HiSMatch: Historical Structure Matching based Temporal Knowledge
Graph Reasoning

Zixuan Li*3; Zhongni Hou'?, Saiping Guan'? Xiaolong Jin'?, Weihua Peng?>,
Long Bai'?, Yajuan Lyu®, Wei Li*, Jiafeng Guo'?, Xueqi Cheng'?
School of Computer Science and Technology, University of Chinese Academy of Sciences;
2CAS Key Laboratory of Network Data Science and Technology,
Institute of Computing Technology, Chinese Academy of Sciences; *Baidu Inc.

{lizixuan, houzhongnil8z,

guansaiping,

jinxiaolong}@ict.ac.cn

{pengweihua, lvyajuan}@baidu.com

Abstract

A Temporal Knowledge Graph (TKG) is a se-
quence of KGs with respective timestamps,
which adopts quadruples in the form of (sub-
Jject, relation, object, timestamp) to describe
dynamic facts. TKG reasoning has facili-
tated many real-world applications via answer-
ing such queries as (query entity, query rela-
tion, ?, future timestamp) about future. This
is actually a matching task between a query
and candidate entities based on their historical
structures, which reflect behavioral trends of
the entities at different timestamps. In addi-
tion, recent KGs provide background knowl-
edge of all the entities, which is also help-
ful for the matching. Thus, in this paper,
we propose the Historical Structure Matching
(HiSMatch) model. It applies two structure
encoders to capture the semantic information
contained in the historical structures of the
query and candidate entities. Besides, it adopts
another encoder to integrate the background
knowledge into the model. TKG reasoning ex-
periments on six benchmark datasets demon-
strate the significant improvement of the pro-
posed HiSMatch model, with up to 5.6% per-
formance improvement in MRR, compared to
the state-of-the-art baselines.!

1 Introduction

Knowledge Graphs (KGs), which store facts as
triples in the form of (subject, relation, object),
have been widely applied to many NLP applica-
tions, such as question answering (Lan and Jiang,
2020), dialogue generation (He et al., 2017) and
recommendation (Wang et al., 2019). However,
facts may constantly change over time. Temporal
Knowledge Graphs (TKGs) is a kind of KGs that
describe such dynamic facts by extending each
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triple with a timestamp as (subject, relation, ob-
ject, timestamp). Usually, a TKG is represented
as a sequence of KG snapshots. The TKG rea-
soning task is to infer new facts from known ones,
which primarily has two settings, interpolation and
extrapolation. The former attempts to complete
missing facts in history, while the latter aims to
predict future facts with historical facts. This pa-
per focuses on the extrapolation setting, which is
more challenging and far from being solved (Jin
et al., 2020). This task can be seen as answering
the query about the future facts (e.g., (COVID-19,
Infect, ?, 2022-8-1)) by selecting from all the can-
didate entities.

The key of answering the queries about fu-
ture facts is to understand the history thoroughly.
All the existing models conduct reasoning based
on substructures extracted from the whole history.
These substructures can be divided into two types,
i.e., query-related history (Jin et al., 2019; Zhu
etal., 2021) and candidate-related history (Li et al.,
2021b, 2022; Han et al., 2021a; Deng et al., 2020).
The former contains the latest historical facts re-
lated to the subject and relation in the query, which
reflects the behavioral trends of the subject con-
cerning the query relation. The latter contains all
the latest historical facts of the candidates without
considering the query, which indicates the behav-
ioral trends of all the entities. Both of these two
kinds of history are vital to TKG reasoning. Take
the query (COVID-19, Infect, 7, 2022-8-1) for ex-
ample, the query-related history contains facts like
(COVID-19, Infect, *, t), where t is before 2022-8-
1. The candidate-related history of a candidate A,
includes facts reflecting its own behaviors, like (A,
* % f)yor (%, * A, t). In the realistic situation, the
occurrence of the fact (COVID-19, Infect, A, 2022-
8-1) is caused by the interactions between these
two kinds of history. However, existing models
only focus on one kind of history and underesti-
mate the other, which limits their performance on
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TKG reasoning. Overall, it still remains a chal-
lenge to model both two kinds of history in a uni-
fied framework.

To reduce the computational cost caused by the
enormous facts in history, these two kinds of his-
tory usually contain one hop facts of the centered
entities. Thus, they cannot model the high-order
associations among the entities, which is also vital
to TKG reasoning.

