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Abstract

In recent years, NLP has moved towards the
application of language models to a more
diverse set of tasks. However, applying
language models to structured prediction, e.g.,
predicting parse trees, taggings, and coref-
erence chains, is not straightforward. Prior
work on language model-based structured
prediction typically flattens the target structure
into a string to easily fit it into the language
modeling framework. Such flattening limits
the accessibility of structural information and
can lead to inferior performance compared to
approaches that overtly model the structure.
In this work, we propose to construct a
conditional language model over sequences
of structure-building actions, rather than over
strings in a way that makes it easier for the
model to pick up on intra-structure dependen-
cies. Our method sets the new state of the
art on named entity recognition, end-to-end
relation extraction, and coreference resolution.

https://github.com/lyutyuh/ASP

1 Introduction

Many common NLP tasks, e.g., named entity
recognition, relation extraction, and coreference
resolution are naturally taxonomized as structured
prediction, the supervised machine-learning task of
predicting a structure from a large1 set. To general-
ize well to held-out data in a structured prediction
problem, the received wisdom has been that it
is necessary to correctly model complex depen-
dencies between different pieces of the structure.
However, a recent trend in structured prediction
for language has been to forgo explicitly modeling
such dependencies (Ma and Hovy, 2016; Lee et al.,
2017; He et al., 2017, inter alia), and, instead, to
apply an expressive black-box model, e.g., a neural
network, with the hope that the model picks up on
the dependencies without explicit instruction.

1Typically, large means exponential in the size of the input.

Framing structured prediction as conditional
language modeling is an increasingly common
black-box technique for building structured predic-
tors that has led to empirical success (Vinyals et al.,
2015; Raffel et al., 2020; Athiwaratkun et al., 2020;
De Cao et al., 2021; Paolini et al., 2021, inter alia).
The idea behind the framework is to encode the tar-
get structure as a string, flattening out the structure.
Then, one uses a conditional language model to
predict the flattened string encoding the structure.
For instance, Vinyals et al. (2015) flatten parse
trees into strings and predict the strings encoding
the flattened trees from the sentence with a machine
translation architecture. The hope is that the au-
toregressive nature of the language model allows it
to learn to model the intra-structure dependencies
and the necessary hard constraints that ensure the
model even produces well-formed structures. Ad-
ditionally, many modelers make use of pre-trained
language models (Lewis et al., 2020; Raffel et al.,
2020) to further improve the language models.

However, despite their empirical success, simply
hoping that a black-box approach correctly models
intricate intra-structure dependencies is often
insufficient for highly structured tasks (Paolini
et al., 2021, §1). Indeed, the act of flattening a
structured object into a string makes properly mod-
eling the intra-structure dependencies harder for
many tasks, e.g., those that involve nested spans or
long-distance dependencies. For instance, in coref-
erence resolution, a conference link between two
mentions can stretch across thousands of words,
and a coreference chain can also contain over a
hundred mentions (Pradhan et al., 2012). Flatten-
ing such a large amount of structured information
into a string makes the task more difficult to model.

In this paper, we propose a simple framework
that augments a conditional language model with
explicit modeling of structure. Instead of modeling
strings that encode a flattened representation of
the target structure, we model a constrained set
of actions that build the target structure step by
step; see Fig. 1 for an example of our proposed
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ASP:

US President Joe Biden took office in 2021. Previously, he was the senator of Delaware.INPUT

b"

z"
(ERE)

[* US ] President Joe Biden ] took office in 2021. Previously, [* he ] was the senator of [* Delaware ] .

z"
(COREF)

Figure 1: Illustration of the target outputs of our framework on coreference resolution (COREF) and end-to-end
relation extraction (ERE). The lower part illustrates the decoding process of our model. The actions yi are
color-coded as ] , [∗ and copy . The structure random variables zi are presented along with coreference links or
relation links. We present words in the copy cells merely as an illustration.

framework. Training a conditional language model
to predict structure-building actions exposes the
structure in a way that allows the model to pick
up on the intra-structure dependencies more easily
while still allowing the modeler to leverage pre-
trained language models. We conduct experiments
on three structured prediction tasks: named entity
recognition, end-to-end relation extraction, and
coreference resolution. On each task, we achieve
state-of-the-art results without relying on data
augmentation or task-specific feature engineering.

