmk

)
−s

(
eB2T,t

ybi ,y
b
j ,y

b
k

)
(6)

where K denotes that equation Y post has K times
relation extraction in total.

3.3 Consistent Contrastive Learning
The top-down reasoning provides a coarse-to-fine
decomposition process in a flexible manner. In
contrast, the bottom-up reasoning provides a local-
to-global construction view step by step. Although
the two views are reversed in process, they should
be consistent regardless of the observation view. To
this end, we use consistent contrastive learning to
constrain the representations of the sub-expression
generated in two independent views.

Multi-view Representation For the top-down
view, we fuse the embedding of the parent node
with two child nodes in a sub-tree as a sub-
expression representation. First, we calculate the
parent node embedding Eop[yp], where yp means
the predicted operator of the parent node. Then,
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Figure 2: We align multi-view reasoning through consistent contrastive learning. Firstly, we obtain three global
shared embeddings (Eop, Eq, Ew) from the text encoder. Then, top-down process constantly decomposes global
goals, while bottom-up process continuously constructs local relations. Both views produce intermediate sub-
expressions. These sub-expression representations are aligned using multi-granularity contrastive learning.

the left child node embedding el is calculated ac-
cording to its node type. If the left child node is a
quantity node, its embedding is el = Eq[yl], where
yl means the predicted quantity. If left child is a
operator node, the entire left subtree’s representa-
tion is used as its embedding, i.e., el = rT2B

l=sub-tree.
The embedding of the right node er is calculated in
a similar way. Finally, we fuse three embeddings:

rT2B
sub-exp = MLPf ([Eop[yp] ;el; er]) (7)

where rT2B
sub-exp means the sub-expression represen-

tation, and the entire sub-tree is treated as a new
fusion node for the next calculation.

For the bottom-up view, we directly use the em-
bedding of the sub-expression obtained from each
relation mapping (Equation 4) as its representation:

rB2T
sub-exp = eB2T

qi,qj ,opk (8)

Multi-granularity Alignment We align two
views of the same sub-expression in multi-
granularity. The sub-expression generated initially
is the minimum granularity, and the maximum
granularity is the complete equation representa-
tion. First, we select representations rB2T

sub-exp and
rT2B
sub-exp from two views of the same sub-expression.

Then, we project them into the same latent space
(hT and hB) and compute the similarity as consis-
tent loss Lccl. Finally, we repeatedly compute the

consistent loss for each sub-expression:

hBt = MLPc(rB2T
sub-expt)

hTt = MLPc′(rT2B
sub-expt)

Lccl =

D∑

T,Y

[
K∑

t=1

−
〈
hTt , h

B
t

〉

∥htt∥2 ·
∥∥hTt

∥∥
2

] (9)

where K denotes the total number of sub-
expressions in the top-down view, and <,> means
dot product of two vectors for similarity. By align-
ment, two reasoning processes constrain each other
at multiple granularities and jointly learn a more ac-
curate and complete representation. We provide a
detailed example (Figure A2 in Appendix) to show
the whole process.

Augmentation We argue that external math rules
are essential for understanding diverse equations,
e.g., different questions with the similar calculation
logic are sometimes labeled as (q1 + q2)× q3 and
sometimes as q1× q3+ q2× q3. It is challenging to
train with those labels. This inconsistency caused
by diverse equations may impair performance. So
we add a knowledge-enhancing augmentation (KE-
Aug) process, which actively injects math laws for
alleviating the impact of diversity. Specifically, we
exert deformations on all equations using a math-
ematical law, generating a new equation. Then,
both new and origin samples are used for training,
e.g., we use the multiplicative distributive law to
convert all equations containing (q1± q2)× q3 into
q1 × q3 ± q2 × q3. After that, the inconsistency is
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alleviated and the model can learn a similar repre-
sentation for the equivalent equation.

