
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 868–880
December 7-11, 2022 ©2022 Association for Computational Linguistics

Knowledge-Rich Self-Supervision for Biomedical Entity Linking

Sheng Zhang∗ Hao Cheng∗ Shikhar Vashishth∗ Cliff Wong Jinfeng Xiao†

Xiaodong Liu Tristan Naumann Jianfeng Gao Hoifung Poon
Microsoft Research

†University of Illinois at Urbana-Champaign

Abstract

Entity linking faces significant challenges such
as prolific variations and prevalent ambiguities,
especially in high-value domains with myriad
entities. Standard classification approaches suf-
fer from the annotation bottleneck and cannot
effectively handle unseen entities. Zero-shot
entity linking has emerged as a promising di-
rection for generalizing to new entities, but it
still requires example gold entity mentions dur-
ing training and canonical descriptions for all
entities, both of which are rarely available out-
side of Wikipedia. In this paper, we explore
Knowledge-RIch Self-Supervision (KRISS) for
biomedical entity linking, by leveraging readily
available domain knowledge. In training, it gen-
erates self-supervised mention examples on un-
labeled text using a domain ontology and trains
a contextual encoder using contrastive learning.
For inference, it samples self-supervised men-
tions as prototypes for each entity and conducts
linking by mapping the test mention to the most
similar prototype. Our approach can easily in-
corporate entity descriptions and gold mention
labels if available. We conducted extensive
experiments on seven standard datasets span-
ning biomedical literature and clinical notes.
Without using any labeled information, our
method produces KRISSBERT, a universal en-
tity linker for over three million UMLS entities
that attains new state of the art, outperforming
prior self-supervised methods by as much as
20 absolute points in accuracy. We released
KRISSBERT at https://aka.ms/krissbert.

1 Introduction

Entity linking maps mentions to unique entities
in a target knowledge base (Roth et al., 2014). It
can be viewed as the extreme case of named entity
recognition and entity typing, where the category
number swells to tens of thousands or even mil-
lions. Entity linking is particularly challenging in

∗These authors contributed equally to this research.
†Work done as an intern at Microsoft Research.

high-value domains such as biomedicine, where
variations and ambiguities abound. For instance,
depending on the context, “PDF” may refer to a
gene (Peptide Deformylase, Mitochondrial), or file
type (Portable Document Format). Similarly, “ER”
could refer to emergency room, the organelle en-
doplasmicreticulum, or the estrogen receptor gene.
Moreover, the number of entities in domains such
as biomedicine can be very large. The Unified
Medical Language System (UMLS), a representa-
tive ontology for biomedicine, contains over three
million entities (Bodenreider, 2004).

Standard classification approaches such as
MedLinker (Loureiro and Jorge, 2020) require ex-
ample gold mentions for each entity and cannot
effectively handle new entities for which there are
no labeled examples in training. Recently, zero-
shot entity linking has emerged as a promising
direction for generalizing to unseen entities (Lo-
geswaran et al., 2019; Wu et al., 2020), by learn-
ing to encode contextual mentions for similarity
comparison against reference entity descriptions.
Existing methods, however, require example gold
entity mentions during training, as well as canon-
ical descriptions for all entities. While applicable
to Wikipedia entities, these methods are hard to
generalize to other domains, where such labeled
information is rarely available at scale.

In this paper, we explore Knowledge-RIch Self-
Supervision (KRISS) for entity linking by leverag-
ing readily available domain knowledge to compen-
sate for the lack of labeled information (Figure 1).
For entity linking, the most relevant knowledge
source is the domain ontology. The core of an on-
tology is the entity list, which specifies the unique
identifier and canonical name for each entity and is
the prerequisite for entity linking. Our method only
requires the entity list and unlabeled text, which
are readily available in any domain.

In training, KRISS uses the entity list to generate
self-supervised mention examples from unlabeled
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...  the effect of alcohol consump-
tion on violence related-injuries
assessed in the ER and to show
how behavioral sciences ...

... to adolescents who present in the emergency room
with acute-onset muscle weakness ...

Entity List

Endoplasmic  
Reticulum

Emergency Room

Self-Supervised Mentions in Context

"... Their initial treatment in the emergency room is the
essential link between first aid in the field and ..."

"... Emergency room crowding has become a widespread
problem in hospitals across the United States ..."

"... modify secretory and transmembrane proteins in the
endoplasmic reticulum, leading to a buildup of ..."

"The endoplasmic reticulum is a large, dynamic structure
that serves many roles in the cell ..."

"Down-regulation of estrogen receptor gene expression
was enhanced by the development of the disease ..."

"... tumors showed increased expression of estrogen
receptor gene transcript and limited suppression of ..."
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Mention Pairs

Contrastive 
Loss
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Down-regulation of estrogen receptor gene 
expression was enhanced by the development
of the disease ...

Contextual 
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... Their initial treatment in the emergency 
room is the essential link between first aid in
the field and ...

Push together
Emergency room crowding has become a
wide-spread problem in hospitals across the
United States ...

Unlabeled Text

Figure 1: Illustration of knowledge-rich self-supervised entity linking.

text, and trains a contextual mention encoder using
contrastive learning (Gao et al., 2014; Wu et al.,
2020), by mapping mentions of the same entity
closer. For inference, KRISS samples prototypes
for each entity from the self-supervised mentions.
Given a test mention, KRISS finds the most similar
prototype and returns the entity it represents.