2 Autoregressive Structured Prediction

In this section, we describe our proposed approach,
which we refer to as autoregressive structured
prediction (ASP). Unlike previous approaches for
structured prediction based on conditional language
modeling, we represent structures as sequences of
actions, which build pieces of the target structure
step by step. For instance, in the task of coreference
resolution, the actions build spans as well as the
relations between the spans, contiguous sequences
of tokens. We give an example in Fig. 1.

2.1 Representing Structures with Actions
While our approach to structured prediction, ASP,
is quite general, our paper narrowly focuses on
modeling structures that are expressible as a set
of dependent spans, and we couch the technical
exposition in terms of modeling spans and relation-
ships among spans. Our goal is to predict an action
sequence y = y1, . . . , yN , where each action yn is
chosen from an action space Yn. In this work, we
take Yn to be factored, i.e., Yn def

= A × Bn × Zn,
where A is a set of structure-building actions, Bn
is the set of bracket-pairing actions, and Zn is a

set of span-labeling actions. Thus, each yn may be
expressed as a triple, i.e., yn = 〈an, bn, zn〉. We
discuss each set in a separate paragraph below.

Structure-Building Actions. We first de-
fine a set of structure-building actions
A =

{
] , [∗ , copy

}
that allow us to encode the

span structure of a text, e.g., [∗ Delaware ] in
Fig. 1 encodes that Delaware is a span of interest.
More technically, the action ] refers to a right
bracket that marks the right-most part of a span.
The action [∗ refers to a left bracket that marks
the left-most part of a span. The superscript ∗ on
[∗ is inspired by the Kleene star and indicates
that it is a placeholder for 0 or more consecutive
left brackets2. Finally, copy refers to copying a
word from the input document. To see how these
actions come together to form a span, consider the
subsequence in Fig. 1, [∗ Delaware ] , which is
generated from a sequence of structure-building
actions [∗ , copy , and ] .

Bracket-Pairing Actions. Next, we develop the
set of actions that allow the model to match left
and right brackets; we term these bracket-pairing
actions. The set of bracket-pairing actions consists
of all previously constructed left brackets, i.e.,

Bn =
{
m | m < n ∧ am = [∗

}
(1)

Thus, in general, |Bn| is O(n). However, it is
often the case that domain-specific knowledge can

2In our preliminary experiments, we observe unsatisfactory
performance when the model has to generate consecutive left
brackets. We leverage [∗ as an engineering workaround. We
hypothesize that this phenomenon is due to the inability of
transformers to recognize Dyck languages (Hahn, 2020; Hao
et al., 2022).
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be used to prune Bn. For instance, coreference
mentions and named entities rarely cross sentence
boundaries, which yields a linguistically motivated
pruning strategy (Liu et al., 2022). Thus, in some
cases, the cardinality of Bn can be significantly
smaller. When we decode action sequences y into
a structure, unpaired [∗ and ] can be removed
ensuring that the output of the model will not
contain unpaired brackets.

Span-Labeling Actions. Finally, we add addi-
tional symbols zn associated with each yn that en-
code a labeling of a single span or a relationship
between two or more spans. For instance, see §2.3
for an example. We denote the set of all zn as

Zn =
{
m | m < n ∧ am = ]

}
× L (2)

where
{
m | m < n ∧ am = ]

}
is the set of

previous spans, which allows the model to capture
intra-span relationships, and L denotes the set of
possible labelings of the current span and the re-
lationship between the adjoined spans. In general,
designing Zn requires some task-specific knowl-
edge in order to specify the label space. However,
we contend it requires less effort than designing
a flattened string output where different levels of
structures may be intertwined (Paolini et al., 2021).