3.4 Training and Inference

During KE-Aug, we only use multiplicative dis-
tributive law as external knowledge for augmen-
tation. Then, all samples are converted into the
pre-order and post-order expressions. During train-
ing, to minimize the loss function L = Lt2b+Lb2t+
Lccl, we train three processes: top-down reasoning,
bottom-up reasoning, and consistent contrastive
learning simultaneously from scratch. During in-
ference, we discard the bottom-up model and use
top-down reasoning to compute the final predic-
tion. Since top-down view is a generative model
with more flexibility to generate diverse predic-
tions than classification-based model (bottom-up)
and also gain higher accuracy in our multi-view
training framework (discussed in Section 4.2).

4 Experiments

Datasets We evaluate our method on three standard
datasets across two languages: MAWPS (Koncel-
Kedziorski et al., 2016), Math23K (Wang et al.,
2017), and MathQA (Amini et al., 2019). Math23K
and MathQA are two widely used large datasets
that contain 23k Chinese mathematical problems
and 20k English mathematical problems, respec-
tively, and MAWPS only contains 1.9k English
problems. We follow (Tan et al., 2021; Jie et al.,
2022) to preprocess some unsolvable problems in
the dataset. We consider five operators for the
datasets: addition, subtraction, multiplication, divi-
sion, exponentiation as previous works did.

The number of mathematical operations is used
to measure the reasoning complexity and the text
length denotes the semantic complexity. In Fig-
ure 3, we plot the average reasoning complexity
(x-axis) and semantic complexity (y-axis) of the
three datasets in the two-dimensional plane. The
MathQA is the hardest to solve as it has the highest
semantic complexity and reasoning complexity. In
contrast, the MAWPS is the easiest to answer, as
almost all problems require only two mathematical
operations. The Math23K dataset is the largest,
with moderate reasoning complexity.

Baselines We divide the baselines into the fol-
lowing categories: seq2seq, seq2structure, itera-
tive relation-extraction (I-RE). Besides, we also
consider the methods that use contrasting learn-
ing for generation (CL-Gen). In seq2seq, Li et al.
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Figure 3: Statistics for the three datasets. The x-axis
denotes the average number of math operators and the
y-axis denotes the average text length. The area of the
circle indicates the size of the dataset. Three histograms
mean the distribution of the operators within the dataset.

(2019) (GroupAttn) applied multi-head attention
approach in seq2seq model. Tan et al. (2021) used
multilingual BERT and an LSTM-based decoder
(mBERT). Lan et al. (2021) utilized Transformer
framework for MWP (BERTGen, RoGen). Shen
et al. (2021a) proposed a multi-task approach (Gen-
Rank). In seq2structure, Xie and Sun (2019) pro-
posed seq-to-tree generation (GTS) method. Zhang
et al. (2020) (Graph2Tree) introduced GCN to en-
code numerical relations. Patel et al. (2021); Liang
et al. (2021) offered pre-trained language versions
(Roberta-GTS, Roberta-G2T, BERT-Tree). Qin
et al. (2021) introduced a neural symbolic approach
(Symbol-Solver) based on GTS. A hierarchical
architecture extracts features for GTS (Yu et al.,
2021) (H-Reasoner). In I-RE, Cao et al. (2021)
used DAG-structure to extract the relation (DAG).
Jie et al. (2022) introduced a powerful RE frame-
work to deduce relation. (RE-Deduction). In CL-
Gen, Liang and Zhang (2021) adopted a teacher
model for discrimination (T-Dis). Li et al. (2021)
proposed a prototype learning. (CL-Prototype).

Training Details We adopt Roberta-base and
Chinese-BERT from HuggingFace (Wolf et al.,
2020) for multilingual datasets as previous works.
We use an AdamW optimizer (Kingma and Ba,
2014; Loshchilov and Hutter, 2019) with a 2e-5
learning rate, batch size of 12, and beam search of
size 4. All experiments were set up on an Nvidia
RTX 3090 24GB. Following most previous works,
we report the average answer accuracy (five ran-
dom seeds) with standard deviation using the test
set for Math23K and MathQA, and the 5-fold cross-
validation performance on Math23K and MAWPS.
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H-Reasoner*(Yu et al., 2021) 83.9 82.2

C
L

-G T-Dis*(Liang and Zhang, 2021) 79.1 77.2
CL-Prototype* (Li et al., 2021) 83.2 -

I-
R

E DAG* (Cao et al., 2021) 77.5 75.1
RE-Deduction*(Jie et al., 2022) 85.4 83.3

- Multi-view* (ours) 87.1
± 0.29

85.2
± 0.38

Table 1: Results on Math23k. ∗ means using pre-trained
language model. ♢ means our reproduction.

