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Abstract

Building retrieval-based dialogue models that
can predict appropriate responses based on the
understanding of multi-turn context messages
is a challenging problem. Early models usu-
ally concatenate all utterances or independently
encode each dialogue turn, which may lead to
an inadequate understanding of dialogue sta-
tus. Although a few researchers have noticed
the importance of context modeling in multi-
turn response prediction, there is no systematic
comparison to analyze how to model context ef-
fectively and no framework to unify those meth-
ods. In this paper, instead of configuring new
architectures, we investigate how to improve
existing models with a better context model-
ing method. Specifically, we heuristically sum-
marize three categories of turn-aware context
modeling strategies which model the context
messages from the perspective of sequential re-
lationship, local relationship, and query-aware
manner respectively. A Turn-Aware Context
Modeling (TACM) layer is explored to flex-
ibly adapt and unify these context modeling
strategies to several advanced response selec-
tion models. Evaluation results on three public
data sets indicate that employing each individ-
ual context modeling strategy or multiple strate-
gies can consistently improve the performance
of existing models.

1 Introduction

Recently, building a dialogue system for open do-
main human-machine conversation is attracting
more and more attention due to both availability
of large-scale human conversation data and pow-
erful models learned with neural networks. Ex-
isting work on building a conversational system
includes generation-based methods and retrieval-
based methods. A generation-based model directly
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synthesizes a response with a natural language gen-
eration method (Shang et al., 2015; Serban et al.,
2016), while a retrieval-based model replies to a
human input by selecting a proper response from a
pre-built index (Lowe et al., 2015; Humeau et al.,
2019). In this work, we study the problem of
multi-turn response selection for retrieval-based di-
alogues, since retrieval-based systems are superior
in terms of response fluency and informativeness,
and play an important role in industrial products.

Real-world dialogues usually comprise multiple
turns, where a retrieval model should select the
most proper response by measuring the matching
degree between multi-turn dialogue context and a
number of response candidates. The key problem
is how to make better use of multi-turn context in-
formation. Currently, there emerge two lines of re-
search to represent the multi-turn dialogue context.
One is to model each turn of utterance individually
first and then aggregate a sequence of utterance-
response matching features to get a final score (Wu
et al., 2017; Zhou et al., 2018; Gu et al., 2019; Yang
et al., 2018, 2020; Tao et al., 2019b), which are
known as the representation-matching-aggregation
paradigm. The other line is to concatenate all turns
of utterances into a long sequence first and make
them fully interact with each other by RNNs (Lowe
et al., 2015; Zhou et al., 2016; Chen and Wang,
2019) or transformer layers (Humeau et al., 2019;
Whang et al., 2020; Gu et al., 2020). In particu-
lar, recently models based on pre-trained language
models (PLMs) such as BERT or SA-BERT (Gu
et al., 2020) conduct multi-turn context modeling
and response matching in a unified process.

These mainstream methods, including fully con-
catenating all utterances or independently encoding
each dialogue turn, equally represent the informa-
tion of each dialogue element and ignore the charac-
teristics of multi-turn dialogue context, which may
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lead to sub-optimal context representations and re-
sponse matching features. Recently, researchers
have begun to notice the importance of explicitly
modeling the multi-turn dialogue context based on
the characteristics of multi-turn dialogue context,
including using of natural sequential relationship
between dialogue turns (Zhou et al., 2016) or using
the last turn of dialogue context to guide the mod-
eling process of previous turns (Zhang et al., 2018;
Yuan et al., 2019). However, there is no systematic
comparison to analyze how to effectively model
the multi-turn dialogue context considering char-
acteristics of dialogue model and no framework to
unify those methods for retrieval-based dialogues.

In this paper, instead of configuring new archi-
tectures, we investigate how to improve the per-
formance of existing matching models with bet-
ter context modeling methods. Following this
idea, we heuristically summarize three categories
of turn-aware context modeling strategies which
model context messages from the perspective of se-
quential relationship, local relationship, and query-
aware manner respectively. To compare those meth-
ods, we apply them on several representative re-
sponse selection models through a Turn-Aware
Context Modeling (TACM) layer, which allows
different context modeling strategies to be flexibly
applied to dialogue models.