2.2 Model Parameterization
Let D = w1, . . . ,wK be an input document of K
sentences where wk denotes the kth sentence in D.
We first convert the structure to be built on top of
D into an action sequence, which we denote as y
where yn ∈ Yn. Now, we model the sequence of
actions y as a conditional language model

pθ(y | D) =

N∏

n=1

pθ(yn | y<n, D) (3)

The log-likelihood of the model is then given
by log pθ(y | D) =

∑N
n=1 log pθ(yn | y<n, D).

We model the local conditional probabilities
p(yn | y<n, D) as a softmax over a dynamic set Yn
that changes as a function of the history y<n, i.e.,

pθ(yn | y<n, D) =
exp sθ(yn)∑

y′n∈Yn exp sθ(y
′
n)

(4)

where sθ is a parameterized score function; we
discuss several specific instantiations of sθ in
§2.3. Finally, we note that the use of a dynamic
vocabulary stands in contrast to most conditional

language models where the vocabulary is held
constant across time steps, e.g., Sutskever et al.’s
(2014) approach to machine translation.

Greedy Decoding. We determine the approxi-
mate best sequence y∗ using a greedy decoding
strategy. At decoding step n, we compute

y∗n = argmax
y′n

pθ(y
′
n | y<n, D) (5)

The chosen y∗n = 〈a∗n, b∗n, z∗n〉 will then be verbal-
ized as a token as follows: If a∗n = copy , then
we copy the next token from the input that is not
present in the output. Otherwise, if y∗n = [∗ or
y∗n = ] , we insert [∗ or ] into the output se-
quence, respectively. The verbalized token is then
fed into the conditional language model at the next
step. The decoding process terminates when the
model copies a distinguished symbol EOS symbol
from the input. The end of the procedure yields an
approximate argmax y∗.

Computational Complexity. Eq. (4) can be
computed quite efficiently using our framework,
as the cardinalities of A is O(1), and the size of
Bn and Zn are both O(n). A tighter analysis says
the cardinalities of Bn and Zn are roughly linear
in the number of spans predicted. In practice, we
have n� |V | where |V | is the size of vocabulary,
which is the step-wise complexity of (Paolini et al.,
2021). A quantitative analysis of the number of
mentions in coreference can be found in App. B.

Generality. Despite our exposition’s focus on
tasks that involve assigning labels to span or span
pairs, our method is quite general. Indeed, almost
any structured prediction task can be encoded by a
series of structure-building actions. For tasks that
involve labeling tuples of spans, e.g., semantic role
labeling makes use of tree-tuples that consist of the
subject, predicate, and object, Eq. (2) can be easily
extended with a new space of categorical variables{
m | m < n ∧ am = ]

}
to model the extra item.

2.3 Task-specific Parameterizations
We now demonstrate how to apply ASP to three
language structured prediction tasks: named entity
recognition, coreference resolution, and end-to-end
relation extraction.

Named Entity Recognition. Named entity
recognition is the task of labeling all mention spans
E = {en}|E|n=1 in a documentD that refers to named
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entities. Since named entity recognition only re-
quires labeling spans (and not linking them), we
only need our task-specific zn to encode the en-
tity type, which is canonically taken from a set of
pre-defined categories C. The function sθ(yn) in
Eq. (4) is implemented by a feed-forward network

sθ(yn = 〈an, bn, zn〉) (6)

def
=

{
FFNzn

an(mn) if an = ]

FFNan(hn) otherwise

where hn is the decoder hidden state at step n, a
column vector, and mn = [h>n ;h

>
bn
]> represents

the mention that corresponds to yn. Note that
each FFNzn

an and FFNan represent independent
feed-forward networks with no shared parameters.

End-to-End Relation Extraction. End-to-end
relation extraction is the task of jointly extract-
ing a set of entities alongside a set of relations
between pairs of extracted entities. Formally, given
a set of pre-defined entity categories C and a set
of pre-defined relations R. The goal is (i) to
identify all possible entities E = {en}|E|n=1 in D
that could be associated with one of the entity
types c in C and (ii) to identify all possible triples
T = {(en, rn, e′n)}|T |n=1 in D where en, e′n ∈ E are
the head and tail entity and rn ∈ R is the rela-
tion between en and e′n. Here, the support of zn
takes the form of Eq. (2), where L is instantiated
as C ×R. And sθ(yn) kept the same as in Eq. (6).