Model Acc.

Seq2Seq GroupAttn♢(Li et al., 2019) 70.4
mBERT*(Tan et al., 2021) 77.1

Structure
-Gen

GTS♢ (Xie and Sun, 2019) 71.3
Graph2Tree♢(Zhang et al., 2020) 72.0
BERT-Tree*(Liang et al., 2021) 73.8

CL-Gen CL-Prototype* (Li et al., 2021) 76.3

I-RE RE-Deduction*(Jie et al., 2022) 78.6

- Multi-view*(ours) 80.6
± 0.17

Table 2: Test accuracy comparison on MathQA.

4.1 Results

As shown in Table 1, 2, we observe our method
achieves consistent improvements over the strong
baselines across multiple datasets, with +1.7% im-
provements on Math23K, +1.9% improvements
on 5-fold Math23K, +2.0% improvements on
MathQA. The improvement is particularly signif-
icant when our method is evaluated on larger and
more complex datasets, like MathQA, which in-
cludes many GRE problems requiring complex rea-
soning. We achieve the greatest improvement on
this most difficult dataset. It demonstrates the reli-
able reasoning ability of our method. Additionally,
although the MAWPS dataset is small and simple,
we still obtain a slight boost (+0.1%) compared to
the other baselines in Table 3.

Compared with three single-view methods:
seq2seq, seq2structure and I-RE, our method is
more stable and outperforms all of them. Al-
though, the I-RE method performs the best among
all single-view methods, it still lags behind ours by

Model Acc.

Seq2Seq

GroupAttn(Li et al., 2019) 76.1
Gen-Rank(Shen et al., 2021a) 84.0
Transformer(Vaswani et al., 2017) 85.6
BERTGen*(Lan et al., 2021) 86.9
RoGen*(Lan et al., 2021) 88.4

Structure
-Gen

GTS (Xie and Sun, 2019) 82.6
Graph2Tree(Zhang et al., 2020) 85.6
Roberta-GTS*(Liang et al., 2021) 88.5
Roberta-G2T*(Liang et al., 2021) 88.7
H-Reasoner*(Yu et al., 2021) 89.8

CL-Gen T-Dis*(Liang and Zhang, 2021) 84.2

I-RE RE-Deduction*(Jie et al., 2022) 92.2

- Multi-view* (ours) 92.3
±0.16

Table 3: 5-fold cross-validation results on MAWPS.

almost 2% (RE-deduction) on average. In addition,
the performance of the other two single-view meth-
ods is unstable: on the simpler but larger dataset
Math23K, seq2structure achieves comparable ac-
curacy with seq2seq, but lags behind ours by 2.7%
(BERT-Tree), 1.7% (Gen-Rank), respectively. In
contrast, on the more complex dataset MathQA,
seq2seq is better than seq2structure, but worse than
ours by 3.5% (mBERT*) and 6.8% (BERT-Tree).

Furthermore, we also observe that the method
which adopts contrastive learning (CL-Prototype)
is considerably lower than ours by 3.9% (Math23K)
and 4.3% (MathQA). It suggests that our multi-
view design is pretty effective for math reasoning,
and contrastive learning can play a more significant
role in our consistent multi-view framework. A
fine-grained analysis can be found in Section 4.3.

4.2 Ablation Experiments

Through the above experiments, we found that data
augmentation can alleviate inconsistency between
different instances and multi-view contrastive learn-
ing can alleviate inconsistency between different
views of an instance. To better illustrate the contri-
bution of each module, we devise several variant
models and evaluate them on Math23K.