To verify the effectiveness of the framework,
we choose three representative multi-turn response
selection models as our matching models, and con-
duct experiments on three public data sets includ-
ing Ubuntu Dialogue Corpus (Lowe et al., 2015),
Douban Conversation Corpus (Wu et al., 2017),
and E-Commerce Dialogue Corpus (Zhang et al.,
2018). Based on a series of experiments, we find
query-aware context modeling is the best strategy
and employing multiple context modeling strate-
gies can consistently improve the performance of
response selection. Besides, we also observe that
our TACM layer can improve the capability of mod-
eling long context. We hope our empirical compari-
son can shed light on future research on this line of
work. Our contributions in this paper are four-fold:

• Three categories of turn-aware context model-
ing strategies inspired by inherent characteris-
tics of multi-turn dialogues are summarized;

• A TACM layer is explored to flexibly adapt
and unify these context modeling strategies to
the advanced response selection models;

• A systematic comparison of different context
modeling strategies and their combinations
with representative response selection models
on three benchmarks;

• Consistent improvements are brought to vari-
ous response matching models without involv-
ing heavy-machinery, and are easy to general-
ize to downstream dialogue applications.

2 Related Works

Retrieval-based models design a discriminative
model to measure the matching degree between
a human input and a response candidate for re-
sponse selection. Early studies mainly focus on
single-turn context-response matching (Wang et al.,
2013; Hu et al., 2014; Wang et al., 2015). Re-
cently, researcher have devoted themselves to the
multi-turn scenario. Several methods concate-
nate all turns of utterances into a long sequence
first and then make them fully interact with each
other by RNNs (Lowe et al., 2015; Zhou et al.,
2016; Chen and Wang, 2019) or transformer lay-
ers (Humeau et al., 2019; Gu et al., 2020). In addi-
tion to these methods, some researchers construct
dialogue models with a representation-matching-
aggregation paradigm. Such approaches encode
each turn of utterance individually first and then
aggregate a sequence of utterance-response match-
ing features to get a final score. Representative
methods including sequential matching network
(SMN) (Wu et al., 2017), deep attention matching
network (DAM) (Zhou et al., 2018) and multi-hop
selector network (MSN) (Yuan et al., 2019).

As an important problem in dialogue systems,
multi-turn context modeling has raised great in-
terests in recent years. Especially for generation-
based methods, various models adopt hierarchical
encoder-decoder framework to model all context
sentences (Serban et al., 2016, 2017; Xing et al.,
2018; Chen et al., 2018). Tian et al. (2017) compare
various methods to get a global representation for
the context. Zhang et al. (2019) propose ReCoSa
where attention weights between each context and
response representations are computed and used in
further decoding process. The problem is less ex-
plored in existing retrieval-based methods. Zhang
et al. (2018) concatenate the last utterance to other
turns, and then use Gated Self Attention to ob-
tain utterance representation. Yuan et al. (2019)
use multi-hop selectors to select useful information
in dialogue history. These methods only consider

7286



modeling one type of characteristic of multi-turn
dialogue context. Besides, there is no systematic
comparison to analyze how to model context effec-
tively and no framework to unify those methods.
Therefore, we consider exploring how to improve
the existing models with a better context modeling
method in this paper. Specifically, we summarize
three categories of turn-aware context modeling
strategies and conduct an empirical study on con-
text modeling for multi-turn response selection.

3 Methodology

3.1 Problem Formalization

Given a data set D = {(y, c, r)z}Nz=1 where c =
{u1, ..., unc} represents a nc turns of conversation
context with ui the i-th turn, r is a response can-
didate, and y ∈ {0, 1} denotes a label with y = 1
indicating r a proper response for c and otherwise
y = 0. The goal of response selection is to learn
a matching model s(·, ·) from D. For any context-
response pair (c, r), s(c, r) gives a score that re-
flects the matching degree between c and r. Ac-
cording to s(c, r), one can rank a set of candidates
for response selection.

3.2 Matching with Turn-Aware Context
Representation

Most of the representative context-response match-
ing models follow a representation-matching-
aggregation paradigm (Wu et al., 2017; Zhang
et al., 2018; Zhou et al., 2018; Tao et al., 2019a;
Wang et al., 2019; Yuan et al., 2019). The frame-
work consists of (1) a representation layer to explic-
itly encode the utterance at each turn individually
based on its word-level representations, where each
utterance does not explicitly receive the contextual
information from other turns of utterances, (2) a
matching layer that lets the context and response
interact based on their representations, (3) an aggre-
gation layer incorporating the interaction features.