Coreference Resolution. The task of corefer-
ence resolution involves identifying all mention
spans E = {en}|E|n=1 in D and then clustering them.
However, in addition to identifying the mention
spans, the task of coreference resolution requires us
to assign an antecedent to every possible mention in
D. To encode coreference resolution in our frame-
work, we consider the task-specific zn from the set

Zn =
{
m | m < n ∧ am = ]

}
∪ {ε} (7)

where we follow the convention set in Lee et al.
(2017) that the antecedent of the first mention in
each coreference chain is defined to be ε. Again,
we define sθ(yn = 〈an, bn, zn〉) as in Eq. (6)
with the exception that, when zn = ε, we define
FFNan(mn)ε = FFNan(mn).

3 Experiments

We experiment on three NLP structured prediction
tasks: named entity recognition, end-to-end rela-
tion extraction, and coreference resolution. We are

Prec. Rec. F1

Ma and Hovy (2016) 91.4 91.1 91.2
Devlin et al.+BERTL - - 92.8
Ye et al.+ROBERTAL - - 94.0
Athiwaratkun et al. - - 91.5
Paolini et al.+T5B - - 91.7

ASP+T5B 91.4 92.2 91.8
ASP+T5L 92.1 93.4 92.8
ASP+T53B 93.8 94.4 94.1

Table 1: Test F1 scores of named entity recognition on
the CoNLL-03 test set.

primarily interested in understanding whether ASP
provides advantages over two existing formalisms:
(i) conditional language models (Athiwaratkun
et al., 2020; Paolini et al., 2021) that flatten
the structure into a string (augmented language
models), and (ii) the classic discriminative models
whose autoregressivity is bounded. We experiment
with three pre-trained language models, T5 (Raffel
et al., 2020), T0 (Sanh et al., 2021), and Flan-T5
(Chung et al., 2022) for the three tasks under
consideration. Additional experimental details are
given in App. A.1 and App. A.2.

3.1 Named Entity Recognition

First, we evaluate our model on the CoNLL-03
English NER task. Following previous work, we
report the micro precision, recall, and F1 score. As
shown in Tab. 1, our model using T0-3B backbone
outperforms all other models without data augmen-
tation or ensembling.

3.2 End-to-End Relation Extraction

We compare ASP on the CoNLL-04 and ACE-
05 English end-to-end relation extraction datasets.
The results are shown in Tab. 2 and Tab. 3. Our
proposed approach achieves state-of-the-art results
on both datasets using T5-3B as the backbone. In
particular, it outperforms the flattened-string model
of Paolini et al. (2021) by a large margin (> 0.9
F1). We hypothesize that this is due to relations re-
quiring higher-order dependencies between spans.

3Ye et al. (2022) counts symmetric relations twice for
evaluation, which is inconsistent with previous work. We
report the re-evaluated scores under the standard metric.

4On ACE-05, we observe inferior performance using T0-
3B instead of T5-3B. We suspect this is due to systematic
deficiencies in dataset preprocessing, e.g., errors during senten-
cization and tokenization as well as inconsistent capitalization.
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Ent Rel

Eberts and Ulges (2020) 88.9 71.5
Zhao et al. (2020) 88.9 71.9
Wang and Lu+ALBERTXXL 90.1 73.8
Paolini et al.+T5B 89.4 71.4

ASP+T5B 89.5 73.2
ASP+T03B 90.3 76.3

Table 2: Micro F1 scores of entity extraction and re-
lation extraction on the CoNLL-04 joint entity relation
extraction test set.

Ent Rel Rel+

Wang and Lu+ALBXXL 89.5 67.6 64.3
Zhong and Chen+ALBXXL 90.9 69.4 67.0
Ye et al.+ALBXXL

3 91.1 72.4 70.3
Paolini et al.+T5B 88.9 63.7 -

ASP+T5B 90.7 71.1 68.6
ASP+T5L 91.3 71.9 69.4
ASP+T53B

4 91.3 72.7 70.5

Table 3: Test F1 scores of entity and relation extraction
on the ACE-05 joint entity relation extraction task.