As the Table 4 shows, Multi-view means that the
model contains both top-down and bottom-up rea-
soning processes, and keeps both views consistent
through global shared embedding and contrastive
learning. KE-Aug means we adopt equation aug-
mentation for training. (1) Our proposed method
(Multi-view and KE-Aug) achieves an accuracy of
87.1% in top-down view. In contrast, the bottom-
up view does not show any performance gains. (2)
We remove the multi-view alignment, and two rea-
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Variant Top-down bottom-up

Multi-view & KE-Aug 87.1 85.2
w/o Multi-view 85.4 84
w/o KE-Aug 86.5 86.3
w/o KE-Aug & Multi-view 84.9 85.1

Table 4: Ablation study on Math23K.

soning views are completely independent and both
are trained using augmented data. The performance
of the top-down view dropped by 1.7% (87.1% to
85.4%), while bottom-up view performance also
dropped by 1.2% (85.2% to 84%). (3) In contrast,
we remove the data augmentation module in that
the two reasoning views can learn more precise rep-
resentations by a consistent contrastive learning. In
this case, there is a slight decrease in the top-down
view (-0.6%), while the accuracy of the bottom-up
is instead improved by +1.1%. (4) Moreover, after
removing KE-aug and Multi-view, it only consists
of two completely independent reasoning processes
and can only be trained on the original inconsistent
dataset. The two views achieve 84.9% and 85.1%
accuracy respectively, which are comparable to the
other single-view baselines.

These ablation experiment clearly reveal that
data augmentation brings small or negative im-
provement on single-view approaches, but multi-
view alignment can maximize the effect of aug-
mentation. We suspect that it may be because the
bottom-up view focuses more on local features, and
the data augmentation brings multiple local rela-
tions, thus making such local features more difficult
to extract. Therefore, during training, we use con-
sistent contrastive learning and data augmentation
to train multi-view processes. As for the inference
process, we directly use the top-down view as the
final prediction model.

4.3 Analysis Experiments

Fine-grained Comparison To verify that our
method can handle more complex math problems,
we conduct a fine-grained comparison with the
best baseline (RE-deduction) on two challenging
datasets (MathQA and Math23K). Specifically, we
calculate the performance of the subset divided by
the number of mathematical operators.

As shown in Figure 4, our proposed method
gains consistent improvements over the baseline
across all subsets. In particular, on the more com-
plex MathQA, we still maintain high prediction
accuracy (≥ 78%) over hard problems (number of

operators ≥ 4 ), but the performance of the base-
line drops dramatically, e.g., on the most complex
subsets with 8 and 9 operators, our performance
outperforms the baseline by nearly 20% and 28%.
A similar trend can be observed on math23K, i.e.,
our method achieves more significant results on
more difficult subset, with 2.06% improvements on
the 3 operators subset, 4.08% on the 4 operators
subset and 7.7% on the 5 operators subset. The
superiority we achieve on these difficult samples
demonstrates strong global generation and accurate
local mapping capabilities for math reasoning.

Performance Attribution Analysis To further
demonstrate our method can achieve a high predic-
tion accuracy while also predicting equations with
diversity, we split the overall precision into two
parts: equation precision and diversity. Equation
precision indicates the proportion of samples in
the test set whose prediction is exactly the same
as the label equation. Contrary to this, diversity
counts those samples whose prediction are dif-
ferent from the label, but also derive the correct
answer, e.g., Y pred = {+,−,×, 2, 4, 5,×, 3, 4},
Y label = {−,×,+, 2, 3, 4, 5}.

As Figure 5 shows, the overall precision (87.1%)
and diversity (12.4%) of ours both are the highest
among the seven methods, and equation precision
is only inferior to RE-deduction. Besides, we plot
the equation precision (x-axis) and diversity (y-
axis) on a two-dimensional plane. We find that the
I-RE methods (RE-deduction and DAG) has low
diversity but relatively high equation precision. In
contrast, the seq2structure methods (GTS, Teacher-
Dis, BERT-Tree) generate more diverse results with
low equations precision. However, our method per-
forms well in both diversity and equation precision.

We also provide some examples in the case study
(Figure A3 in Appendix). This experiment illus-
trates that each of these single-view approaches
has specific limitations, either lacking fine-grained
mapping or global diverse generation capabilities.
Our multi-view approach can incorporate the mer-
its of both views, achieving precise and versatile
solving.