Motivated by these, we consider both query-
related history and candidate-related history under
a matching framework and propose the Historical
Structure Matching (HiSMatch) model. Specif-
ically, it applies two structure encoders to model
the semantic information in the above two kinds of
historical structures, respectively. Then, it obtains
the matching scores. Both of these two structure
encoders contain three components: (1) a structure
semantic component to model the structure depen-
dencies among concurrent facts at the same times-
tamp; (2) a time semantic component to model
the time numerical information of the historical
facts; (3) a sequential pattern component to mine
the behavioral trends from the temporal order in-
formation. Additionally, to model the high-order
associations among the entities, we consider the
most recent KGs as the background knowledge of
each query and apply a GCN-based background
knowledge encoder to obtain more informative en-
tity representations for the two structure encoders.

Our contributions are summarized as follows:

* We first advocate the importance of model-
ing both query-related and candidate-related
history for TKG reasoning and transform the
task into a matching problem between them.

* To solve this problem, we propose HiSMatch
to comprehensively capture the information
in both historical structures via modeling
the structure dependencies among concurrent
facts, the time numerical information of his-
torical facts and the temporal order among
facts. HiSMatch complementally captures
high-order associations among entities by
modeling the recent background knowledge.

» Extensive experiments on six commonly
used benchmarks demonstrate that HiSMatch
achieves significantly better performance (up
to 5.6% improvement in MRR) on the TKG
reasoning task.

2 Related Work

TKG Reasoning under the interpolation set-
ting focuses on completing the missing facts at
past timestamps (Liao et al., 2021; Goel et al.,
2020; Wu et al., 2020; Han et al., 2020a; Jiang
et al., 2016; Dasgupta et al., 2018; Garcia-Duran
et al.,, 2018; Xu et al.,, 2021). For example,
TTransE (Leblay and Chekol, 2018) extends the
idea of TransE (Bordes et al., 2013) by adding
the temporal order constraints among facts. Also,
HyTE (Dasgupta et al., 2018) projects the enti-
ties and relations to time-related hyperplanes to
generate time-aware representations. TNTCom-
plEx (Lacroix et al., 2020) performs 4th-order ten-
sor factorization to get the time-aware representa-
tions of entities. However, they cannot obtain the
representations of the unseen timestamps and are
not suitable for the extrapolation setting.

TKG Reasoning under the extrapolation set-
ting aims to predict facts at future timestamps. Ac-
cording to the historical structure the models fo-
cus on, the existing models can be categorized
into two groups: query-based and candidate-based
models.

Query-based models focus on modeling the
query-related history. For example, RE-NET (Jin
et al., 2020) models the query-related subgraph
sequence. GHNN (Han et al., 2020c) introduces
the temporal point process to model the precise
time information and takes the 1-hop subgraphs of
the query entity into consideration. CyGNet (Zhu
et al., 2021) captures repetitive patterns by model-
ing repetitive facts with the same subject and rela-
tion to the query. XERTE (Han et al., 2020b) learns
a dynamic pruning procedure to find the query-
related subgraphs. CluSTeR (Li et al., 2021a) and
TITer (Sun et al., 2021) both adopt reinforcement
learning to discover query-related paths in history.

Candidate-based models encode the latest his-
torical facts of all the candidate entities without
considering the query, and query are considered
only in the decoding phase. RE-GCN and its ex-
tension CEN (Li et al., 2021b, 2022) designs an
evolutional model to get the representations of all
the candidates by modeling history at a few latest
timestamps. TANGO (Han et al., 2021a) utilizes
neural ordinary differential equations to model
the structure information for each candidate entity.
Glean (Deng et al., 2020) introduces unstructured
textual information to enrich the candidate-related
history.
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Figure 1: An illustrative diagram of the proposed HiSMatch model.

Above all, none of the existing models focus on
both two kinds of history in a unified framework.
HiSMatch considers these two kinds of history un-
der the matching framework and takes the advan-
tages of both kinds of models.

3 Problem Formulation

A TKG G = {Go,...,G4,...,Gr} is a sequence
of KGs, each of which contains facts occurred at
timestamp ¢, i.e., Gy = {£,R,Fi}, where € is
the set of entities, R is the set of relations and
JFi is the set of facts that occurred at ¢. Each
fact is a quadruple (e, 7, €,,t), where eg, e, € €
and » € R. For each fact in TKG, we add the
inverse quadruple (e,, 7!, e, t) into TKG, cor-
respondingly. The TKG reasoning task aims to
predict the missing object via answering a query
q = (eq,7q,7,t4) with the historical KGs given.
Note that, when predicting the missing subject of a
query ¢ = {?, 74, eq, tq}, We can convert the query
into ¢ = {eq,r; ", 7,4}

4 The HiSMatch model

HiSMatch aims to captures the semantic similar-
ity contained in the query-related and candidate-
related historical structures. For each query time,
it first embeds the background knowledge into the
initial entity representations. With the initial rep-
resentations as input, it maps the semantic infor-
mation in these two historical structures into the
vectorized representations of structures. Based on
the structure representations, matching scores are

calculated.

