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Abstract
Visual question answering (VQA) is a hallmark
of vision and language reasoning and a chal-
lenging task under the zero-shot setting. We
propose Plug-and-Play VQA (PNP-VQA), a
modular framework for zero-shot VQA. In con-
trast to most existing works, which require sub-
stantial adaptation of pretrained language mod-
els (PLMs) for the vision modality, PNP-VQA
requires no additional training of the PLMs.
Instead, we propose to use natural language
and network interpretation as an intermediate
representation that glues pretrained models to-
gether. We first generate question-guided in-
formative image captions, and pass the cap-
tions to a PLM as context for question answer-
ing. Surpassing end-to-end trained baselines,
PNP-VQA achieves state-of-the-art results on
zero-shot VQAv2 (Goyal et al., 2017) and
GQA (Hudson and Manning, 2019). With 11B
parameters, it outperforms the 80B-parameter
Flamingo model (Alayrac et al., 2022) by 8.5%
on VQAv2. With 738M PLM parameters, PNP-
VQA achieves an improvement of 9.1% on
GQA over FewVLM (Jin et al., 2022) with
740M PLM parameters.

1 Introduction

Recent years have witnessed unprecedented per-
formance gains on many natural language reason-
ing tasks, especially in zero-shot and few-shot set-
tings, being derived from scaling up pretrained
language models (PLMs) and their training data
(Devlin et al., 2019; Liu et al., 2019; Brown et al.,
2020; Raffel et al., 2020; Black et al., 2022; Sanh
et al., 2022; Wei et al., 2021). Inspired by their
success, a natural thought is that utilizing PLMs
should also boost zero-shot performance in vision-
language reasoning tasks.

However, to leverage PLMs for vision-language
tasks, most existing methods require non-trivial
adaptation of the PLMs for the vision modality,
which necessitates the design of new network com-
ponents and training objectives. For example, Sung

et al. (2022) and Alayrac et al. (2022) insert into
the PLMs new layers that are trained from scratch.
Tsimpoukelli et al. (2021) train vision encoders that
output soft prompts to frozen PLMs. Chen et al.
(2022) and Eichenberg et al. (2021) train both the
vision encoders and new layers inserted into PLMs.
In the zero-shot setting, various vision-language
pretraining objectives are employed, such as im-
age captioning (Alayrac et al., 2022) and image-
conditioned masked language modeling (Jin et al.,
2022).

From the perspective of general-purpose AI, the
ability to perform new tasks by simply recombining
large-scale pretrained models, or foundation mod-
els (Bommasani et al., 2021), without architectural
changes or extra training would be highly desirable.
Such a system would be able to dynamically adjust
to previously unknown tasks by simply rewiring
a small number of foundation models. However,
to obtain high performance without some form of
end-to-end training would seem difficult, if not im-
possible.

We present Plug-and-Play VQA (PNP-VQA), a
framework for zero-shot visual question answering
which conjoins large pretrained models with zero
additional training and achieves state-of-the-art per-
formance on zero-shot VQAv2 (Goyal et al., 2017)
and GQA (Hudson and Manning, 2019). For the
purpose of bridging the vision and language modali-
ties, we employ a pretrained vision-language model
(PVLM) (Li et al., 2022b) that describes visual in-
formation with textual captions. In order to obtain
relevant and informative captions, we apply a net-
work interpretability technique (Selvaraju et al.,
2017) to detect image patches that are relevant
to the question. After that, we generate captions
stochastically for these image patches. Finally, we
employ a PLM (Khashabi et al., 2022) to answer
the question from the captions.

Research in cognitive science and neuroscience
suggests that the human cognitive system is largely
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modular (Shettleworth, 2012; Bertolero et al.,
2015). For instance, the pioneering work of Fodor
(1983) argued that the low-level human cognition
is constituted of several fast, autonomous, and
domain-specific modules. For purely practical pur-
poses, a modular design of artificial general intelli-
gence would make it easy to harness rapid progress
in each individual component, as the components
can be individually replaced and updated without
affecting other parts of the system. With this paper,
we offer such a modular design for zero-shot VQA
that leverages recent advances in PLM and PVLMs
and combines them with an innovative application
of network interpretability.

We summarize our contributions as follows:

• We introduce PNP-VQA, a modular framework
for zero-shot VQA without training. Its flexibility
allows PNP-VQA to jointly evolve as pretrained
models continue to advance.

• Besides natural language, we propose the use of
network interpretation as the interface between
pretrained LMs and VLMs. With an interpretabil-
ity technique, we create image captions that ex-
tensively cover information relevant to the ques-
tion, which enable accurate QA.

• We demonstrate state-of-the-art zero-shot VQA
performance on multiple benchmarks. On
VQAv2, PNP-VQA11B obtains 8.5% im-
provement over Flamingo80B (Alayrac et al.,
2022), which applies extensive end-to-end VL-
pretraining. On GQA, PNP-VQAlarge outper-
forms FewVLMlarge (Jin et al., 2022) by 9.1%.