5 Conclusion

We treat the pre-order traversal of math equation
as a top-down view and the post-order equation as
bottom-up view. Two reasoning views are naturally
existing and both are necessary for complex math-
ematical reasoning. We design a multi-view rea-
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rics (Right). Our method performs well on both metrics.

soning containing a top-down decomposition and a
bottom-up construction and ensure the consistency
of the two views through contrastive learning. This
consistent multi-view design can endow us with a
complete and precise semantics-to-equation map-
ping. Experiments on standard datasets show that
our framework achieves new state-of-the-art per-
formance, especially demonstrating reliable gener-
ation capabilities on long and complex problems.

Limitations

There are two main limitations of our work: first,
although we design two reasoning processes during
training: top-down and bottom-up, we discard the
bottom-up process when inferring and only adopt
the prediction from the top-down reasoning. In
future work, we will explore how to select the best
prediction from both views. Second, our multi-

view reasoning process is capable of generating
more diverse equivalent equations, but this genera-
tion process is not controllable, and it is not clear
for now what underlying factors control different
generation patterns.
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A Appendix

A.1 Details for Consistent Contrastive
Learning

We investigate the design of consistent contrastive
learning for multi-view alignment. As shown in
Figure A1, we evaluate four factors on Math23K:

Metric for alignment. We consider two metrics
for alignment: cosine similarity and L2 distance.
The former is a simplification of the conventional
contrastive metric with only positive instances.

Granularity of alignment. As shown in Equa-
tion 9, we use multi-granularity sub-expressions
for alignment. Besides, we also show the results of
aligning two views only using the global equation
representation.

Top-down representation. We investigate how
to obtain the representation of sub-expressions. We
design two types of representation for the top-down
view. First, as shown in Equation 7, we use sub-
tree fusion to get the representation for each sub-
expression, which is denoted as sub-tree fusion.
Besides, we treat the embedding of the parent node
en (Equation 1) as a representation for this sub-
expression. We denote it as parent embedding.

Bottom-up representation. For the bottom-up
process, there are also two options for its represen-
tations. As shown in Equation 8, we use the embed-
ding of the relation mapping as the representation,
which denotes as mapping embedding. Besides,
we fuse the concatenation of the three embeddings
using MLP layer: rB2T

sub-exp = MLP([eqi ; e
q
j ; op

q
k]),

which denotes it as triples fusion.

A.2 Visualization
In Figure A2, we show an example from MathQA.
The top-down process breaks down the overall
problem through 15 reasoning procedures which
are exactly the same as the pre-order traversal.
Each reasoning step includes two steps: node pre-
diction and node decomposition, until the leaf node
(quantity nodes). Meanwhile, the bottom-up view
predicts the entire equation after five relation ex-
tractions following the post-order equation. Two
reasoning views work in reverse order.

Then, in the consistent contrastive learning pro-
cess, the top-down view continuously computes
the sub-expression representation based on the
sub-tree fusion. For bottom-up reasoning, we
directly use the embeddings from each relation
extraction as representations. Since the bottom-
up process reuses the previously constructed sub-
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Figure A1: Evaluation on Math23K using multiple con-
figurations of consistent contrastive learning.

expressions (step 8 and 10), it generates fewer sub-
expressions than the top-down process. Finally, all
sub-expressions representations from both views
are aligned in the same latent space.

A.3 Case Study
We perform a case study to demonstrate the capa-
bility of generating diverse equations. As Figure
A3 shows, the algorithm generates equivalent equa-
tions that are not the same as the labeled equations.
Most of these predicted equivalent equations can
be derived from labeled equations by simple math-
ematical deformations, e.g., (57 + 43) × 24 and
57×24+43×24 in case 6. In addition to simple de-
formations, our algorithm also can solve complex
problems using the different solving ideas, e.g., in
case 8, it starts from a simpler reasoning idea and
solves the problem correctly.