3.3 Coreference Resolution
We then conduct experiments on the standard
OntoNotes benchmark in the CoNLL-12 English
shared task dataset (Pradhan et al., 2012). Tab. 4
reports the results. Again, our model achieves state-
of-the-art performance among systems without any
data augmentation5, outperforming the previous
state of the art by 1.5 F1 score. We also observe
that our ASP models substantially outperform dis-
criminative models that make use of the same PLM.
Further analysis is provided in App. B.

4 Related Work

Most similar to our approach is the model of
(Paolini et al., 2021), which also predicts structures
in an iterative manner using conditional language
models. Similar approaches exist for constituency
parsing (Vinyals et al., 2015; Dyer et al., 2016),
entity retrieval (De Cao et al., 2021), semantic
parsing (Xiao et al., 2016), slot labeling, and
intent classification (Athiwaratkun et al., 2020).
Earlier work on search-based (Daumé et al.,

5We achieve 82.9 F1 score on the development set, out-
performing the result without pretraining on additional data
reported by Wu et al. (2020, Tab. 5). In addition, training our
model does not require the usage of TPUs.

MUC B3 CEAFφ4 Avg. F1

Lee et al. (2017) 75.8 65.0 60.8 67.2
Joshi et al. (2020) 85.3 78.1 75.3 79.6
Joshi et al.+T5B

† 79.8 70.2 66.8 72.3
Joshi et al.+T5L

† 81.4 73.1 73.1 74.9
Urbizu et al. 64.9 66.5 65.3 65.6
Paolini et al.+T5B 81.0 69.0 68.4 72.8
Dobrovolskii 86.3 79.9 76.6 81.0

ASP+T5B 82.3 75.1 72.5 76.6
ASP+T5L 84.7 77.7 75.2 79.3
ASP+T03B 86.9 81.5 78.4 82.3
ASP+FLAN-T5XXL 87.2 81.7 78.6 82.5

Table 4: Results on the CoNLL-12 English test
set. Avg. F1 denotes the average F1 of MUC, B3,
and CEAFφ4 . Models marked with † are our re-
implementation. Other results are taken from their orig-
inal papers. The full results are in Tab. 5.

2009; Doppa et al., 2014; Chang et al., 2015) and
greedy-based approaches (Swayamdipta et al.,
2016) applied to structured prediction also predict
the structure in a sequential fashion as we do.Other
work such as energy-based models (Belanger and
McCallum, 2016; Tu and Gimpel, 2018, inter alia)
and graphical models (Durrett and Klein, 2014;
Ganea and Hofmann, 2017) predict structures
more holistically.

5 Conclusion

In this paper, we propose a novel framework for
structured prediction that encodes a structure as
a series of structure-building actions that obtains
state-of-the-art performance across three tasks. In
contrast to past approaches for structured predic-
tion, our approach is compatible with pre-trained
large language models. This allows us to reduce
structured prediction to the problem of fine-tuning
pre-trained language models over an enlarged al-
phabet. We show empirically that ASP outperforms
previous structured prediction models by a large
margin. Indeed, we set the new state of the art on
three tasks: named entity recognition, end-to-end
relation extraction, and coreference resolution.
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Ethical Considerations

To consider the ethical implications of our work,
we consider the tasks and models used and our
proposed approach. The tasks considered, named
entity recognition, relation extraction, and coref-
erence resolution are often used in a pipeline of
approaches (say for automatically building knowl-
edge bases). Understanding the biases, errors, and
failure cases of these tasks and their models and
how they affect downstream use cases of the knowl-
edge base would be important to consider. That
said, to our knowledge the proposed approach does
not exacerbate (or lessen) or introduce new con-
siderations to the ones known about tasks/models
more generally.

Limitations

Autoregressive Modeling Assumption. The de-
coder model, which is autoregressive, introduces
an inductive bias on the structured prediction ap-
proach. Specifically, the left-to-right approach re-
quires the model to model dependencies in a spe-
cific order. This could account for some of the re-
duction in performance compared to task-specific
discriminative models. Understanding the impli-
cations of the autoregressive decision is indeed an
interesting question, but one that we felt was out of
scope for this short paper.