Thus, as shown in Figure 1, HiSMatch con-
sists of four parts: the query structure encoder,
the candidate structure encoder, the background
knowledge encoder, and the matching function.
First, two kinds of historical structures and a
background knowledge graph are derived from
the TKG. Then, the background knowledge en-
coder gets the representations of the entities with
the background knowledge graph as input (Sec-
tion 4.3). With the learned representations as in-
put, two structure encoders use three components
to integrate three kinds of semantic information
into the representations of query-related structure
and candidate-related structure, respectively (Sec-
tion 4.1 and 4.2). Finally, the matching function
calculates the scores between the query and candi-
dates based on the representations of their histori-
cal structures (Section 4.4).

4.1 Query Structure Encoder

The query-related historical structure should re-
flect the behavioral trends of the query. Motivated
by this, for a query ¢ = (eq,7q, 7, tq), the query-
related historical structure consists of the latest his-
torical facts with the same subject e, and relation
rq. These facts co-occuring at the same timestamp
t form a subgraph g/ centered on e,. Then, we
obtain a subgraph sequence {g/ ,...,g{,...,9{ }.
where t1 < ... <t; < ... <ty <ty and mis the
maximum length of the sequence.

Three kinds of information are vital in the above
historical structure, namely, the structure semantic
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information of each subgraph, the time numerical
information of each subgraph, and the temporal or-
der information across subgraphs. To model these
three kinds of information, we design three com-
ponents as follows:

Structure Semantic Component. The struc-
ture semantic information captures the associa-
tions among the query entity and other entities
through the query relation and implies possible an-
swer entities. Since all the concurrent facts, which
having the same subject and relation to the query,
form a one-hop homogeneous graph, we simply
perform mean pooling over all the neighbor enti-
ties in each subgraph gg_ to get the structure se-
mantic representation ggi of the subgraph,

1
q __
8l = T > e (1)

@ eEth.
1

where NZ is the set of the neighborhood of the
query entity e, in ggz, and e is the representation of
each entity e calculated by the background knowl-
edge encoder (see Section 4.3).

Time Semantic Component. Previous
works (Jin et al., 2019, 2020) only consider the
temporal order of the facts but ignore their time
numerical information. A much earlier fact and a
recent one contribute equally when they have the
same order in the subgraph sequence. Actually,
the recent fact is more important. Motivated by
this, we model the time numerical information
by encoding the time interval d = ¢, — ¢;, into
the time representation v(d). However, giving
each time interval a learnable time representation
always meets the time sparsity problem (i.e., the
time interval used in the test phase may not exist
in the training phase). Thus, we model any time
interval by rescaling a learnable time unit w; with
a time bias by,

v(d) = cos(dw; + by). ()

Since some facts occur periodically, such as
elections, we additionally apply the periodic acti-
vation function, i.e., cosine function, on v(d).

Sequential Pattern Component. Furthermore,
the temporal order information in the subgraph se-
quence implies sequential patterns of the query en-
tity. To integrate the sequential patterns into the
representation of the query, we use Gated Recur-
rent Unit (GRU) to model the subgraph sequence.
First, for every timestamp ¢; (¢ = 1,2, ...,m), we

concatenate structure semantic representation and
the time semantic representation from the above
two components as the input of GRU,

xi. = [gf;v(d)]. A3)

Then these representations
{x{,..x{,...,x{ } are fed into GRU re-
cursively,

hi = GRU(h}_ ,x}), 4)
where ¢ € {1,2,...,m} and h?o is the randomly
initialized hidden representations for GRU. The
final representation of query (eq,rq,?,1tq) is the
ouput of GRU at the final step, i.e., hj =h{ .

4.2 Candidate Structure Encoder

The candidate-related historical structure reflects
the behavioral trends of each candidate entity. For
each candidate entity e, we use its 1-hop sub-
graphs at latest historical timestamps to form a
subgraph sequence {gf,l, e 957 ...,gf,n}. n is the
maximum length of the sequénce. Actually, this
structure is similar to the query-related historical
structure, the difference is that each subgraph in
the sequence is multi-relational. Therefore, we use
an encoder similar to the query structure encoder,
except the calculation of the structure semantic
representation of each subgraph. More specifi-
cally, we adopt the CompGCN (Vashishth et al.,
2019) instead of the mean pooling operation, to
capture the semantic information of different rela-
tions?. The representation of the candidate entity e
at timestamp t;, is calculated by a CompGCN with
wy layers. Thus, the representation of the (I+1)-th
layer is

e,l 1 e\l
by =f(— Y Wik - 1)
e’GNtZ (3)

+ Whhe'),

/
. . . !
where r is the representation of relation r; hf,’

denotes the [-th layer representation of entity ¢’ at
ti timestamp; W, WL are the weight matrices
of the [-th layer; c. is a normalization constant,
which equals to the in-degree of entity e. Note
that the input representations of all entities are also

*Note that, the CompGCN layers can be replaced by other
relation-aware GCNs. We further analyze them in Section5.4
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calculated by the background knowledge encoder,
which will be introduced in Section 4.3.