2 Related Work

Large-scale image-text pretraining of neural net-
works is a popular research direction. Various
vision-language pretraining tasks have been pro-
posed, including image-conditioned language mod-
eling (Tsimpoukelli et al., 2021; Alayrac et al.,
2022), masked language modeling (Tan and Bansal,
2019; Lu et al., 2019; Li et al., 2021b), prefix lan-
guage modeling (Wang et al., 2022), image-text
matching (Li et al., 2019; Chen et al., 2020; Li et al.,
2020) and image-text contrastive learning (Radford
et al., 2021; Jia et al., 2021; Li et al., 2021a). Af-
ter pretraining, several models exhibit zero-shot
capabilities in image-text retrieval (Jia et al., 2021;
Radford et al., 2021; Zeng et al., 2022b) and image
captioning (Wang et al., 2022; Li et al., 2022b).
However, zero-shot VQA remains a challenging

task due to its high requirement on the model’s
reasoning ability.

Adapting PLMs for zero-shot VQA has shown
promising results. In order to incorporate vision
information into PLMs, most existing methods
perform additional vision-language training on
image-text data. Frozen (Tsimpoukelli et al., 2021)
trains the vision encoder while keeping the gigan-
tic PLM frozen to retain its knowledge in question
answering. The output from the vision encoder is
prepended to the text as prompts to the frozen lan-
guage model. FewVLM (Jin et al., 2022) finetunes
the PLM using the prefix language modeling and
masked language modeling objectives. VLKD (Dai
et al., 2022) distills multimodal knowledge to PLM
by using CLIP (Radford et al., 2021) as the teacher
model during finetuning. Flamingo (Alayrac et al.,
2022) adds additional layers to both the pretrained
vision model and the PLM and trains the new layers
on billions of image-text pairs.

Different from the above work, PNP-VQA di-
rectly employs pretrained models with neither ar-
chitectural modifications nor additional training.

Most similar to our work, PICa (Yang et al.,
2022) converts an image to a single caption and
adopts GPT-3 (Brown et al., 2020) for zero-shot
VQA. In comparison, PNP-VQA generates multi-
ple question-guided captions and performs fusion
of captions after encoding to effectively utilize a
large number of captions, yielding considerable
performance gains.

An orthogonal research direction for zero-shot
VQA is to train the VLMs on synthetic VQA ex-
amples generated from captions (Changpinyo et al.,
2022; Banerjee et al., 2021). PNP-VQA does not
require additional training.

Natural language as an intermediate represen-
tation or interface between different models or
multiple steps of reasoning is an emerging machine
learning strategy. It dates back to at least Andreas
et al. (2018) and saw renewed interest in the past
few months due to the prevalence of large PLMs.
Andreas et al. (2018) and Vong and Lake (2022)
learn natural language descriptions that function as
few-shot classifiers within an image-text matching
model. Bostrom et al. (2022) generate intermediate
reasoning steps with finetuned PLMs. Zhou et al.
(2022) prompt a PLM to generate subproblem de-
scriptions for a complex problem, and feed the sub-
problems back to the PLM to solve hierarchically.
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Figure 1: The system architecture of PNP-VQA, consisting of three pretrained modules: (1) an image-question
matching module that identifies image patches relevant to the question, (2) an image captioning module that
generates a diverse set of captions, (3) a question answering module that generates an answer given the question and
captions. For the image-question matching module and image captioning module, we adopt BLIP (Li et al., 2022b).
For the question answering module, we adopt UnifiedQAv2 (Khashabi et al., 2022).

Wu et al. (2022) chain PLM outputs and inputs.
Zeng et al. (2022a) show that language-conjoined
LM and VLM successfully perform captioning and
retrieval but do not evaluate their models on VQA.
In comparison, PNP-VQA adopts both natural lan-
guage and network interpretation as the interface
between different pretrained models.

3 Method

The central idea of Plug-and-Play VQA (PNP-
VQA) is to establish an interface between a pre-
trained language model and a pretrained vision-
language model without training. We demonstrate
that natural language image captions and network
saliency maps together serve as an effective inter-
face. Ideally, the generated captions should thor-
oughly cover information that is present in the im-
age and be relevant to the question. We foster rel-
evance by identifying image patches most related
to the question with a saliency map-based inter-
pretability technique and generating captions from
these patches only. Further, we promote coverage
by injecting stochasticity, including random sam-
pling of relevant image patches and of the textual
tokens during caption generation.

The overall system architecture (Figure 1) con-
sists of three modules:

1. an image-question matching module that iden-
tifies the relevant image patches given a ques-
tion,

2. an image captioning module that generates a
diverse set of captions from a set of image
patches, and

3. a question answering module that outputs an
answer given the question and the generated
captions.

In this section, we introduce the three modules
in detail.

3.1 Matching Image Patches and Questions

An image serves as a rich source of information,
but the question at hand is likely focused only on
particular objects or regions. Therefore, we encour-
age PNP-VQA to generate captions that describe
image regions relevant to the question instead of
generic captions with no specific aim.

We accomplish this goal by leveraging BLIP (Li
et al., 2022b), a large-scale pretrained vision-
language model that contains a network branch
outputting a similarity score sim(v, t) between an
image v and a text t. This branch, called Image-
grounded Text Encoder (ITE), employs a vision
transformer (Dosovitskiy et al., 2021) that encodes
the image, and a textual encoder that attends to the
image features using cross-attention. As input to
the image encoder, the image is equally divided
into K patches.