Prior methods that leverage domain ontology
for entity linking often resort to string match-
ing (against entity names and aliases), making
them vulnerable to both variations and ambigui-
ties. Recently, a flurry of methods have been pro-
posed to conduct biomedical entity representation
learning from synonyms in the ontology, such as
BIOSYN (Sung et al., 2020), SapBERT (Liu et al.,
2021), and others (Lai et al., 2021). These methods
can resolve variations to some extent, but they com-
pletely ignore mention contexts and cannot resolve
ambiguities. Given an entity mention, they only
predict a surface form, rather than a unique entity
as required by entity linking (e.g., see footnote 2
in SapBERT (Liu et al., 2021)). As we will show
in §4.5, their predicted surface forms are often am-
biguous and can’t be mapped to a unique entity.
Unfortunately, starting from BIOSYN, these pa-
pers all adopt an incorrect evaluation method that

simply ignores the ambiguity and declares the pre-
dicted surface form as correct. Consequently, their
reported “entity linking” scores are often highly
inflated and do not represent true linking perfor-
mance. In §4.5, we provide a detailed analysis to
illustrate this problem, which we hope would con-
tribute to rectifying this significant evaluation error
in future entity linking work.

We conduct our study on biomedicine, which
serves as a representative high-value domain where
prior methods are hard to apply. Among the three
million biomedical entities in UMLS, less than 6%
have any description available. Gold mention la-
bels are available for only a tiny fraction of enti-
ties. E.g., MedMentions (Mohan and Li, 2019),
the largest biomedical entity linking dataset, only
covers 35 thousand entities.

We applied our method to train KRISSBERT,
a universal entity linker for all three million
biomedical entities in UMLS, using only the en-
tity list in UMLS and unlabeled text in PubMed1.
KRISSBERT can also incorporate additional domain
knowledge in UMLS such as entity aliases and ISA

hierarchy. We conducted extensive evaluation on

1https://pubmed.ncbi.nlm.nih.gov/
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seven standard biomedical entity linking datasets
spanning biomedical literature and clinical notes.
KRISSBERT demonstrated clear superiority, outper-
forming prior state of the art by 10 points in average
accuracy and by over 20 points in MedMentions.
KRISSBERT can be directly applied to lazy learn-

ing (§3.7) with no additional training, by simply us-
ing gold mention examples as prototypes during in-
ference. This universal model already attains com-
parable results as dataset-specific state-of-the-art
supervised methods, each tailored to an individual
dataset by limiting entity candidates and using addi-
tional supervision sources and more complex meth-
ods (e.g., coreference rules and joint inference).
We released KRISSBERT to facilitate research and
applications in biomedical entity linking.

2 Related Work

Entity linking Many applications require map-
ping mentions to unique entities. E.g., knowing
that some drug can treat some disease is not very
useful, unless we know the specific drug and dis-
ease. Entity linking is inherently challenging given
the large number of unique entities. Prior work
often adopts a pipeline approach that first narrows
entity candidates to a small set (candidate gener-
ation) and then learns to classify contexts of the
mention and a candidate entity (candidate rank-
ing) (Bunescu and Paşca, 2006; Cucerzan, 2007;
Ratinov et al., 2011). Candidate generation often
resorts to string matching or TF-IDF variants (e.g.,
BM25), which are vulnerable to variations. Rank-
ing features are manually engineered or learned via
various neural architectures (He et al., 2013; Ganea
and Hofmann, 2017; Kolitsas et al., 2018). Addi-
tionally, entity relations (e.g., concept hierarchy)
and joint inference have been explored for improv-
ing accuracy (Gupta et al., 2017; Murty et al., 2018;
Cheng and Roth, 2013; Le and Titov, 2018). These
methods are predominantly supervised, and suffer
from the scarcity of annotated examples, especially
given the large number of entities to cover. By con-
trast, KRISSBERT leverages self-supervision using
readily available domain knowledge and unlabeled
text, and can effectively resolve variations and am-
biguities for millions of entities.

Knowledge-rich self supervision Domain on-
tology such as UMLS has been applied to self-
supervise biomedical named entity recognition
(Zhang and Elhadad, 2013; Almgren et al., 2016).
Recently, Sung et al. (2020); Liu et al. (2021) pro-

pose SapBERT for mention normalization by con-
ducting contrastive learning over synonyms from
UMLS. However, SapBERT completely ignores
mention contexts. It can resolve some variations
but not ambiguity2. By contrast, we apply con-
trastive learning on mention contexts, and leverage
unlabeled text to generate self-supervised examples.
SapBERT relies on synonyms to learn spelling vari-
ations. Our approach can learn with just the canoni-
cal name for each entity, as self-supervised mention
examples naturally capture contexts where synony-
mous mentions may appear in.

3 Knowledge-Rich Self-Supervision for
Entity Linking

Entity linking grounds textual mentions to unique
entities in a given database/dictionary. Formally,
the goal of entity linking is to learn a function
Link : (m,T ) → e that maps mention m in the
context T to the unique entity e. Self-supervised en-
tity linking assumes no access to any gold mention
examples. The knowledge-rich self-supervision
setting (KRISS) assumes that only a domain ontol-
ogy O and an unlabeled text corpus T are available.
In particular, we require the availability of an en-
tity list, which specifies for each entity the unique
identifier and a canonical name. Entity list is the
prerequisite for entity linking, as it provides the
targets for linking. Our framework can also incor-
porate other knowledge in the ontology (§3.5).