Then, the structure semantic representation of
the subgraph gy, i.e., g;/, equals to the representa-
tion of the centered candidate e from the last layer
of CompGCN, i.e., gf, = hf{wl.

Similar to the quergl structure encoder, we use
another GRU to model the subgraph sequence.
The input of GRU at timestamp ¢, is

Xy = gy v(d)]; (6)

where d = t; — t; and v(d) is the time interval
representation calculated by a shared time seman-
tic component introduced in Section 4.1. Finally,
the output of GRU at the last step ¢/ is used as
the representation of candidate entity e at #,, i.e.,
hi = hf% .

4.3 Background Knowledge Encoder

The above two historical structures are local infor-
mation centered on the query entity or the candi-
date entity, which focus on describing the behav-
ioral trends of the entities. However, these two
kinds of structures may miss some important en-
tities that have high-order associations with the
query entity or the candidate entity in the whole
TKG. Since the recent history is more important,
for query timestamp ¢, we gather the latest £ KGs
into a cumulative graph G, , called background
knowledge graph. Formally, G;, = {£, R, Fi, =
{(es,m.€0)l(€s, 7 €0, 1) € Fiytqg —k < 1 < tg}},
where F; is a set of facts. We adopt another
CompGCN with wso layers to model it since it is
also a multi-relational graph. The representations
of all entities are calculated as follows,

E = CompGCN(E',R,G,), @)

where E’ is the randomly initialized entity repre-
sentation matrix and E is used as the input en-
tity representation matrix of the aforementioned
two structure semantic components. R is the re-
lation representation matrix, which is shared with
the structure semantic component. For the entities
that have no facts in the background knowledge
graph, an self-loop operation is conduct to get its
representation. Note that, the background knowl-
edge graph changes along the query time and E is
different for different ¢,,.

4.4 Matching Function

With the representation hgq of the query and the
representation hfq of each candidate entity e at

timestamp ¢, as input, the matching function cal-
culates the score of the quadruple (eq,7q,e,tq).
As previous work (Vashishth et al., 2019; Li
et al., 2021b) shows the convolutional score func-
tions get good performance on reasoning tasks,
ConvTransE (Shang et al., 2019) is chosen as
the matching fucntion, which contains 1D con-
volution and fully-connected layers, denoted by
ConvTransE(-). To describe the behavioral in-
formation of the query entity in the query represen-
tation, an sum-up operation is performed between
hfq and hfs Then, the score for eacht candidate
entity e is calculated as follows:

P(eqsrg, €,tq) = )
o(hf ConvTransE(h] +hy! rq)),

where o (-) is the sigmoid function.

4.5 Training Details

The training objective is to minimize the cross-
entropy loss:

T
L©) =3 > D ylogdlesret)

t=0 (es,r,e0,t)EFt €€EE
&)

where 7T is the number of timestamps in the train-
ing set; yf = 1 if e equals to e,, otherwise 0;
¢(es,r e, t) is the matching score between the
query (es,, 7, t) and the candidate entity e; © are
all the model parameters.

5 Experiments

We compare HiSMatch with a number of baselines
on six datasets to validate its effectiveness. In ad-
dition, we conduct ablation study to analyze the
importance of its different parts. We also evalu-
ated the effects of different kinds of GCN layers
in the candidate structure encoder and the back-
ground knowledge encoder. Besides, we study the
maximum time interval that HiSMatch models.