To identify relevant image patches, we feed the
image v and the question t to the ITE network and
apply a variation of GradCAM (Selvaraju et al.,
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Generic captions: 
1. some husky dogs are laying under 

a truck
2. a truck with a caged in back next 

to some dogs
Prediction: 2
Question-guided captions: 
1. four dogen with siberian, husky 

doz and blue and puppies, these
2. some dogs and huskydogs are 

sitting and petting with their dogs
Prediction: 4

Q: how many dogs are there? A: 4

Generic captions: 
1. a bird that is perched on top of a  

tree
2. a close up of a bird of prey atop a 

tree
Prediction: green
Question-guided captions: 
1. a black - and - white bird with 

white head and yellow eye
2. a large hawk perched on a tree 

looking at the camera
Prediction: yellow

Q: what color are the bird’s eyes? A: yellow
Generic captions: 
1. a cat sleeps on her bed in front 

of a laptop
2. a cat rests in front of a laptop 

screen
Prediction: houndstooth
Question-guided captions: 
1. cat laying on a plaid plaid plaid 

plaid plaid blanket
2. a plaid scarf and plaid comforter 

with plaids on a bed
Prediction: plaid

Q: what pattern is the comforter? A: plaid

Generic captions: 
1. kites flying around in a field on a 

clear day
2. many clown fish kites being 

flown in the grass
Prediction: no
Question-guided captions: 
1. a large field full of people who 

are in a park area
2. crowd of people looking and 

walking in park flying kites
Prediction: yes

Q: is there an audience in the background? A: yes

Figure 2: Examples of generic captions (from all patches) based on the original image and question-guided captions
(from the sampled patches) based on the GradCAM heatmaps on VQAv2 data. For illustrative purposes, we highlight
words in green to indicate correct answer predictions and the cues from captions. Words in red indicate wrong
answer predictions.

2017), a feature-attribution interpretability tech-
nique, that aggregates all cross-attention maps us-
ing weights from the gradients. Formally, let us de-
note image patch features as X ∈ RK×Dv , where
K is the number of image patches and Dv the im-
age feature dimension. We denote textual features
as Y ∈ RM×Dt , where M is the number of tex-
tual tokens and Dt the text feature dimension. For
every cross-attention head, we have parameter ma-
trices WQ ∈ RDt×Dt and WK ∈ RDv×Dt . The
cross-attention scores, A ∈ RM×K , can be written
as

A = softmax

(
YWQW

⊤
KX⊤

√
Dt

)
. (1)

The jth row of A indicates the amount of atten-
tion the jth textual token allocates to all image
patches. At a selected layer of the ITE network,
we compute the derivative of the similarity score
w.r.t the cross-attention score, ∂ sim(v, t)/∂A, and
multiply the gradient matrix element-wise with the
cross-attention scores. The relevance of the ith im-
age patch, rel(i), takes the average over H attention

heads and the sum over M textual tokens:

rel(i) =
1

H

M∑

j=1

H∑

h=1

min

(
0,

∂ sim(v, t)

∂A
(h)
ji

)
A

(h)
ji ,

(2)
where the superscript (h) denotes the index of at-
tention heads. For every caption we generate, we
sample a subset of K ′ image patches with prob-
ability proportional to the patch relevance. The
captioning module sees the sampled patches only.

We provide the following motivation for the tech-
nique. The attention matrix A may be taken as
indicative of patch importance. However, much
redundancy exists among these matrices and many
attention heads may be pruned with little perfor-
mance loss (Bian et al., 2021), suggesting that some
scores are uninformative. Inspired by GradCAM,
we filter out uninformative attention scores by mul-
tiplication with the gradient which could cause an
increase in the image-text similarity.

Figure 2 shows some examples of generic cap-
tions and question-guided captions with associated
relevance heatmaps. We can clearly observe that
question-guided captions contain more relevant in-
formation that helps produce the correct answers.
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Image Patch Sampling Strategy Num. of Captions VQAv2 OK-VQA GQA
No captions 0 33.4 10.3 25.9
All patches (generic captions) 5 53.5 26.6 36.5
Uniform random sampling 5 52.0 25.5 36.2
Question-guided patch sampling 5 56.3 27.0 37.9
Human-written captions from MS COCO 5 56.9 28.1 -
All patches (generic captions) 100 58.6 31.9 39.8
Uniform random sampling 100 58.4 32.4 40.4
Question-guided patch sampling 100 62.1 34.1 42.3

Table 1: Comparison of different sampling strategies for image patches. 100 question-guided captions surpass the
performance of 5 human-written captions from MS COCO.

… Decoder “Answer”“Question + Caption 2”

“Question + Caption N”
⋮

Encoder“Question + Caption 1”

Encoder

Encoder
⋮

“Caption 2”

“Caption N”
⋮

“Question 
+ Caption 1 
+ Caption 2 
… 

+ Caption N”

“Caption 1”

Encoder … Decoder “Answer”

(a) Fusion-in-Encoder, FiE

(b) Fusion-in-Decoder, FiD

Figure 3: Two methods to process multiple captions with a question answering model. (a) Fusion-in-Encoder (FiE),
which concatenates the captions as a long input paragraph to the encoder. (b) Fusion-in-Decoder (FiD), which
encodes each caption with the question individually and concatenates all encoded representations as input to the
cross-attention mechanism of the decoder.