3.1 Generating Self-Supervision
To generate self-supervised mention examples, we
first compile a list of entity names from preferred
terms in UMLS. We then build a trie from these
names (case preserved) to efficiently search them
in plain text. When an exact match is found, a
fixed-size window around the mention will be re-
turned as context. Some preferred terms are shared
by multiple entities. To reduce noise for training
and inference, we skip the ambiguous terms. We
conducted this process on PubMed abstracts and
obtained over 1.6 billion mention examples, each
of which is uniquely linked to an entity in UMLS.
The estimated linking accuracy based on random
samples is 85%. Note that not all UMLS entities
have self-supervised examples, as they have never
been mentioned in PubMed. This is not an issue

2The SapBERT paper states:“In this work, biomedical en-
tity refers to the surface forms of biomedical concepts”. As
aforementioned, many surface forms of biomedical entities
are highly ambiguous (e.g., “PDF”, “ER”).
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for training as our goal is to learn a general en-
coder that maps mentions of the same entity closer
(§3.2). For inference, the ISA hierarchy in UMLS
can be leveraged to compensate for the lack of self-
supervised examples (§3.5).

3.2 Contrastive Learning
Given the self-supervised mentions, we train a men-
tion encoder using contrastive learning by mapping
mentions of the same entity closer and mentions
of different entities farther apart. Specifically, each
mention m is encoded into a contextual vector c
using a Transformer-based encoder (Vaswani et al.,
2017), with the following input format:

[CLS] ctxl [Ms] mention [Me] ctxr [SEP]

where ctxl and ctxr denote the left and right context
respectively; [Ms] and [Me] are markers indicating
the start and end of the mention; [CLS] and [SEP]
are special encoding tokens. The last-layer hidden
state of [CLS] is used as the contextual vector c.
See subsection A.3 for an illustration.

In a minibatch, we sample 2N self-supervised
mentions from N entities and encode them into
contextual vectors {c1, ..., c2N}, where c2k−1 and
c2k are from the same entity. Given a positive pair
(ci, cj), we treat the other 2(N − 1) vectors within
a minibatch as negative examples, and compute the
InfoNCE loss (Oord et al., 2018) as:

ℓci,cj = − log
exp(c⊤i cj/τ)∑2N

k=1 1[k ̸=i] exp(c
⊤
i ck/τ)

, (1)

where 1[k ̸=i] ∈ {0, 1} is an indicator function eval-
uating to 1 iff k ̸= i and τ denotes a temperature
parameter. The final loss is computed across all
positive pairs in a minibatch:

L =
1

2N

N∑

k=1

[ℓc2k−1,c2k + ℓc2k,c2k−1
] (2)

3.3 Mention Masking and Replacement
Skipping ambiguous names improves the quality of
mention examples (§3.1), but models trained with
such self-supervision tend to over-index on surface
matching, limiting generalizability. To overcome
this, we propose two strategies to augment alterna-
tive views of the encoder input during training:

Mention Masking With a probability pmask, we
mask the mention using [MASK], which regularizes
the model from lexical memorization and encour-
ages it to leverage cues from surrounding context.

Mention Replacement With a probability
preplace, the mention is replaced with its synonym in
UMLS while the context is kept unchanged. This
yields a new mention of the same entity, encourag-
ing the model to generalize across entity variations.

3.4 Linking with Self-Supervised Prototypes

At test time, for each entity e in the entity list E
compiled in §3.1, we sample a small set of self-
supervised mentions as reference prototypes, de-
noted as Proto(e). Given a test/query mention mq,
we return the entity e with the most similar proto-
type mp based on the self-supervised encoding:

Link(mq) = argmax
e∈E

max
mp∈Proto(e)

c⊤q cp (3)

For efficient linking, we pre-compute the contex-
tual vectors of all reference prototypes and leverage
fast nearest neighbor search tool that can scale to
millions of entities (Johnson et al., 2019).

3.5 Incorporating Additional Knowledge

Our self-supervised entity linking formulation can
easily incorporate other knowledge available in an
ontology, either by generating additional mention
examples from unlabeled text, or by creating spe-
cial entity-centric examples, which can be used
both for learning and inference. This is especially
important for entities without self-supervised men-
tions from PubMed (§3.1).

Aliases Ontology often includes aliases for some
entities. The alias lists are generally incomplete
and aliases such as acronyms are highly ambiguous.
So they can’t be used as a definitive source for can-
didate generation. However, aliases can be used in
KRISS to generate additional self-supervised men-
tions from unlabeled text, just like the preferred
terms. To reduce noise, we similarly skip ambigu-
ous aliases shared by multiple entities.

Semantic hierarchy Ontology often organizes
entities in a hierarchy via ISA relationship among
entities. For instance, in UMLS, the ER gene is as-
signed a Semantic Tree Number (A1.2.3.5), which
specifies the ISA path from root to its entity type
(Gene or Genome). For each entity in UMLS, we
concatenate its semantic tree number (stn), entity
type, as well as aliases to generate an entity-centric
reference in the following form:

[CLS] stn [SEP] type [SEP] aliases [SEP]

871



We introduce a separate encoder to compute the
vector representation re from the last-layer hidden
state of [CLS] for entity e. For learning, besides
the contextual vectors {c1, ..., c2N} for N entities,
a minibatch includes N entity-centric references
{re1 , ..., reN }. Given a positive pair (ci, rej ), we
treat the other N − 1 entity-centric references as
negatives and compute the InfoNCE loss:

ℓci,rej = − log
exp(c⊤i rej/π)∑N
k=1 exp(c

⊤
i rek/π)

, (4)

where π is a temperature parameter. The final loss
between mentions and entity-centric references is
computed across all positive pairs in a minibatch:

L′ =
1

2N

N∑

k=1

[ℓc2k−1,rek
+ ℓc2k,rek ] (5)

We jointly optimize two contrastive losses αL +
βL′, with weights α and β. For inference, we
include entity-centric references in Link(mq) as:

Link(mq) = argmax
e∈E

max
mp∈Proto(e)

c⊤q (cp + re)

(6)

Entity description For a small fraction of com-
mon entities, manually written descriptions may
be available. In UMLS, less than 6% of entities
have description, so they can’t be used as the main
source for contrastive learning and linking. Still,
the information may be useful and can be incorpo-
rated in KRISS by appending it to the entity-centric
reference (separated by [SEP]).