5.1 Experimental setup
5.1.1 Datasets

To evaluate the effectiveness of HiSMatch, we use
the following six benchmark TKGs: ICEWS14 (Li
et al., 2021b), ICEWS14* (Han et al., 2020b),
ICEWS18 (Jin et al., 2020), ICEWS05-15 (Li
et al., 2021b), GDELT (Jin et al., 2020) and
WIKI (Leblay and Chekol, 2018). The first four
datasets with the time granularity of 24 hours
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Datasets V| IR| |Etrain] [Evatidl [Etest] Time granularity Snapshot numbers
ICEWS14 7,128 230 74,845 8,514 7,371 24 hours 365
ICEWS14* 7,128 230 63,685 13,823 13,222 24 hours 365
ICEWSI18 23,033 256 373,018 45,995 49,545 24 hours 365
ICEWSO05-15 10,094 251 368,868 46,302 46,159 24 hours 4017
GDELT 7,691 240 1,734,399 238,765 305,241 15 mins 2975
WIKI 12,554 24 539,286 67,538 63,110 1 year 232

Table 1: Statistics of the datasets (|E¢rainls |Evatid]s |Erest| are the sizes of training, validation, and test sets.).

were extracted from the large-scale event-based
database, Integrated Crisis Early Warning Sys-
tem. The ICEWS14, ICEWS14* and ICEWS18
datasets contain events in 2014 and 2018, re-
spectively, and the ICEWS05-15 dataset contains
events occurred from 2005 to 2015. GDELT
is extracted from the global database of events,
language, and tone (Leetaru and Schrodt, 2013),
which has a fine-grained time granularity of 15
minutes. WIKI is a TKG with the largest time
granularity of one year. The statistics of the
datasets are listed in Table 1.

5.1.2 Evaluation Metrics

We employ widely used HitsQN and Mean Re-
ciprocal Rank (MRR) to evaluate the performance
of the models. Hits@QN measures the propor-
tion of correct entities whose scores rank less than
or equal to N. In this paper, N € {1,3,10},
i.e., the results in terms of Hits@1, Hits@Q3, and
Hits@10 are reported. MRR measures the av-
erage of these reciprocal ranks and is the most
typical metric for TKG reasoning. Previous
work (Han et al., 2020b, 2021a; Li et al., 2021a,b)
points out that the traditional filtered setting is
flawed as it ignores the time of the fact and filters
all facts with the same entity and relation before
ranking. Actually, only the facts occurring at the
same time should be filtered. Thus, we calculate
the results under the more reasonable time-aware
filtered setting following Sun et al. (2021); Han
et al. (2021a), which only filters out the quadru-
ples occurring at the query time.

5.1.3 Baselines

The HiSMatch model is compared with three
kinds of models: KG reasoning models, inter-
polation TKG reasoning models and extrapola-
tion TKG reasoning models. For the KG reason-
ing models, DistMult (Yang et al., 2015), Com-
plEx (Trouillon et al., 2016), ConvE (Dettmers
et al., 2018), ConvTransE (Shang et al., 2019),
RotatE (Sun et al., 2018) are compared. For
the TKG reasoning models, HiSMatch is com-

pared to the interpolation TKG reasoning mod-
els, including TTransE (Leblay and Chekol,
2018), TA-DistMult (Garcia-Duran et al., 2018),
DE-SimplE (Goel et al., 2020) and TNTCom-
plEx (Lacroix et al., 2020). Besides, as for
the extrapolation TKG reasoning models, we
choose the newest seven baselines including
TANGO-DistMult (Han et al., 2021b), TANGO-
Tucker (Han et al., 2021b), xERTE (Han et al.,
2020b), TITer (Sun et al., 2021), CyGNet (Zhu
et al., 2021), RE-NET (Jin et al., 2020) and RE-
GCN (Li et al., 2021b).

5.1.4 Implementation Details

The dimensions of the entities and relations are set
to 128, and the dimension of the time semantic rep-
resentation is set to 32 for all the datasets. For the
structure semantic encoders, the optimal lengths
of historical structures of query m and candidate
entities n are equal in this paper. For ICEWS14,
ICEWS18, ICEWS05-15 and GDELT, they are set
to 5; while 6 for ICEWS14* and 1 for WIKI; the
number of layers w; of the CompGCN is set to 1
for GDELT and 2 for the other datasets; the GRU
layers is set to 1 for all the datasets and the out-
put dimension of the GRU unit is set to 128. For
the background knowledge encoder, the latest KG
number k is experimentally set to 4, 1, 2, 1, 2,
2 for ICEWS14, ICEWS18, GDELT, ICEWS14*,
ICEWS05-15, and WIKI, respectively; we set the
dropout rate for each layer to 0.2 and the layer of
CompGCN in the background knowledge encoder,
w2, to 2, for all the datasets. For the matching func-
tion, the number of kernels is set to 50, the kernel
size is set to 2 x 3, and the dropout rate is set to 0.2,
for all the datasets. Adam (Kingma and Ba, 2014)
is adopted for parameter learning with the learning
rate 0.001. All the experiments are carried out on
32G Tesla V100.