Table 1 gives a quantitative analysis about the
effect of different patch selection methods on
zero-shot VQA performance across three datasets.
Question-guided patch sampling substantially out-
performs generic captioning using all patches and
random patch sampling, especially when the num-
ber of captions is large. 100 question-guided cap-
tions outperform the 5 human-written captions
from MS COCO by 5.2% on VQAv2 and 6.0%
on OK-VQA, demonstrating the merit of the pro-
posed approach.

3.2 Informative Image Captioning

Even with relevant image regions, there may still
be more than one way to describe these regions.
Some descriptions may contain the desired answer
to the question, whereas others may not. Without
the ability to identify the answer a priori, we aim
to generate maximally diverse captions to provide
coverage of possible answers.

We adopt the image captioning network branch
from BLIP (Li et al., 2022b) and apply stochastic
top-k sampling (Fan et al., 2018) instead of beam
search, which is known to produce dull and repeti-

tive captions (Vijayakumar et al., 2018; Holtzman
et al., 2020). The input to the network contains the
K ′ image patches sampled according to relevance
(see §3.1). We prepend a short prompt, “a picture
of ” as input to the text decoder. We repeat this pro-
cess to generate N captions per image to encourage
diversity of captions and coverage of visual content.
To prevent repetition, we keep a generated caption
only if it is not subsumed by any previous caption
as an exact substring.

3.3 Answering the Question

The question-answering encoder-decoder model
is pretrained on text data only and can only pro-
cess text. Therefore, we include the question and
the generated captions as input to the model. As
discussed in §3.2, the image captioning module
generates multiple diverse captions. To process
such long inputs efficiently, we adopt the Fusion-in-
Decoder (FiD) strategy (Izacard and Grave, 2021).

We illustrate the FiD strategy in Figure 3 by
comparing it with the more straightforward Fusion-
in-Encoder (FiE), which concatenates the question
and all captions into a long paragraph as input to
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Figure 4: Comparison between Fusion-in-Encoder and Fusion-in-Decoder for VQAv2, OK-VQA and GQA.

the encoder. In contrast, FiD encodes each caption
with the question separately and concatenates the
encoded representations of all tokens from all cap-
tions. The result is fed as input to the decoder and is
processed through the cross-attention mechanism.
Since the time complexity of the self-attention
mechanism scales quadratically with input length,
whereas the cross-attention scales linearly with the
encoder’s output length, FiD is much more efficient
than FiE. Further, FiE is constrained by the max-
imum input length of the encoder, caused by the
positional encoding, but FiD does not have this con-
straint. Hence, with FiD, PNP-VQA can benefit
from even more captions.

We plot the performance of FiD and FiE against
the number of captions in Figure 4. Initially,
both methods improve as the number of captions
increases. However, the performance of FiE is
capped at around 40 captions when the maximum
input length is exceeded, whereas the performance
of FiD continues to rise.

4 Experiments

4.1 Datasets and Evaluation

We adopt multiple zero-shot VQA benchmarks,
including the validation set (214,354 questions) and
test-dev set (107,394 questions) of VQAv2 (Goyal
et al., 2017), the test set (5,046 questions) of OK-
VQA (Marino et al., 2019), and the test-dev set
(12,578 questions) of GQA-balanced (Hudson and
Manning, 2019). We include the VQAv2 validation
set as a few recent works (Tsimpoukelli et al., 2021;
Jin et al., 2022) evaluate their performance on this
dataset only. We obtain the answer by open-ended
generation and perform evaluation based on exact
matching. We report soft-accuracy (Goyal et al.,
2017) for VQAv2 and OK-VQA to account for
multiple ground truth answer; for GQA, we report
the standard accuracy.

4.2 Implementation Details

To obtain the image-question matching module and
image captioning module, we adopt BLIP (Li et al.,
2022b) with the ViT-L/16 architecture pretrained
on 129M image-text pairs. The original BLIP-
ITM and BLIP-Caption models further finetune on
the 2017 train split of COCO Captions (Lin et al.,
2014), which partially overlaps with VQAv2 and
OKVQA. To prevent data leak, we instead finetune
on the 2014 train split of COCO Captions, which
does not overlap with the VQA evaluation datasets.
We emphasize that this represents less, not more,
training compared to the publicly released BLIP.

For the question answering module, we adopt
UnifiedQAv2 (Khashabi et al., 2022) trained on
diverse textual QA datasets. It is worth noting that
UnifiedQAv2 is completely unaware of the visual
modality during training. Therefore, its training
data do not overlap with the VQA datasets.

Unless otherwise stated, we utilize a total of
100 captions per question. We select the 8th cross-
attention layer of the ITE network for GradCAM.
We sample K ′ = 20 image patches for the gener-
ation of each caption, and use k = 50 for top-k
decoding (see Fig. 9 in Appendix B). For VQAv2
and OK-VQA, we apply FiD and encode the ques-
tion with one caption at a time. However, for GQA,
we encode each question with a group of 5 cap-
tions. GQA requires compositional visual reason-
ing and thus benefits from more contextual informa-
tion per question. We perform experiments using
LAVIS (Li et al., 2022a) on 8 Nvidia A100 GPUs.