3.6 Cross-Attention Candidate Re-Ranking
Inspired by Logeswaran et al. (2019); Wu et al.
(2020), we further improve the linking accuracy
by learning to re-rank the top K candidates via a
cross-attention encoder. The input concatenates
the mention and candidate representations (with
the second [CLS] removed). A linear layer is ap-
plied to the top [CLS] encoding to compute the
re-ranking score. The training data is generated
by pairing self-supervised mentions with top K
candidates based on Link(mt). We learn the en-
coder using a cross-entropy loss that maximizes
the re-ranking score for the correct entity.

3.7 Lazy Learning
KRISS does not require labeled information in
training or inference. However, if labeled exam-
ples are available, KRISS can directly use them,

Mentions Entities Domain Entities

NCBI 6,892 790 16,317
BC5CDR-d 5,818 1,076 16,317
BC5CDR-c 4,409 1,164 233,632
ShARe 17,809 1,866 82,763
N2C2 13,609 3,791 423,670
MM (full) 352,496 34,724 3,416,210
MM (st21pv) 203,282 25,419 2,325,023

Table 1: Summary of entity linking datasets used in
our evaluation. MM refers to MedMentions; st21pv
refers to the subset with 21 most common semantic
types. Domain entities refer to candidates in the UMLS
sub-domains (e.g., disease) considered in the dataset.

with zero additional training, as in lazy learn-
ing (Wettschereck et al., 2004). In this case, gold
mention examples from target training data are
used as mention prototypes for linking, augment-
ing the self-supervised ones. KRISS can also use
labeled examples to fine-tune the self-supervised
model, we leave it to future work.

4 Experiments

4.1 Entity Linking Benchmark
We consider seven standard entity linking datasets,
spanning biomedical literature and clinical notes.
See Table 1 for a summary. In particular, MedMen-
tions (MM) (Mohan and Li, 2019) is the largest
and most comprehensive dataset for biomedical
entity linking, covering diverse UMLS entities (in-
cluding all entity types in other datasets). See sub-
section A.2 for details. Training and development
sets are not used in any way during self-supervised
learning. Only test sets are used to evaluate self-
supervised entity linking. we assume that gold
mention boundaries are given and focus on evalu-
ating linking accuracy. Given a test mention, the
system needs to return the correct entity unique
identifier to be considered as correct, as required
by entity linking.

4.2 Implementation Details
For unlabeled text, we use the same corpus as in
Gu et al. (2021), comprising 14 million PubMed
abstracts. For domain ontology, we use UMLS
2017AA Active, containing 3.47 million entities.

We use a self-supervised dev set to choose hy-
perparameters. For self-supervised mentions, a
mention-centered window of 64 tokens is used
as context. We sample three mentions per entity
for training, and sixteen as prototypes at test time.
The encoders for mentions and entity-centric refer-
ences are initialized with PubMedBERT (Gu et al.,
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NCBI BC5CDR-d BC5CDR-c ShARe N2C2 MM (full) MM (st21pv) Mean
QuickUMLS 39.7 47.5 34.9 42.1 29.8 12.1 20.0 32.3
BLINK 49.0 48.7 52.0 32.8 25.1 13.9 19.4 34.4
SapBERT† 63.0 83.6 96.2 80.4 59.7 37.6 44.2 66.4
KRISSBERT (self-supervised) 83.2±0.5 85.5±0.2 96.5±0.1 84.0±0.1 67.8±0.1 61.4±0.1 63.5±0.1 77.4
MedLinker 50.5 62.0 80.5 56.8 37.6 32.9 57.6 54.0
ScispaCy 66.8 64.0 85.3 66.6 54.6 53.1 52.9 63.3
KRISSBERT (supervised only) 76.9±0.9 85.5±0.7 93.8±0.3 53.9±0.4 29.2±1.2 60.7±0.3 63.7±0.4 66.2
KRISSBERT (lazy supervised) 89.9±0.1 90.7±0.1 96.9±0.1 90.4±0.1 80.2±0.1 70.7±0.1 70.6±0.1 84.2

Table 2: Comparison of test accuracy on standard entity linking datasets. Top four systems only use UMLS and
unlabeled text. MedLinker and ScispaCy use MedMentions labeled examples for supervision. KRISSBERT (self-
supervised) uses self-supervised mentions for learning and linking, whereas KRISSBERT (supervised only) uses
training-set mentions instead. KRISSBERT (lazy supervised) augments KRISSBERT (self-supervised) with training-set
mentions for linking, as in lazy learning (§3.7). †SapBERT results are different from reported in Liu et al.
(2021). We explain the difference in §4.5.