The idea of Turn-Aware Context Modeling
(TACM) is to embed a new layer before the rep-
resentation layer of a specific response selection
model, where various modeling strategies are de-
signed to make each utterance interact with other
turns, so that the subsequent individually encoding
of each utterance can be aware of the important
contextual dialogue information from other utter-
ances in the same session. It should be noted that
we mainly focus on TACM layer in this paper, so
the definition of the matching architecture follows
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Figure 1: The framework architecture for matching with
Turn-Aware Context Representation.

advanced architectures such as SMN, DAM and
MSN. To facilitate clarification of our methods, we
also depict a diagram of the turn-aware context
modeling framework in Figure 1.

For each utterance ui = [wui,k]
nui
k=1 in a con-

text and its response candidate r = [wr,k]
nr
k=1,

where nui and nr are the number of words
in ui and r respectively, we first represent
ui and r as sequences of word embeddings,
namely U e

i = [eui,1, eui,2, ..., eui,nui
] and Re =

[er,1, er,2, ..., er,nr ], where e ∈ Rd denotes a d-
dimension word embedding.

Then, we propose a Turn-Aware Context Mod-
eling (TACM) layer which takes in the word em-
beddings of all turns of utterances [U e

i ]
nc
i=1, and

then models through several turns so that each ut-
terance is fully interacted with other turns of ut-
terances. Through different categories of TACM
modules, each utterance representation can absorb
contextual information from other turns of utter-
ances in different semantic aspects. Suppose we
have K sorts of TACM modules, the computa-
tion results of k-th module can be formalized as
Ũk
i = ϕk(U e

i ), Ũ
k
i ∈ Rnui×d, where ϕk(·) denotes

the k-th TACM strategy.
Now, we can obtain a set of dialogue context

representations as {Ũk
i }Kk=1, which serve as the

input of the representation-matching-aggregation
paradigm. Consistently with these models,
∀i ∈ {1, ..., nc}, Ũk

i is encoded individually and
achieves Intra-Utterance Representation (IUR) as
Ûk
i = fIUR(Ũ

k
i ) where fIUR(·) stands for the repre-

sentation function which can be a RNN (Wu et al.,
2017), a self-attention module (Zhou et al., 2018)
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Figure 2: Sketches of four types of turn-aware context modeling strategies. Q,K and V denote the query
sentence, the key sentence and the value sentence respectively. u{1,2,3,4} represent the utterances in the context in
chronological order. For convenience, we only draw four turns of utterances. In other words, u4 is the most recent
turn, also referred as the query utterance. For the rolling representation, we only draw the forward rolling process.

or even a fusion network of multiple types of rep-
resentation functions (Tao et al., 2019a). Similarly,
Re can also be processed into R̂ as R̂ = fIUR(R

e).
Then, an Utterance-Response Matching (URM)

layer follows, where ∀k ∈ {1, ...,K}, Ûk
i inter-

acts with R̂ and finally matched into matrices
with several channels which can be formalized as
Mi = fURM({Ûk

i }Kk=1, R̂), where fURM(·, ·) repre-
sents the matching function, which can be a similar-
ity function or an attention-based interaction func-
tion (Tao et al., 2019a), Mi ∈ R(K∗nM )×nui×nr

with nM the number of channels of the matching
matrices in the original response selection models1.

Finally, an Aggregation (AGG) layer is employed
to fuse or aggregate {Mi}nc

i=1 defined as ŷ =
fAGG({Mi}nc

i=1), where ŷ is final logits. This ag-
gregation process fAGG(·) also depends on specific
multi-turn response selection model, which may
be a 3D convolutional neural network (Zhou et al.,
2018) or a 2D convolutional neural network fol-
lowed by a recurrent neural network (Wu et al.,
2017; Yuan et al., 2019) to model the dependen-
cies among different turns on interaction features,
instead of the utterance representations.

3.3 Turn-Aware Context Modeling Strategies
We consider the following three categories of strate-
gies that cover sequential context modeling, local
context modeling and query-aware context model-
ing, which are depicted succinctly in Figure 2.

Sequential Context Modeling: Due to the natu-
ral sequential relationship between dialogue turns,
understanding of subsequent turn of utterance re-
quires dialogue information flow2. Therefore, we
propose a “Rolling” strategy to model such tempo-
ral relationships and directly connecting representa-

1Here, nM is 2 in SMN, 12 in DAM, and 3 in MSN.
2We consider the information flow from both directions.

tions from previous or following turns of utterances
into the current utterance, which is similar to a hier-
archical transformer-based architecture. It can cap-
ture intra-sentence and inter-sentence connections
in a structured and dynamic sequential manner.