4.3 Comparison with State of the Arts

We compare with state-of-the-art methods that
formulate zero-shot VQA as open-ended answer
generation. We categorize the methods based on
how the pretrained networks are conjoined. In
the first group, including VL-T5no-vqa (Cho et al.,
2021), FewVLM (Jin et al., 2022), VLKD (Dai
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Method
Language Vision VQAv2 OK-VQA GQA

Model #Params VL-aware Model #Params VL-aware Val Test-dev Test Test-dev
Pretrained models conjoined by end-to-end VL training.

VL-T5no-vqa T5 224M ✓ Faster R-CNN 64M ✗ 13.5 - 5.8 6.3
FewVLMbase T5 224M ✓ Faster R-CNN 64M ✗ 43.4 - 11.6 27.0
FewVLMlarge T5 740M ✓ Faster R-CNN 64M ✗ 47.7 - 16.5 29.3
VLKDViT-B/16 BART 407M ✓ ViT-B/16 87M ✓ 38.6 39.7 10.5 -
VLKDViT-L/14 BART 408M ✓ ViT-L/14 305M ✓ 42.6 44.5 13.3 -
Flamingo3B Chinchilla-like 2.6B ✓ NFNet-F6 629M ✓ - 49.2 41.2 -
Flamingo9B Chinchilla-like 8.7B ✓ NFNet-F6 629M ✓ - 51.8 44.7 -
Flamingo80B Chinchilla 80B ✓ NFNet-F6 629M ✓ - 56.3 50.6 -
Frozen GPT-like 7B ✗ NF-ResNet-50 40M ✓ 29.5 - 5.9 -

Pretrained models conjoined by natural language and zero training.

PICa GPT-3 175B ✗ VinVL-Caption 259M ✓ - - 17.7 -
PNP-VQAbase UnifiedQAv2 223M ✗ BLIP-Caption 446M ✓ 54.3 55.2 23.0 34.6
PNP-VQAlarge UnifiedQAv2 738M ✗ BLIP-Caption 446M ✓ 57.5 58.8 27.1 38.4
PNP-VQA3B UnifiedQAv2 2.9B ✗ BLIP-Caption 446M ✓ 62.1 63.5 34.1 42.3
PNP-VQA11B UnifiedQAv2 11.3B ✗ BLIP-Caption 446M ✓ 63.3 64.8 35.9 41.9

Table 2: Comparison with state-of-the-art models on zero-shot VQA. Flamingo (Alayrac et al., 2022) inserts
additional parameters into the language model and perform training using billion-scale vision-language data. The
best accuracy is bolded and the second best is underlined.

et al., 2022), Flamingo (Alayrac et al., 2022), and
Frozen (Tsimpoukelli et al., 2021), a vision encoder
(VE) embeds the image as a dense matrix and feeds
it to the pretrained language model (PLM). After
that, the system performs a round of end-to-end
vision-language (VL) training on tasks other than
VQA, such as image captioning. VL-T5no-vqa and
FewVLM freeze the VE and finetune the PLM,
whereas Frozen freezes the PLM and trains the
VE. VLKD finetunes both the PLM and part of
VE. Flamingo partially finetunes both the VE and
the PLM. In the second group, the two foundation
models are not jointly trained. Instead, they use lan-
guage in the form of captions as the intermediate
representation for an image. This group includes
PICa (Yang et al., 2022) and our proposed model,
PNP-VQA.

Table 2 shows the results. PNP-VQA out-
performs previous methods by large margins on
VQAv2 and GQA. On VQAv2 test-dev, PNP-
VQA11B outperforms the second best technique,
Flamingo80B (Alayrac et al., 2022), by 8.5%. PNP-
VQA3B outperforms Flamingo80B by 7.2% de-
spite its significantly smaller size and the similar-
sized Flamingo3B by 14.3%. On GQA, PNP-
VQAlarge outperforms the FewVLMlarge by 9.1%,
with similar-sized PLM despite the lack of end-to-
end training. Only on OK-VQA, Flamingo per-
forms better than PNP-VQA. OK-VQA requires
external knowledge not existing in the images and
cannot be solved by good captions alone. We hy-
pothesize that the end-to-end training on the gigan-

tic vision-language dataset of Flamingo induces
a mapping between images and knowledge con-
cepts that helps with OK-VQA. However, PNP-
VQA is still better on OK-VQA than all other base-
lines that not trained on the gigantic Flamingo data.
Compared with language-conjoined PICa (Yang
et al., 2022) with 175B parameters, PNP-VQA11B
achieves a sizable improvement of 18.2%.

The results underscore the difficulty of zero-
shot VQA using language models without any
vision-language (VL) training. PICa, with its 175B-
parameter language model, achieves comparable
performance as FewVLMlarge, whose language
model is 236x smaller but finetuned on VL data.
On the other hand, finetuning the billion-scale lan-
guage model could incur heavy computational cost
and risk catastrophic forgetting (Tsimpoukelli et al.,
2021; Alayrac et al., 2022). PNP-VQA demon-
strates the feasibility of a different paradigm: using
billion-scale pretrained language models for VQA
with zero training.

5 Analysis

5.1 Are PNP-VQA captions informative?

Intuitively, if the captions contain the correct an-
swer, the QA model would have a higher chance
to answer correctly. To measure the utility of cap-
tions, we compute the answer hit rate (AHR), or
the proportion of questions for which at least one
caption contains the ground-truth answer verbatim.
Here we exclude questions with yes/no answers as
the meaning of “yes” and “no” can be contextual
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(a) (b)

Figure 5: Analysis on the relationships between answer hit rate (AHR), VQA accuracy, and the number of captions
per question (N). (a) shows a positive correlation between AHR and VQA accuracy. (b) shows the AHR increases
with N, where the proposed question-guided patch sampling produces captions with the highest AHR.