2021). For learning, we use Adam with batch
size 512, learning rate 10−5, dropout rate 0.1, and
both pmask and preplace 0.2. For simplicity, we set
temperatures τ, π to 1.0, and loss weights α, β to
0.5. Training takes 3 hours on 4 NVIDIA V100
GPUs. We update parameters in all layers and de-
note the end model as KRISSBERT. At test time, we
use FAISS (Johnson et al., 2019) with IndexFlatIP
to obtain the top 100 prototypes for re-ranking.
The inference speed is 5,461 mention queries per
minute, on a test machine with Intel Xeon CPU
E5-2690 and a Tesla P100 GPU.

4.3 Baseline Systems

We conduct head-to-head comparison against five
baseline systems, including popular tools and prior
state-of-the-art methods: QuickUMLS (Soldaini
and Goharian, 2016), BLINK (Wu et al., 2020),
SapBERT (Liu et al., 2021), MedLinker (Loureiro
and Jorge, 2020), ScispaCy (Neumann et al., 2019).
See subsection A.4 for details.

4.4 Main Results

Table 2 shows the main results. KRISSBERT results
are averaged over three runs with different random
seeds. As expected, QuickUMLS provides a rea-
sonable dictionary-based baseline but can’t effec-
tively handle variations and ambiguities. BLINK
attained promising results in the Wikipedia domain,
but performed poorly in biomedical entity linking,
due to the scarcity of available entity descriptions.
SapBERT performed well on largely unambiguous
entity types such as chemicals/drugs but faltered in
more challenging datasets such as MedMentions.
By contrast, KRISSBERT performed substantially
better across the board, establishing new state of
the art in self-supervised biomedical entity linking,

outperforming prior best systems by 10 points in
average and by over 20 points in MedMentions.
The SapBERT results are different from Liu et al.
(2021); we explain the difference in §4.5.

By leveraging knowledge-rich self-supervision,
KRISSBERT even substantially outperformed super-
vised entity linkers such as MedLinker and Scis-
paCy, which used MedMention training data, gain-
ing over 10-20 absolute points in average.

Self-supervised KRISSBERT also outperforms
KRISSBERT (supervised only). It is particularly re-
markable as KRISSBERT (self-supervised) learns a
single, unified model for over three million UMLS
entities, whereas KRISSBERT (supervised only)
learns separate supervised models that tailor to in-
dividual datasets. This seemingly counter-intuitive
result can be explained by the unreasonable effec-
tiveness of data (Halevy et al., 2009). Knowledge-
rich self-supervision produces a large dataset com-
prising diverse entity and mention examples. De-
spite the inherent noise, it confers significant advan-
tage over supervised learning with small training
data. This manifests most prominently in small
clinical datasets like ShARe and N2C2.

4.5 Why the Entity Linking Scores Reported
in the SapBERT Paper Are Incorrect?

The SapBERT paper (Liu et al., 2021) reported
substantially higher scores than that in Table 2.
Unfortunately, this stems from a significant er-
ror in their evaluation method, as inherited from
BIOSYN (Sung et al., 2020) and widely adopted in
subsequent work (e.g., Lai et al., 2021). Here, we
conduct a detailed analysis using SapBERT (Liu
et al., 2021) as the representative example.

The problem can be immediately discerned by
first principle. SapBERT completely ignores the
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Mention: “... Hence, we aimed to find drug targets using the
2DE / MS proteomics study of a dexamethasone ...”
SapBERT prediction: surface form MS, which is shared by
multiple entities, such as Master of Science (C1513009),
Mass Spectrometry (C0037813), etc.
KRISSBERT prediction: Mass Spectrometry (C0037813)
KRISSBERT predicted prototype: “... mass spectrometry is
a widely used technique for enrichment and sequencing of
phosphopeptides ...”

Example: “... every patient followed up accordingly within
ten days of discharge ...”
SapBERT prediction: surface form DISCHARGE, which is
shared by multiple entities, such as Discharge, Body
Substance, Sample (C0600083), Patient Discharge
(C0030685), etc.
KRISSBERT prediction: Patient Discharge (C0030685)
KRISSBERT predicted prototype: “Performance of the
Hendrich Fall Risk Model II in Patients Discharged from
Rehabilitation Wards ...”

Example: “... 5 days of oral prednisone in treatment of
adults with mild to moderate asthma exacerbations ...”
SapBERT prediction: surface form MILD, which is shared
by multiple entities, such as Mild Severity of Illness Code
(C1547225), Mild Adverse Event (C1513302).
KRISSBERT prediction: Mild asthma (C0581124)
KRISSBERT predicted prototype:

“Mild asthma exacerbations in a group of children with cough
as a dominant symptom ...”

Example: “... in patients with thyroid nodules evaluated as
Bethesda Category III ( AUS / FLUS) in cytology ...”
SapBERT prediction: surface form AUS, which is used by
Australia (C0004340).
KRISSBERT prediction: Atypical cells of undetermined
significance (C0522580)
KRISSBERT predicted prototype:

“Atypia of undetermined significance (AUS) or follicular
lesion of undetermined significance (FLUS), as stated by The
Bethesda System for Reporting Thyroid Cytopathology ...”