Efficiency. In our experiments, we reduce the
burden of finding many mention spans in two-stage
approaches. On sentence-level tasks, e.g., entity
and relation extraction, the number of decoding
steps is relatively small. For instance, the average
number of words in an input sentence is ≈20. Our
system has a lighter memory trace as opposed to
discriminative models. This extra time cost can be
partially compensated with larger batch sizes. How-
ever, on document-level tasks, e.g., coreference res-
olution, the number of decoding steps is too large
to be compensated with parallelism. More efficient
methods for inference such as non-autoregressive
decoding (Gu et al., 2018) remain to be explored
in future work.

Decoding Algorithms. In this work, we use
greedy decoding in all the experiments. Alterna-
tive decoding algorithms might further improve
the quality of the generated sequences, e.g., beam
search (Zhang and Clark, 2008; Goldberg et al.,
2013).

Choice of Pretrained Language Models. In
this work, the choice of T5 and its variants as the
conditional language model backbone of our model
is largely motivated by their ability to handle arbi-
trarily long sequences. Unlike BART and GPT, T5
uses relative position encoding. On document-level
tasks such as coreference resolution, the ability
to process long sequences is extremely important.
However, other pretrained conditional language
models, either with encoder–decoder structures or
decoder-only structures, can be used as a backbone.
It might be interesting to explore techniques that
generalize fixed-length position encoding to longer
sequences.
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A Experimental Details

A.1 Experimental Settings
In our experiments, the {T5,T0,flan-T5}-base,
{T5,T0,flan-T5}-large, {T5,T0,flan-T5}-{3B,XL},
{T5,T0,flan-T5}-{11B,XXL} have 220 million,
770 million, 3 billion, and 11 billion parameters
respectively6. The feedforward neural networks
described in §2.3 have one hidden layer of size
150 for ACE-05, 4096 for CoNLL-03, CoNLL-04,
and CoNLL-12.

We follow the same preprocessing procedure
and train/dev/test split of previous work on all
datasets. For all the experiments, we use the
AdamW optimizer (Kingma and Ba, 2015). We
train 40 epochs on CoNLL-12 for coreference
resolution with batch size 1. For end-to-end
relation extraction on CoNLL-04 and ACE-05,
we train 100 epochs with batch size 8. The initial
learning rates are set to 5e-5 for {T5,T0,flan-T5}-
base and {T5,T0,flan-T5}-large models, 3e-5 for
{T5,T0,flan-T5}-{3B,XL,11B,XXL} models.

We apply bfloat16 training in our experiments.
One single A100-40GB GPU is used for train-
ing models that use {T5,T0,flan-T5}-base and
{T5,T0,flan-T5}-large. Two A100-40GB GPUs
are required to train models that use 3B or XL. Six
A100-80GB GPUs are required to train models
that use 11B or XXL models. It takes around 0.1
seconds for base-scale models and 1 second per
updating step for {3B,11B,XXL} models.

A.2 Datasets
A.2.1 Named Entity Recognition
CoNLL-03. We use the CoNLL-03 dataset
(Tjong Kim Sang and De Meulder, 2003) to eval-
uate our model on named entity recognition. This
dataset consists of 946 training articles, 216 de-
velopment articles, and 231 test sentences. We
evaluate under the document-level settings, which
means we feed the entire document into the model
instead of the individual sentences.

A.2.2 End-to-End Relation Extraction
CoNLL-04. The CoNLL-04 dataset contains
four types of entities (location, organization, per-
son, other) and five types of relations (work for, kill,
organization based in, live in, located in). We split
the dataset as the training (922 sentences), valida-
tion (231 sentences), and test (288 sentences) as in

6https://github.com/google-research/
text-to-text-transfer-transformer

previous work. For the ACE-05 dataset, we follow
the train/dev/test split of previous work (Zhong and
Chen, 2021).