Decoding Method VQAv2 OK-VQA GQA
Beam search 55.3 26.8 37.2
Temperature (t=0.5) 61.2 32.1 41.4
Temperature (t=1) 60.0 31.6 41.6
Nucleus (p=0.9) 61.3 32.9 41.7
Nucleus (p=0.95) 60.7 32.2 41.9
Top-k (k=50) 62.1 34.1 42.3
Top-k (k=100) 61.9 34.0 42.3

Table 3: Ablation study on different caption decod-
ing methods. PNP-VQA3B performs well across the
stochastic methods.

and these two words appear rarely in captions.
Figure 5(a) shows the correlation between the

AHR and VQA accuracy, computed over the
VQAv2 validation set, for three techniques of im-
age patch sampling: question-guided sampling, uni-
form random sampling, and all patches. We ob-
serve that, within each sampling method, the VQA
accuracy increases as the AHR increases. This cor-
roborates our hypothesis that the presence of the
answer in the captions facilitates the generation of
the correct answer.

The correlation between performance and AHR
is not perfect, as AHR does not capture other fac-
tors that may affect the answer accuracy, such as
the position of the answer in the sentence and the
number of its occurrence. However, AHR provides
an easy-to-compute and useful measure for the in-
formation quality of the captions.

Figure 5(b) shows how AHR changes with the
number of captions. Among the three techniques,
question-guided sampling produces captions with
the highest AHR. Thus, we may attribute the good
performance of PNP-VQA partially to its informa-
tive, question-guided captions that directly contain

QA Model #Params VQAv2 OK-VQA GQA
GPT-J 6B 28.7 14.5 18.5
T0 3B 49.6 26.6 32.3
T0 11B 47.3 30.5 33.4
UnifiedQAv2 3B 62.1 34.1 42.3
UnifiedQAv2 11B 63.3 35.9 41.9

Table 4: Ablation study on various textual question
answering module for PNP-VQA on zero-shot VQA.
UnifiedQAv2 is a task-specific model pretrained for
question answering.

the correct answer. Further, as the number of cap-
tions increases from 20 to 100, question-guided
AHR increases from 71.8% to 84.0%. This demon-
strates the benefit of Fusion-in-Decoder, which al-
lows PNP-VQA to utilize up to 100 captions.

5.2 How sensitive is PNP-VQA to the caption
decoding method?

As the content of captions plays a crucial role in the
performance of PNP-VQA, we investigate the sen-
sitivity to the choice of the caption decoding meth-
ods. We test four methods, including the determin-
istic beam search and three stochastic methods —
temperature sampling (Ficler and Goldberg, 2017;
Caccia et al., 2020), nucleus sampling (Holtzman
et al., 2020), and top-k sampling (Fan et al., 2018).
We generate 100 captions from each method, and
report the results in Table 3. PNP-VQA performs
very similarly across stochastic decoding methods,
but beam search results in a noticeable drop. Upon
close inspection, we observe that beam search gen-
erates repetitive captions that do not sufficiently
cover different aspects of the image.
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5.3 Can PNP-VQA work with other textual
QA models?

We experiment with two other PLMs as the ques-
tion answering module for PNP-VQA: T0 (Sanh
et al., 2022) and GPT-J (Wang and Komatsuzaki,
2021). T0 is an encoder-decoder model which is
pretrained in a multi-task fashion on a collection of
NLP tasks, including question answering. GPT-J is
a decoder-only model, a much smaller open-source
alternative to GPT-3 (Brown et al., 2020), which
is pretrained with a task-agnostic language mod-
eling loss on a large-scale text corpus. Table 4
shows that UnifiedQAv2 performs better on VQA
tasks compared to T0 and GPT-J. We attribute Uni-
fiedQAv2’s good performance to the fact that it is a
task-specific question answering model with supe-
rior textual QA performance. The result indicates
that the choice of PLM is important when perform-
ing zero-shot VQA with zero training. The modu-
lar and flexible design of PNP-VQA leaves room
for further performance improvements as more ad-
vanced PLMs emerge.

6 Conclusion

We propose PNP-VQA, a framework with zero
additional training for zero-shot VQA by conjoin-
ing off-the-shelf pretrained models. PNP-VQA
leverages an image-question matching module to
determine image patches relevant to the current
question. An image captioning module then gener-
ates question-guided captions, which are processed
by a question answering module to produce an
answer. PNP-VQA achieves state-of-the-arts per-
formance on multiple VQA benchmarks. We hope
that our work will bring inspiration for further re-
search in flexible, modular AI systems for solving
vision-language tasks.

7 Limitations

Like two sides of the same coin, the strengths and
weaknesses of PNP-VQA both result from the zero-
training modular system design. PNP-VQA enjoys
the power of pretrained models but also inherits the
bias from these models. It enjoys the efficiency of
zero training, but introduces additional inference
cost due to the multi-step process. Nevertheless, we
believe that the strengths of PNP-VQA outweigh
its limitations, and welcome further investigations
to help debias pretrained models and improve in-
ference speed.
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A Visualization

In the appendix, we show visualizations of Grad-
CAM heatmaps and the generated captions for
VQAv2, OK-VQA, and GQA in following pages.