Table 3: Examples of ambiguous mentions: SapBERT
struggles whereas KRISSBERT predicts correctly.

context of an entity mention (e.g., see Footnote 3
and Formal Definition in Section 2 in Liu et al.,
2021). Given an ambiguous mention, there is no
way such methods can resolve the ambiguity. In-
stead, these methods would merely produce a sur-
face form (Footnote 2 in Liu et al., 2021). If the
surface form matches multiple entities in name or
alias, these methods can’t predict a unique entity
as required by entity linking. Unfortunately, such
an ambiguous prediction is considered correct by
their evaluation, as long as the gold entity is one of
the matching entities.3

Table 3 shows examples of such ambiguous
cases. E.g., given the mention “MS”, without the
context SapBERT has no way to resolve its ambi-
guity. Instead, it simply returns a verbatim surface
form “MS”, which can be mapped to many UMLS

3See the code at https://github.com/cambridgeltl/
sapbert/blob/main/evaluation/utils.py#L42

Mention As-is SapBERT KRISSBERT

NCBI 76.9 92.0 91.3
BC5CDR-d 83.4 93.8 92.8
BC5CDR-c 92.3 96.5 97.2
ShARe 74.5 85.6 87.3
N2C2 61.2 67.9 76.1
MM (full) 47.1 52.2 71.3
MM (st21pv) 48.3 53.8 72.2

Mean 69.1 77.4 84.0

Table 4: Accuracy comparison based on the evaluation
metric used by Liu et al. (2021).

Ambiguous(%) SapBERT KRISSBERT

NCBI 43.2 57.1 64.5
BC5CDR-d 30.7 63.9 64.5
BC5CDR-c 11.5 76.4 76.5
ShARe 48.5 67.5 72.4
N2C2 67.5 50.7 58.2
MM (full) 67.8 24.8 48.9
MM (st21pv) 69.4 29.6 52.5

Table 5: Accuracy comparison on ambiguous cases.

KRISSBERT
(lazy supervised)

Supervised
State of the Art

NCBI 89.9 89.1 (Ji et al., 2020)
BC5CDR 93.7 91.3 (Angell et al., 2021)
ShARe 90.4 91.1 (Ji et al., 2020)
N2C2 80.2 81.6 (Xu et al., 2020)

MM (full) 70.7 45.3†(Mohan and Li, 2019)
MM (st21pv) 70.6 74.1 (Angell et al., 2021)

Table 6: Comparison of test accuracy of KRISSBERT
with lazy learning (§3.7) and supervised state of the art.
†Prior work generally avoids evaluating on the full MM
dataset; we can only find one published result which
combines boundary detection and linking.

entities. Following BIOSYN, SapBERT evaluation
would simply considers this as correct, as one of the
matching entities is the gold entity Mass Spectrom-
etry (C0037813). However, this obviously does
not reflect the true linking performance for Sap-
BERT, as it can’t distinguish it from other equally
matching entities such as such as Master of Science
(C1513009) and Montserrat Island (C0026514).

Even if we adopt this incorrect evaluation
method, KRISSBERT still substantially outperforms
SapBERT, especially on the largest and most chal-
lenging MedMention dataset (see Table 4). The
gain stems from cases when the gold entities have
no official aliases matching the surface form pre-
dicted by SapBERT, whereas KRISSBERT can still
match the gold entity based on context (e.g., see
the last two examples in Table 3). We also evalu-
ated the trivial baseline that returned the mention
as is and found that SapBERT often does not out-
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NCBI BC5CDR-d BC5CDR-c ShARe N2C2 MM (full) MM (st21pv) Mean
KRISSBERT 83.2 85.5 96.5 84.0 67.8 61.4 63.5 77.4
− cross-attention re-ranking 82.8 85.0 95.1 83.4 65.0 59.4 61.3 76.0
− mention pair contrast 77.9 82.2 93.3 75.0 56.3 47.8 49.9 68.9
− aliases 83.2 85.2 96.4 84.0 67.7 61.0 63.2 77.2
− semantic hierarchy 82.7 85.1 96.4 83.0 65.7 59.0 61.5 76.3
− entity description 83.1 85.4 96.3 84.0 67.8 61.2 63.4 77.3
Initialize w. BERT 79.3 80.6 94.4 74.5 58.4 53.9 55.3 70.9

Table 7: Ablation study of KRISSBERT on the impact of knowledge components and domain-specific pretraining.
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Figure 2: Test accuracy (oracle) with top K predictions shows that improving ranking has the potential to yield
large gains. Few-shot learning results are averaged over three runs.

perform it by much, especially on the most repre-
sentative MedMention dataset. Interestingly, un-
der this inflated evaluation, KRISSBERT appears to
slightly underperform SapBERT in the relatively
easy datasets NCBI and BC5CDR-d (both about
diseases). We found that, in rare occasions, the
context may lead KRISSBERT to predict a more
fine-grained concept (see subsection A.5).

As shown in Table 5, ambiguous mentions4

abound, especially in more diverse and realistic
datasets such as N2C2 and MedMentions. The
SapBERT paper’s evaluation thus reflects the ora-
cle score (assuming that the right entity is always
chosen out of multiple candidates), rather than true
linking performance. For more realistic assessment,
if SapBERT returns multiple entities, a random one
would be chosen for evaluation, as in §4.4. Not
surprisingly, KRISSBERT substantially outperforms
SapBERT in the ambiguous cases, but still has
much room for growth.

4.6 Lazy Supervised Entity Linking

KRISSBERT can make good use of labeled data
when available. Even lazy learning (§3.7) yields
results comparable to supervised state of the art, as
shown in Table 6. Note that KRISSBERT (lazy su-
pervised) is based on a single task-agnostic model

4We consider a mention as ambiguous if it can’t be
matched to a unique entity as is.

(KRISSBERT (self-supervised)), and simply uses
corresponding training set examples as prototypes
for linking in a zero-shot fashion. By contrast, prior
supervised state-of-the-art results were attained
using separate models that tailored to individual
datasets. They may use additional supervision such
as coreference and joint inference (Angell et al.,
2021), which can be incorporated into KRISSBERT.