ACE-05. The ACE-05 dataset (Walker and Con-
sortium, 2005) contains 511 documents in total col-
lected from multiple domains including newswire,
broadcast, discussion forums, etc. We follow Luan
et al. (2019)’s preprocessing script7 and split the
dataset into train/dev/test set. ACE-05 contains
inconsistently capitalized data. The newswire por-
tion collected from CNN are entirely lowercased,
which involves around 20 documents. Previous
works (Zhong and Chen, 2021; Ye et al., 2022) that
use case-insensitive encoders such as ALBERT are
not affected by this deficiency. However, the T5
model and its variants are case-sensitive. We use
the python truecase package8 to restore the cor-
rect capitalization during preprocessing.

A.2.3 Coreference Resolution

CoNLL-12. The CoNLL-12 English shared task
dataset for coreference resolution (Pradhan et al.,
2012) contains 2802 documents for training, 343
for validation, and 348 for testing. During training,
we chunk the documents into segments of 2048
maximum words. In total, there are 2830 segments
for training. During the evaluation, we use the
entire document as the input to the model.
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Figure 2: Recall rate of gold mentions. The ratio on
the x-axis refers to the number of predicted mentions
divided by |D|. Joshi refers to the two-stage model of
(Joshi et al., 2020).

7https://github.com/luanyi/DyGIE/tree/master/preprocessing
8https://pypi.org/project/truecase/
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MUC B3 CEAFφ4

P R F P R F P R F Avg. F1

Lee et al. (2017) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
Lee et al. (2018) 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
Joshi et al. (2019) 84.7 82.4 83.5 76.5 74.0 75.3 74.1 69.8 71.9 76.9
Joshi et al. (2020) 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
Joshi et al.+T5B

† 82.4 77.4 79.8 72.3 68.2 70.2 70.5 63.5 66.8 72.3
Joshi et al.+T5L

† 85.5 77.7 81.4 78.3 68.5 73.1 75.0 65.9 73.1 74.9
Dobrovolskii 84.9 87.9 86.3 77.4 82.6 79.9 76.1 77.1 76.6 81.0

Urbizu et al. - - 64.9 - - 66.5 - - 65.3 65.6
Paolini et al.+T5B - - 81.0 - - 69.0 - - 68.4 72.8
ASP+T5B 81.7 82.8 82.3 74.2 76.1 75.1 74.5 70.6 72.5 76.6
ASP+T5L 83.3 86.2 84.7 75.9 79.5 77.7 75.8 74.5 75.2 79.3
ASP+FLAN-T5L 83.5 87.6 85.5 76.3 81.8 79.0 76.0 76.2 76.1 80.2
ASP+T03B 85.8 88.3 86.9 79.6 83.3 81.5 78.3 78.5 78.4 82.3
ASP+FLAN-T5XL 84.9 88.7 86.7 78.5 83.8 81.1 78.4 78.5 78.4 82.2
ASP+FLAN-T5XXL 86.1 88.4 87.2 80.2 83.2 81.7 78.9 78.3 78.6 82.5

Table 5: Full results on the CoNLL-12 English test set. Avg. F1 denotes the average F1 of MUC, B3, and CEAFφ4
.

Models marked with † are our re-implementation. Other results are taken from their original papers.

B Coreference Resolution

In this section, we analyze the performance of men-
tion detection for coreference resolution of our
model in Fig. 2. This analysis casts light on how
our model plans globally in an autoregressive man-
ner. In the task of coreference resolution, only the
entities that are mentioned more than once in a doc-
ument are annotated as mentions. This is to say,
an utterance of an entity should only be labeled
if that entity is referred to again afterward. Thus,
in previous coreference resolution models, a ded-
icated mention detection module that enumerates
candidate textual spans (e.g., noun phrases and pro-
nouns) for mentions is indispensable. However,
our model is able to directly predict the exact set
of mentions that we require, even if the target se-
quence is generated from left to right. We conclude
that this results from the cross-attention mechanism
which enables the model to look at relevant parts
in the input document during decoding. Given an
input document of |D| words, our model predicts
only 0.096 |D| mentions with a 89.6% recall rate
of gold mentions. This refrained mention detection
strategy imposes a limit on the cardinality of Zi
in Eq. (2). As a result, this relatively small con-
stant factor (compared to 0.4 used in most previous
work) keeps our model tractable without the need
for pruning strategies as in the models based on
(Lee et al., 2017).