B Hyperparameter sensitivity

We study how VQAv2 validation accuracy varies
with different cross-attention layer used for Grad-
CAM and number of image patches sampled for
question-guided caption generation. Figure 9(a)
shows no clear relationship between VQA accuracy
and the cross-attention layer used for GradCAM.
The maximum difference in VQA accuracy across
different cross-attention layers is 3%. Figure 9(b)
shows that VQA accuracy has a negative correla-
tion with the number of sampled image patches. As
K ′ increases, the sampled patches become less rel-
evant to the questions, and question-guided patch
sampling becomes akin to using all patches.
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Generic captions: 
1. a dog that is on the floor with shoes 

next to it
2. a brown and gray dog sleeping under 

a table
Prediction: black

Question-guided captions: 
1. a pair of red trainers and a pair of 

red shoes are shown
2. a red sneakers and red boot and a 

pair of red shoes are pictured next to
Prediction: red

Q: what color is the shoe? A: red

Generic captions: 
1. a slice of pizza on a cutting board 

with cheese and broccoli
2. a vegetarian pizza with parsley on 

a marble dinner plate
Prediction: parsley

Question-guided captions: 
1. slices of broccoli and cheese on a 

pizza pie
2. a picture of some slices of broccoli, 

broccoli and pizza
Prediction: broccoli

Q: what is the green stuff on top? A: broccoli
Generic captions: 
1. a small town with cars parked 

along a one way street
2. cars and a vehicle at a red light on 

a corner
Prediction: yes

Question-guided captions: 
1. cars stopped at an intersection on 

a clear day
2. the clear blue sky above is blue in 

color and is a clear sky
Prediction: no

Q: are clouds visible? A: no

Generic captions: 
1. a view of a train going through a 

tunnel
2. a train tunnel next to a tree filled 

forest
Prediction: no

Question-guided captions: 
1. the view of a blurry image of trees 

and bushes
2. motion picture of a train window 

with blurred photo
Prediction: yes

Q: is this picture blurry? A: yes

Generic captions: 
1. a tennis player is playing tennis on 

a red court
2. a tennis player getting ready to 

serve the ball
Prediction: red

Question-guided captions: 
1. a tennis court with a red clay 

tennis court and white line
2. a woman on a clay tennis tennis 

court preparing to strike a ball
Prediction: white

Q: what color is the line on the tennis court? A: white
Generic captions: 
1. a man walking a black horse on a 

track
2. a horse with a number 9 in a race 

track
Prediction: 9

Question-guided captions: 
1. a jockey is on his horse and 

numbers are on the number 6
2. a jockey is taking a pony with the 

name number six eight
Prediction: 6

Q: what number is the horse? A: 6

Generic captions: 
1. a very tall tower with a little clock 

on it
2. there is an old clock tower at this 

town
Prediction: the palace

Question-guided captions: 
1. a white grand theatre, on a bright 

day
2. the grand store, grand in grand, is 

seen
Prediction: grand

Generic captions: 
1. two beds in a suite with luggage 

in a bag on top of them
2. two large beds sitting in a room 

with suitcases
Prediction: no

Question-guided captions: 
1. three pictures in a frame above 

two beds
2. a hotel room with 2 double beds 

and pictures on the wall
Prediction: yes

Q: what is the name of the theater? A: grandQ: is there any art hanging on the walls? A: yes

Figure 6: Examples from VQAv2. We show generic captions (from all patches) based on the original image and
question-guided captions (from the sampled patches) based on the GradCAM heatmaps. For illustrative purposes,
we highlight words in green to indicate correct answer predictions and the cues in captions. Words in red indicate
wrong answer predictions.
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Generic captions: 
1. a small stuffed bear sits on a 

bookshelf with shelves full of books
2. a teddy bear that is sitting in front 

of a bookcase
Prediction: bear

Question-guided captions: 
1. a photograph which looks like a 

diamond pattern
2. square image surrounded by book -

diamond diamond diamond
Prediction: diamond

Q: what shape is cut out here? 
A: diamond

Generic captions: 
1. a spoon and fork are sitting on a 

white plate on a wooden table
2. a round cake with cream on it on a 

plate
Prediction: a spoon

Question-guided captions: 
1. a fork, silverware, fork and a spoon 

are shown
2. utensil on the plate which seems to 

have a fork and the fork
Prediction: fork

Q: what utensil is this? 
A: fork

Generic captions: 
1. a plane sits on a runway at the airport
2. a small white airplane on the runway 

with trees behind
Prediction: a small white airplane

Question-guided captions: 
1. airplane small airplane blue airplane 

cessna small a airplanes this propeller 
cessna airplane white private fuselage

2. the small airplane is parked on the 
runway

Prediction: cessna

Q: what brand of airplane is shown? 
A: cessna

Generic captions: 
1. a man at a table with a box and 

donuts
2. a man with a hat showing a box with 

a dozen donuts in it
Prediction: donut holiday

Question-guided captions: 
1. a man is wearing a santa hat eating a 

kriskin
2. a person with a red hat eating a 

donut
Prediction: christmas

Q: what holiday is being celebrated? 
A: christmas

Generic captions: 
1. a smiling teen girl taking a picture in 

a mirror
2. a person standing in a small 

bathroom taking a photo
Prediction: self-portrait

Question-guided captions: 
1. a woman is taking a selfie and taking 

a selfie
2. a woman is taking a picture in a 

mirror and taking a picture
Prediction: selfie

Q: what is the popular name for the type of photo this 
lady is taking? A: selfie