4.7 Ablation Studies
In Table 7, we conduct a series of ablation stud-
ies to understand the impact of domain knowledge
and model choices. Deep cross attention between
query mentions and candidates produces consistent
gains. The mention pair contrastive loss L (§3.2) is
fundamental for self-supervised learning, whereas
additional domain knowledge such as entity de-
scriptions and semantic hierarchy offer incremental
gains. Domain-specific pretraining (PubMedBERT;
Gu et al., 2021) offers a substantial advantage for
biomedical entity linking, gaining 6.5 points on
average over BERT initialization.

4.8 Discussion
Aside from BC5CDR-c where KRISSBERT already
performs very well, there is a large gap (10-15
points) between top-1 and top-5 accuracy, in both
self-supervised and lazy supervised settings (Fig-
ure 2). This suggests that there is much room for
KRISSBERT to gain by further improving ranking.
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KRISSBERT also facilitates efficient few-shot learn-
ing, with a single example per entity yielding over
10 point gain in N2C2. subsection A.5 Table 9
shows examples of common errors by KRISSBERT.
They are subtle and challenging. E.g., the gold
concept is expression, while KRISSBERT predicts
the procedure of expression.

5 Conclusion

We propose knowledge-rich self-supervised entity
linking by conducting contrastive learning on men-
tion examples generated from unlabeled text us-
ing available domain knowledge. Experiments on
seven standard biomedical entity linking datasets
show that our proposed KRISSBERT outperforms
prior state of the art by as much as 20 points in accu-
racy. Future directions include: further improving
self-supervision quality; incorporating additional
knowledge; applications to other domains.

Limitations

KRISS is mainly tested for languages with lim-
ited morphology, i.e., English. Relatively large
GPU resources, 4 NVIDIA V100 GPUs, are re-
quired to train the KRISSBERT model. Therefore,
we did not do an exhaustive search for hyperpa-
rameters. Our experiments report results on seven
standard biomedical datasets, which may not reflect
KRISSBERT performance in the real-world applica-
tions.

References
Simon Almgren, Sean Pavlov, and Olof Mogren. 2016.

Named entity recognition in Swedish health records
with character-based deep bidirectional LSTMs. In
Proceedings of the Fifth Workshop on Building and
Evaluating Resources for Biomedical Text Mining
(BioTxtM2016), pages 30–39, Osaka, Japan. The
COLING 2016 Organizing Committee.

Rico Angell, Nicholas Monath, Sunil Mohan, Nishant
Yadav, and Andrew McCallum. 2021. Clustering-
based inference for biomedical entity linking. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2598–2608, Online. Association for Computa-
tional Linguistics.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic acids research, 32(suppl_1):D267–
D270.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates,
Inc.

Razvan Bunescu and Marius Paşca. 2006. Using en-
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A Appendix

A.1 Additional Related Work

Zero-shot entity linking Recent work (Lo-
geswaran et al., 2019) enables generalization to
unseen entities by learning a cross-attention BERT
model over the mention and entity contexts for
candidate ranking. Gillick et al. (2019); Wu et al.
(2020) introduce a bi-encoder that encodes the men-
tion context and entity context separately, thus scal-
ing to candidate generation and reducing recall loss
due to mention variations. These methods, how-
ever, still require labeled information such as gold
mention examples, which are not readily available
in many high-value domains. This restricts their ap-
plicability to the Wikipedia domain, where labeled
mentions can be gleaned from hyperlinks and en-
tity pages. KRISSBERT, however, does not require
labeled information and can learn from entity list
and unlabeled text alone.

Contrastive learning Contrastive learning con-
ducts representation learning by mapping seman-
tically similar instances to nearby points (Hadsell
et al., 2006). Contrastive loss is often a variant
of noise-contrastive estimation (NCE) that normal-
izes against negative (dissimilar) examples (Gut-
mann and Hyvärinen, 2010). A popular choice
is InfoNCE (Oord et al., 2018), where each mini-
batch samples a query instance (q), a few instances
ki’s with one positive (similar) example k+, and
optimizes the softmax of the query’s dot product
with the positive example L(q) = − log(exp(q ·
k+)/

∑
i exp(q · ki)). In computer vision, con-

trastive learning is often synonymous with self-
supervised learning, where “similar” images are
generated using data augmentation techniques as-
sumed to preserve semantics (e.g., crop, resize,
recolor) (Wu et al., 2018; Oord et al., 2018; He
et al., 2019; Chen et al., 2020). In NLP, contrastive
estimation has been applied to probabilistic unsu-
pervised learning (by approximating the partition
function with a tractable neighborhood) (Smith and
Eisner, 2005; Poon et al., 2009). With the rise of

neural representation, contrastive learning has also
been applied to information retrieval (Huang et al.,
2013; Shen et al., 2014), knowledge graph embed-
ding (Bordes et al., 2013; Yang et al., 2015), entity
linking (Loureiro and Jorge, 2020; Logeswaran
et al., 2019; Wu et al., 2020), question answer-
ing (Karpukhin et al., 2020), typically with super-
vised labeled examples. In this paper, we apply
contrastive learning to self-supervised entity link-
ing where “similar” mentions are derived from un-
labeled text using entity names and other domain
knowledge, without requiring any labeled data.