5.2 Experimental Results

The experimental results of HiSMatch and all the
baselines on TKG reasoning are presented in Ta-
bles 2 and 3. It can be seen that HiSMatch consis-
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ICE14 ICE05-15 GDELT

Model

MRR Hel H@3 H@I0 MRR He@l H@3 H@l0 MRR H@l H@3 He@I0
DistMult 15.44 10.91 17.24 23.92 17.95 13.12  20.71 29.32 8.68 5.58 9.96 17.13
ComplEx 3254 2343 36.13 50.73  32.63 2401 37.50 52.81 16.96 11.25 19.52 32.35
ConvE 35.09 2523 3938 54.68  33.81 2478 39.00 54.95 16.55 11.02 18.88 31.60
ConvTransE 3380 2540 3854 5399 33.03 2415 38.07 54.32 16.20 10.85 18.38 30.86
RotatE 21.31 1026 2435 4475 2471 1322 29.04 48.16 13.45 6.95 14.09 25.99
TTransE 13.72 2.98 17.70 35.74 15.57 4.80 19.24 38.29 5.50 0.47 4.94 15.25
TA-DistMult 25.80 16.94  29.74 4299 2431 1458 2792 44.21 12.00 5.76 12.94 23.54
DE-SimplE 3336 2485 37.15 49.82 35.02 2591 38.99 52.75 19.70 1222 21.39 33.70
TNTComplEx 3405 25.08 3850 5092  27.54 9.52  30.80 42.86 19.53 12.41 20.75 33.42
TANGO-DistMult - - - - 40.71 31.23 4533 58.95 - - - -
TANGO-Tucker - - - - 4286 3272 48.14 62.34 - - - -
xERTE 40.02  32.06 44.63 56.17  46.62 37.84 5231 63.92 18.09 1230 20.06 30.34
TITer 40.87 3228 4545 57.10  47.69 3795 5292 65.81 15.46 10.98 15.61 24.31
CyGNet 3505 2573  39.01 53.55  36.81 26.61  41.63 56.22 18.48 11.52 19.57 31.98
RE-NET 3693  26.83  39.51 5478 4332 3343  47.77 63.06 19.62 1242 21.00 34.01
RE-GCN 40.39  30.66  44.96 59.21 48.03 3733 5385 68.27 19.64 1242 20.90 33.69
HiSMatch 4642 3591 51.63 66.84 52.85 42.01 59.05 7328  22.01 1445  23.80 36.61

Table 2: Performance (in percentage) on ICEWS14, ICEWS05-15 and GDELT. We average the results of HiS-

Match over five runs and the best results are in bold.

ICE14%* ICE18 WIKI

Model

MRR H@1 H@3 H@I0 MRR H@1 H@3 H@10 MRR H@l H@3 H@I10
DistMult 16.16 11.42 17.94 25.30 11.51 7.03 12.87 20.86 10.89 8.92 10.97 16.82
ComplEx 21.28 1449  23.11 3520 2294 15.19  27.05 42.11 24.47 19.69  27.28 34.83
ConvE 3450 24.83 3856 53.88 2451 1623 29.25 44.51 14.52 11.44 16.36 22.36
ConvTransE 3347 25.15 38.15 5330  22.11 13.94 2644 42.28 10.60 8.67 11.94 16.93
RotatE 20.88 1026 23.90 44.03 12.78 4.01 14.89 31.91 46.10  41.89  49.65 51.98
TTransE 13.43 3.11 17.32 34.55 8.31 1.92 8.56 21.89 2927  21.67 3443 42.39
TA-DistMult 26.47 17.09  30.22 45.41 16.75 8.61 18.41 3359 4453 3992 4873 51.71
DE-SimplE 32.67 2443  35.69 49.11 19.30 1153 21.86 3480 4543 42,60 47.71 49.55
TNTComplEx 32,12 2335  36.03 49.13  21.23 13.28  24.02 36.91 45.03  40.04 4931 52.03
TANGO-DistMult  24.70 16.36  27.26 4135  26.65 17.92  30.08 44.09 51.15 49.66  52.16 53.35
TANGO-Tucker 26.25 17.30  29.07 44.18  28.68 1935 32.17 47.04 5043 4852 5147 53.58
XERTE 40.79 32770  45.67 5730 2998 2205 3346 4483 71.14 68.05 76.11 79.01
TITer 41.73 3274  46.46 58.44 2998 2205 3346 4483 7550 7296 7749 79.02
CyGNet 3273 23.69 3631 50.67 2493 1590  28.28 42.61 3389  29.06 36.10 41.86
RE-NET 38.28  28.68 41.43 54.52  28.81 19.05 3244 47.51 49.66  46.88  51.19 53.48
RE-GCN 41.78  31.58  46.65 61.51 30.58  21.01 34.34 4875 7755 7375 80.38 83.68
HiSMatch 4582 3584 50.79 65.08 3399 2391 37.90 5394 78.07 73.89 8132 84.65