C Modeling More Restricted Structures

In this work, we tackled three tasks that are tradi-
tionally considered structured prediction problems.
Named entity recognition and relation extraction
consider labeling spans with a set of given types.
Coreference resolution has long-range dependen-
cies and has to model relationships between spans.
However, there are structured prediction problems
that require more restricted outputs. For instance,
in dependency parsing, a spanning tree connecting
every word in the input sentence is the desired
output (Kübler et al., 2009). While in constituency
parsing, a parse tree in Chomsky Normal Form is
supposed to be a complete binary tree except for the
leaf nodes (Wintner, 2010). Modeling such types
of structures requires a more specified definition
of task-specific actions. In future work, we aim to
explore the abilities and limitations of our method.

D Experiments with Flan-T5

We conduct additional experiments with the latest
pretrained language model Flan-T5 (Chung et al.,
2022). Flan-T5 is pretrained on more supervised
tasks and achieves better performance than the orig-
inal T5 on multiple NLU tasks. The results are
shown in Tab. 5, Tab. 6, and Tab. 7. We find that
with the same size of the model, Flan-T5 performs
better than T5 in general.
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Prec. Rec. F1

ASP+T5B 91.4 92.2 91.8
ASP+FLAN-T5B 92.7 93.8 93.3
ASP+T5L 92.1 93.4 92.8
ASP+FLAN-T5L 93.3 94.3 93.8
ASP+T53B 93.8 94.4 94.1

Table 6: Test F1 scores of named entity recognition on
the CoNLL-03 test set.

Ent Rel

ASP+T5B 89.5 73.2
ASP+FLAN-T5B 89.4 73.8
ASP+FLAN-T5L 90.5 76.2

Table 7: Test F1 scores of named entity recognition on
the CoNLL-04 test set.

E Decoding Examples

We provide decoding examples from the tasks we
experiment on in Tab. 8. The copy actions are
verbalized into tokens.
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GUNMEN WOUND TWO [∗ MANCHESTER UNITED ] FANS IN [∗ AUSTRIA ] . [∗ VIENNA ] 1996-12-06 Two

[∗ Manchester United ] soccer fans were wounded by unidentified gunmen on Friday and taken

to hospital in the [∗ Austrian ] capital, police said. " The four [∗ Britons ] were shot

at from a [∗ Mercedes ] car at around 1 a.m., " a spokeswoman told [∗ Reuters ] . The two
men were hit in the pelvis and leg. Police said their lives were not in danger. The fans,
in [∗ Austria ] to watch their team play [∗ Rapid Vienna ] last Wednesday, may have been

involved in a pub brawl earlier, the spokeswoman said. [∗ Manchester United ] won 2-0.</s>

end-to-end
relation
extraction

And this final story: retired [∗ Senator ] [∗ Strom Thurmond ] has never made a secret

about [∗ his ] fondness for young pretty [∗ women ] .</s>

coreference
resolution

<speaker> - </speaker> [∗ Al Gore ] won’t be the next U.S. President, but [∗ he ] has a

slim chance of becoming [∗ the next President at [∗ Harvard ] ] . [∗ Gore ] holds a degree

from [∗ the university ] , and is one of about 500 people nominated for [∗ the job ] . [∗ A

school official ] talked about [∗ the Vice President’s ] chances during an interview with

" the Boston Globe. " [∗ He ] says it’s unlikely [∗ Gore ] will be selected, because [∗

he ] doesn’t have enough experience in the academic world.</s>

<speaker> - </speaker> [∗ Violence between Israelis and Palestinians ] continued in [∗

its ] third month, though at a slightly reduced level overall. [∗ Israeli and Palestinian

negotiators ] met separately at the White House with President Bill Clinton in hopes of

restarting direct negotiations between [∗ them ] for a final settlement.</s>

Table 8: Predicted sequences from CoNLL-03, ACE-05, and CoNLL-12 dataset.
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