A.2 Entity Linking Datasets

NCBI (Doğan et al., 2014) contains 793 PubMed
abstracts annotated with 6892 disease men-
tions, which are mapped to 790 unique con-
cepts in MeSH5 or OMIM6, both part of UMLS.
BC5CDR (Li et al., 2016) contains 1,500 PubMed
abstracts with 5,818 annotated disease men-
tions (BC5CDR-d) and 4,409 chemical mentions
(BC5CDR-c), which are mapped to MeSH.

ShARe (Pradhan et al., 2014) contains 431 de-
identified clinical reports with 17,809 disease men-
tions mapped to the SNOMED-CT (Spackman
et al., 1997) subset of UMLS.

N2C2 (2019 n2c2/UMass Lowell shared task
3) (Luo et al., 2020) adds entity linking annota-
tions to a subset of the 2010 i2b2/VA shared task
dataset (Uzuner et al., 2011). The resulting dataset
contains 100 de-identified discharge summaries
with 13,609 mentions (including medical problems,
treatments, and tests) linked to RxNorm (Liu et al.,
2005) and SNOMED-CT (Spackman et al., 1997)
within UMLS.

MedMentions (Mohan and Li, 2019) (MM) is
the largest publicly available dataset for biomedi-
cal entity linking, which contains 4,392 PubMed
abstracts and 350,000 mentions annotated with
UMLS linking. MM (st21pv) is a sub-corpus lim-
ited to 21 most common entity types.

A.3 Contextual Mention Encoders

A.4 Baseline Systems

QuickUMLS (Soldaini and Goharian, 2016) con-
ducts entity linking by approximate matching of
mentions against UMLS entity lexicon (canonical
name and aliases). It serves as a representative
baseline for ontology-based entity linking.

5www.nlm.nih.gov/mesh/meshhome.html
6omim.org
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Figure 3: Contextual mention encoder for self-
supervised entity linking.
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Figure 4: Cross-attention candidate re-ranking.

Zero-shot entity linking by reading entity de-
scriptions (Logeswaran et al., 2019; Wu et al.,
2020) learns to encode contextual mentions against
entity descriptions and attains state-of-the-art zero-
shot entity linking results in the Wikipedia domain.
Prior work uses gold mention examples in super-
vised learning. We adapt it to self-supervised learn-
ing using the self-supervised mention examples
and available entity descriptions in UMLS. Prior
work initializes the encoder with general-domain
BERT models. To ensure head-to-head comparison,
we followed KRISSBERT to use PubMedBERT (Gu
et al., 2021) instead, which yielded better results.

SapBERT (Liu et al., 2021) learns to resolve
variations in entity surface forms using synonyms
in UMLS, using PubMedBERT (Gu et al., 2021). It
ignores the mention context and returns all entities
with a matching surface form. To use SapBERT
for linking, we randomly select an entity when
SapBERT returns multiple ones.

MedLinker (Loureiro and Jorge, 2020) is a
strong supervised entity linking baseline that trains
a BERT model on MedMentions. during test, it aug-
ments BERT-based prediction with approximate
dictionary match for entities unseen in training.

ScispaCy (Neumann et al., 2019) provides an-
other strong entity linking baseline that leverages
labeled data in MedMentions to tune an elaborate

biomedical linking system that uses TF-IDF based
approximate matching and sophisticated abbrevia-
tion expansion.

A.5 Error Analysis
In Table 8, KRISSBERT considers “t cell prolympho-
cytic leukemia” and “families with” in the context
of two mentions, and predicts more specific entities
than the gold ones.

Mention: “By analysing tumor DNA from patients with
sporadic t cell prolymphocytic leukemia, a rare clonal
malignancy with similarities to a mature t cell leukemia seen
in ataxia telangiectasia ...”
Gold entity: T-Cell Leukemia (C0023492)
KRISSBERT prediction: T-Cell Prolymphocytic Leukemia
(C2363142)

Example: “The majority (81%) of the breast ovarian cancer
families were due to BRCA1, with most others (14%) due to
BRCA2. Conversely, the majority of families with
female breast cancer were due to BRCA2 (76%).”
Gold entity: Breast cancer (C0006142)
KRISSBERT prediction: Familial cancer of breast
(C0346153)

Table 8: Examples where KRISSBERT “misguided” by
the context.

Mention: “... NTeff cells appeared to have lower expression
of Foxp1 ...”
Gold entity: Protein Expression (C1171362)
KRISSBERT prediction: Expression Procedure (C0185117)
KRISSBERT predicted prototype: “... expression of a
myeloid differentiation antigen, Mo1 ...”

Mention: “... On admission included BUN / creatinine of
33/2.1 . Sodium 141 . ...”
Gold entity: Creatinine Measurement (C0201975)
KRISSBERT prediction: Creatinine (C0010294)
KRISSBERT predicted prototype: “... Sorbent binding of
urea and creatinine in a Roux-Y intestinal segment. ...”

Table 9: Examples of common errors by KRISSBERT.

A.6 License of Scientific Artifacts
UMLS (Bodenreider, 2004) is licensed to individ-
uals for research purposes.7 NCBI (Doğan et al.,
2014) is under the terms of the United States Copy-
right Act.8 BC5CDR is freely available for the re-
search community.9 ShARe (Pradhan et al., 2014)
is under The PhysioNet Credentialed Health Data
License.10 N2C2 (Luo et al., 2020) is under the
Data Use and Confidentiality Agreement.11.

7uts.nlm.nih.gov/uts/assets/LicenseAgreement.pdf
8huggingface.co/datasets/ncbi_disease
9biocreative-v/track-3-cdr

10shareclefehealth2014task2/view-license/1.0
11n2c2.dbmi.hms.harvard.edu/data-use-agreement
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