Table 3: Performance (in percentage) on [ICEWS14*, ICESW18 and WIKI.

tently outperforms all the baselines on all the six
TKGs, which indicates its effectiveness and superi-
ority. Especially on ICEWS14 and ICEWSO05-15,
HiSMatch achieves the most significant improve-
ments of 5.6% and 4.8% in MRR, respectively. In
more detail, we have the following observations:
(1) HiSMatch outperforms all the KG reasoning
models because it can capture both the time in-
formation for each fact and sequential patterns in
TKGs; (2) HiSMatch performs much better than
those interpolation models because they cannot
learn representations for unseen timestamps; (3)
More importantly, HiSMatch gets better results
than all the extrapolation baselines, which proves
the superiority of modeling both two kinds of
history, i.e., query-related history and candidate-
related history; (4) It can be seen that the base-
lines (e.g., TITer) focusing on query-related his-

tory are usually strong on precision and get good
results on Hits@1 while the baselines focus on
the candidate-related history (e.g., RE-GCN) are
more capable on recall and get good results on
Hits@10. In a word, by transforming the TKG
reasoning task into a matching task, HiSMatch uti-
lizes both two kinds of history more comprehen-
sively. Moreover, HiSMatch captures more high-
order associations via the background knowledge
graph. Therefore, it gets the best performances in
all the metrics.

By conducting experiments on six datasets with
different time granularities, we found that the time
granularity partly determines what is vital to the
TKG reasoning task. Take the two most typical
datasets for example, (1) GDELT has the most fine-
grained time granularity (15 minutes) and the re-
sults of all the baselines are similarly poor, com-
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pared with those of the other datasets. There are
more timestamps in history when the time granu-
larity gets more fine-grained, which requires the
model to capture history at more timestamps. Un-
der the matching framework, HiSMatch can cap-
ture longer historical information than candidate-
based models and more comprehensive history
than query-based models. Thus, it gets better re-
sults (2.3% in MRR); (2) Contrary to GDELT,
WIKI has the largest time granularity (1 year). In
this situation, the behavioral trends implied in his-
tory at fewer timestamps are vital for the reason-
ing. Moreover, there are more structural depen-
dencies in each KG due to the large time granu-
larity. Thus, RE-GCN focuses on modeling the
global structure at the latest a few timestamps and
gets strong performance on this data. Still, HiS-
Match outperforms it by modeling the two kinds
of substructures and the background knowledge.

5.3 Ablation Study

To further analyze how each part of HiSMatch con-
tributes to the final results, we report the MRR re-
sults of the HiSMatch variants on the validation
sets on three typical datasets, namely, [CEWS14,
ICEWS18 and WIKI, in Table 4.

Impact of the Query Structure Encoder. To
demonstrate how the query structure encoder con-
tributes to the final results of HiSMatch, we re-
move the query structure encoder and use the rep-
resentation of the query entity from the candi-
date structure encoder as the representation of the
query. The results are denoted as -query in Ta-
ble 4. It can be seen that -query performs con-
sistently worse than HiSMatch on all the datasets.
It is because that query-related historical structure
can model the query more accurately by modeling
the repetitive facts focused on the query relation.

Impact of the Candidate Structure Encoder.
The results denoted as -candidate in Table 4
demonstrate the performance of HiSMatch with-
out modeling the candidate-related history. More
specifically, we directly add a fully connection
layer after the query structure encoder to get the
scores of all entities following (Jin et al., 2020).
It can be observed that ignoring the candidate-
related historical structure has a great impact on
the results. Candidate-related history contains rich
information that describes the behavioral trends
about all candidate entities, which is helpful to se-
lect the correct answer. Especially on WIKI, the

Model ICE14 ICE18 WIKI
HiSMatch ~ 47.89 35.18 79.91
-query 44.86 (-3.0) 33.16 (-2.0) 77.36 (-2.6)
-cantidate  40.04 (-7.9) 29.12 (-6.1) 63.26 (-16.7)

-background 44.26 (-3.6) 32.87 (-2.3) 73.54 (-6.4)
-time 45.01 (-2.9) 33.25(-1.9) 78.60 (-1.3)

Table 4: MRR results (in percentage) by different vari-
ants of HiSMatch on three datasets.

dataset with the largest time granularity as men-
tioned in Section 5.2, entities have more associa-
tions among each other at each timestamp and thus
contain rich behaviors.