Generic captions: 
1. a man in a helmet is standing next to 

a table
2. a person is standing in a room with a 

helmet on
Prediction: tequila

Question-guided captions: 
1. a man is wearing a helmet with a coca 

cola cola cola soda soda coke glass
2. a man with sunglasses waves at the 

camera
Prediction: coca cola

Q: what brand of soda is on the bottle? 
A: coca cola

Generic captions: 
1. a gray bird is standing on a bench 

looking out the water with an island 
in

2. a grey bird in a body of water
Prediction: gray bird

Question-guided captions: 
1. a big grey heron is standing up in the 

sun
2. a heron bird standing in water with 

heron bird standing next to him
Prediction: heron

Q: what species of bird is this? 
A: heron

Generic captions: 
1. a silver metal tray that has breakfast 

on top of it
2. a metal tray holding a couple plates 

of food
Prediction: restaurant

Question-guided captions: 
1. pancakes pancakes are shown at 

place on a set at a dinner table
2. plates of delicious breakfast on a 

tray of a table
Prediction: continental

Q: what style breakfast is this? 
A: continental 

Figure 7: Examples from OK-VQA. We show generic captions (from all patches) based on the original image and
question-guided captions (from the sampled patches) based on the GradCAM heatmaps. For illustrative purposes,
we highlight words in green to indicate correct answer predictions and the cues in captions. Words in red indicate
wrong answer predictions.
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Generic captions: 
1. a meal on a plate with meat, 

vegetables and rice
2. various pieces of food are placed on a 

plate
Prediction: a meal

Question-guided captions: 
1. is thanksgiving turkey dinner roast 

meal chicken dinner dinner turkey
pork dining meal roast chicken bone

2. plate of food is laying on a wood table
Prediction: turkey

Q: How is the meat on the plate that is sitting atop the 
table called? A: turkey

Generic captions: 
1. lots of assorted items are on the beds
2. womens personal and personal items 

laid out for a picnic
Prediction: black

Question-guided captions: 
1. a green bag of essentials laid out on 

white background in the middle of 
shot

2. a purse sitting on the bed next to 
several large items

Prediction: green

Q: which color is the bag which is lying on top of the 
bed? A: green

Generic captions: 
1. two men making a blend in a glass 

bottle
2. two men sitting on a beach next to a 

plastic container of liquid
Prediction: wood

Question-guided captions: 
1. a large bald man looking at a camera 

and an open plastic crate near by a
2. a juice pours from a beverage in a 

crate next to yellow crates
Prediction: plastic

Q: what is the crate made of? 
A: plastic

Generic captions: 
1. a double - decker bus in front of a 

large white house
2. a bus is filled with a striped design 

on the street
Prediction: no

Question-guided captions: 
1. a double decker bus is riding down 

the cobblestone brickstone road
2. people on a brick paved cobble 

stone road
Prediction: yes

Q: is the wide street made of cobblestone? 
A: yes

Generic captions: 
1. a breakfast plate of pancakes, eggs, 

and bacon on it
2. pancakes and scrambled eggs on a 

large white plate with bacon
Prediction: bacon

Question-guided captions: 
1. a plate of pancakes with a butter on 

top
2. breakfast plate with pancakes, syrup, 

bananas, and butter
Prediction: butter

Q: what is located on top of the pancake? 
A: butter

Generic captions: 
1. a man is holding a surfboard and 

walking across a sandy lot
2. a man holding a baseball bat on top 

of a sandy beach
Prediction: surfboard

Question-guided captions: 
1. a boy standing with blue and green 

boats at the beach
2. a man standing next to a bunch of 

boats
Prediction: boats

Q: what kind of watercraft is colorful? 
A: boats

Generic captions: 
1. the kitchen has an oven, 

dishwasher, and kitchen cabinets
2. a kitchen with a refrigerator, range 

and oven 
Prediction: dishwasher

Question-guided captions: 
1. this is a picture of a kitchen with a 

refrigerator
2. there is some fridges stainless steel 

refrigerator freezer
Prediction: refrigerator

Q: what kind of appliance is to the left of the oven? 
A: refrigerator

Generic captions: 
1. a group of well dressed motorcycles 

lined up near a fence
2. a group of people outside with 

motorcycles
Prediction: chain link

Question-guided captions: 
1. a wood fence is near the fence
2. there is a group of motorbikes 

parked in front of a fence
Prediction: wood

Q: what is the fence made of?
A: wood

Figure 8: Examples from GQA. We show generic captions (from all patches) based on the original image and
question-guided captions (from the sampled patches) based on the GradCAM heatmaps. For illustrative purposes,
we highlight words in green to indicate correct answer predictions and the cues in captions. Words in red indicate
wrong answer predictions.
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(a) (b)

Figure 9: VQAv2 validation set accuracy using (a) different cross-attention layer on which GradCAM is computed
using K ′ = 50. (b) different number of image patches sampled for caption generation using GradCAM computed at
8th cross-attention layer.
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