At the bottom of Figure A3, we also count the
deformation pattern distributions among all diverse
prediction equations. We summarize six patterns:
addition and multiplication commutative law, mul-
tiplication and division distributive law, different
problem-solving idea and others. Then we manu-
ally identify the deformation patterns of each equiv-
alent equation predicted by ours. We discover that
more than half of the equivalent equations (≥ 60%)
can be derived from additive or multiplicative com-
mutative law deformations. Nearly 30% of the
equivalent equations can be derived by deforming
the distributive law and about 8% belong to the
different solving ideas (e.g., cases 8 and 9). It
shows that our multi-view method has mathemat-
ical reasoning capabilities and can be applied to
solve complex mathematical problems.
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Question: In a division sum , the remainder is 8 and the divisor is 6 times the quotient and is 
obtained by adding 3 to the 3 times of the remainder. What is the divident?
Answer: 129.5 Equ: ( (8*3 + 3) ∗ (8*3 + 3) / 6 ) + 8
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Figure A2: A MathQA example of multi-view reasoning and consistent contrastive learning process. It contains
independent reasoning processes of two views, the computations of sub-expressions representation, and multi-
granularity alignment.
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There are 44 willow trees planted on four sides of a square flower pond, and the interval between every two 
willow trees is 20 meters. What is the perimeter of this square?
Label Equation: 20 * 44 Predict Equation: 44 * 20

Uncle Wang deposited 6,000 yuan in the bank, the annual interest rate was 3.24%, and the deposit period was 2 
years. How much can he get back when it expires?
Label Equation: 6000 + 6000 * 3.24% * 2 Predict Equation: 6000 * 3.24% * 2 + 6000

The department store has 15 packs of towels, each pack of 20, each priced at 4 yuan. How much do these towels 
cost in total?
Label Equation: 15 * 20 * 4 Predict Equation: 20 * 4 * 15

Case 1

Case 2

Case 3

Addition and Multiplication Commutative Law

The cost of each piece of clothing is now 20% lower than in the past, and the cost of each piece of clothing is 
now % of what it used to be ? 
Label Equation: (1 - 20%) / 1 Predict Equation: 1 - 20%

An aqueduct has been repaired for 5.6 kilometers, and what has not been repaired is 2.7 times as long as it has 
been repaired. How many kilometers is the total length of this aqueduct?
Label Equation: 5.6 * (1 + 2.7) Predict Equation: 5.6 * 2.7 + 5.6

The summer supermarket sold 57 cases of Coke and 43 cases of mineral water in one day, and each case of 
Coke and mineral water was 24 bottles. How many bottles of cola and mineral water were sold in the summer 
supermarket?
Label Equation: 57 * 24 + 43 * 24 Predict Equation: (57 + 43) * 24

Case 4

Case 6

Case 5

Multiplication and Division Distributive Law

There are 96 students of Primary School to visit the Technology Museum. They are divided into 4 teams. Each 
team is divided into 3 groups. How many people are in each group?
Label Equation: 96 / (4 * 3) Predict Equation: 96 / 4 / 3

The store bought a batch of shoes at 13 yuan per pair, and the selling price was 14.8 yuan. When there are 5 
pairs left, in addition to the total cost of purchasing this batch of shoes, there will be a profit of 88 yuan. How 
many pairs of shoes are there in this batch of shoes?
Label Equation: (88 + 13 * 5) / (14.8 - 13) + 5 Predict Equation: (14.8 * 5 + 88) / (14.8 - 13)

The ratio of the quantities of oil stored in warehouses A and B is 5:3. Now, 90 barrels of oil have been transferred 
from warehouse A.  At this time, the quantities of oil in warehouses A and B are equal. How many barrels of oil 
are in warehouse B?
Label Equation: 90 / (5 - 3) * 3 Predict Equation: 90 / [5 / (5 + 3) – 3 / (5 + 3)] *  3 / (5 + 3)

Case 7

Case 9

Case 8

Different Problem-Solving Idea
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Figure A3: Nine examples demonstrate the capability of our approach for generating equivalent but non-labeled
equations. At the bottom, we count the distribution of the six generation patterns among all equivalent equations.
Each pattern represents a mathematical deformation using a specific mathematical law. This diverse generation
indicates that our model can understands the underlying mathematical relation and generates reasonable equation
based on mathematical laws.
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