Impact of the Background Knowledge En-
coder. -background in Table 4 denotes a variant
of HiSMatch that uses the learned representations
of entities without the background knowledge en-
coder. Note that, in the training phase, the ran-
domly initialized representations of entities will be
learned and updated. In the test phase, the model
uses the learned representations of entities as the
input. It can be observed that the performance
of -background is worse than HiSMatch on all the
datasets, especially on the WIKI, which has a time
granularity of one year. There are more high order
associations in the background knowledge graph.
Thus, the background knowledge is more impor-
tant for WIKI than other datesets.

Impact of the Time Semantic Component. To
demonstrate how the time semantic component
contributes to the final results, we remove the time
semantic component and only use the outputs of
structure semantic component as the inputs of the
sequential pattern component. The results are de-
noted as -time in Table 4. It can be seen that
the time semantic component is useful on all the
datasets. It is because the time semantic compo-
nent describes the time numerical information so
that it can help HisMatch to distinguish different
time intervals between the history and the query.

Model ICE14 ICE18  WIKI
HiSMatch (CompGCN) 47.89 35.18 79.91
HiSMatch (CompGCN-mult)  46.12 34.45 73.45
HiSMatch (RGCN) 47.03 35.08 74.83
HiSMatch (KBAT) 47.53 34.78 77.12

Table 5: Performance (in percentage) of HisMatch with
different kinds of GCNss.

5.4 Comparative Study on Different GCNs

To further study the impact of different
kinds of GCNs in the candidate structure

7335



836.7
query

candidate
background

the maximum time interval

2001 178.3

1004 897 99.3

4.0 1.0 2.0 12161 30
ICEWS14 ICEWS18 GDELT WIKI

Figure 2: Statistic of maximum time intervals in history
on four datasets.

encoder and the background knowledge en-
coder, we replace CompGCN in these two
encoders with CompGCN-mult (Vashishth et al.,
2019), RGCN (Schlichtkrull et al., 2018) and
KBAT (Nathani et al., 2019). The MRR results
on the validation sets of ICE14, ICE1S8, and
WIKIT are reported in Table 5. It can be seen that
HiSMatch (CompGCN) gets the best performance.
For ICE14 and ICE18, the two datasets with the
time granularities of one day, the structure de-
pendencies are relatively simple. Thus, different
GCNs get similar performances. While for WIKI,
the dateset with the time granularities of one
year, there are more structural dependencies in
the candidate-related history and the background
knowledge graph. Therefore, the performance
gap caused by the capabilities of GCNs becomes
more significant.

5.5 Study on Maximum Time Interval

To explore the maximum time intervals between
the query time and the history that HiSMatch mod-
els, we conduct statistics on the maximum time in-
terval of historical facts in the query-related histo-
ical structure (At = t, —t1) and candidate-related
historical structure (At’ = ¢, — t}) under the opti-
mal parameters (We report the average maximum
time interval on the validation sets). We also re-
port the time interval of background knowledge
graphs (k) for comparison. As shown in Figure 2,
At and At' are both much larger than k. The
results demonstrate that the two historical struc-
tures can modeling the long-term behaviors of the
query and candidates. The background knowledge
graph focuses on model high-order associations
among all the facts at the latest a few timestamps,
which models the global structure dependencies in

a much shorter time interval. It can be seen that At
on GDELT is more than 800 and the value is only
around 16 on WIKI, which verifies the discussion
in Section 5.2.

6 Conclusion

In this paper, we considered both two kinds of
history, namely, the query-related history and the
candidate-related history in TKG reasoning and
transformed the task into a matching problem be-
tween them for the first time. We further proposed
the HiSMatch model, which applies two structure
encoders to calculate the representations of histor-
ical structures of the queries and candidates, re-
spectively. Each encoder contains a structure se-
mantic component to model the concurrent struc-
ture among entities, a time semantic component
to model the time numerical information of facts,
and a sequence pattern component to capture the
temporal orders. Besides, HiSMatch integrates the
background knowledge into the representations of
entities. Experimental results on six benchmark
datasets demonstrate the superiority of HiSMatch.

7 Limitations

The limitations of this work can be concluded into
two points: (1) HiSMatch uses a heuristic history
finding strategy to get two kinds of history, which
may lose some critical facts. Although it uses the
background knowledge encoder to consider more
historical facts, a learnable history finding strategy
is more helpful. (2) HiSMatch is an initial attempt
to apply the matching framework to solve the TKG
reasoning task using two separate encoders for
each kind of history, which fails to model the in-
teractions between the two kinds of history explic-
itly. Designing a cross-encoder to match history
more comprehensively is a good direction for fu-
ture studies.
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