As shown in Figure 2(a), at turn i ∈ {1, ..., nc},
we compute the rolling representation as:

−→
US
i = fATT(U

e
i ,
−−→
US
i−1,
−−→
US
i−1)

←−
US
i = fATT(U

e
i ,
←−−
US
i+1,
←−−
US
i+1)

−→
US
1 = U e

1 ,
←−
US
nc

= U e
nc

US
i = ReLU([

−→
US
i ;
←−
US
i ] ·Ws + bs)

(1)

where fATT(Q,K, V ) is a transformer
layer (Vaswani et al., 2017), which takes in
the query sentence Q, key sentence K and value
sentence V . Ws, bs are learnt parameters, [·; ·]
is a concatenation operation,

−→
US
i and

←−
US
i denote

the forward and backward rolling representations
respectively. US

i has the same dimensions as U e
i .

Local Context Modeling: Another viewpoint is
that in most dialogue context, data display a great
deal of locality of reference. In this phenomenon, a
large amount of information about an utterance can
be derived from its neighboring turns. For example,
on account of the possibility of topic shifts in dia-
logues, adjacent turns of utterances may have rele-
vant conversation content. In summary, to capture
these local structures in the context, we empirically
put forward a “Window” strategy to capture local
context features under a sliding window attention
as demonstrated in Figure 2(b).
∀i ∈ {1, ..., nc}, the window representation of

i-th utterance is calculated by fATT between the
current utterance and local context. The window
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representation and local context is defined as:

UL
i = fATT(U

e
i , Ci, Ci)

Ci = [U e
α; ...;U

e
i−1;U

e
i ;U

e
i+1; ...;U

e
β]

(2)

where α = max(1, i − γ), β = min(nc, i + γ)
denote both sides of the window respectively and
γ is the offset, which is a hyper-parameter to be

tuned by us. In this equation, Ci ∈ R(
∑β

j=α nuj )×d

is the concatenation of all utterances around the
current i-th utterance.

Query-Aware Context Modeling: Apart from
the above two strategies, we also grasp the impor-
tance of the last turn of utterance unc which is
often considered as a dialogue query, since most of
the response candidates are directly respond to it3.
For this purpose, we intuitively utilize the dialogue
query to capture relevant utterance information in
conversation history. Towards measuring the ne-
cessity of each turn of utterances to replenish unc ,
we propose two different strategies named “High-
way” and “Weighted” illustrated in Figure 2(c,d).
Both of them can identify important utterances and
capture the implicit relationship of the whole con-
text. The difference is that the former calculates a
specific weight for each entry of the representation
vector (namely word-level), while the latter only
assigns a weight to utterance-level representation.

For “Highway” representation, firstly, ∀i ∈
{1, ..., nc}, i-th turn of utterance U e

i is concate-
nated with the dialogue query U e

nc
and obtain a

concatenated representation U c
i = [U e

i ;U
e
nc
] where

U c
i ∈ R(nui+nunc

)×d. Then, inspired by Srivastava
et al. (2015), this concatenated representation U c

i

and the current utterance representation U e
i are then

fed into a Highway Network to fuse both features,
which is processed as follows:

oi = σ(U e
i ·Wg + bg)

U r
i = GELU(U c

i ·Wr + br)

UH
i = oi ⊙ U r

i + (1− oi)⊙ U e
i

(3)

where Wg,Wr, bg, br are learnt parameters and
⊙ denotes the element-wise multiplication.
GELU (Hendrycks and Gimpel, 2016) is an
activation function. The gating unit oi ∈ Rnui×d

3We acknowledge that there may still be topic shifts in the
query. In preliminary experiments, we randomly selected 100
conversations from Douban dataset for human annotation and
found that only 6 samples (6%) had topic shifts in the query.
Therefore, we can conclude that topic shifts would not affect
the importance of the query to match response in most cases.

is learnt to regulate the flow of query-aware
information U r

i . Similarly, UH
i and U e

i have the
same dimensions.

For “Weighted” representation, we first integrate
each turn of dialogue information into an utterance-
level representation vector Ūi. Then, we calculate
the semantic similarity between each turn and di-
alogue query through cosine similarity to obtain
the relevant score of each utterance. Finally, all
turns of utterances are weighted by relevant score
to get a new weighted representation. At turn
i ∈ {1, ..., nc}, we can formulate this procedure
as:

Ūi = MEAN(fATT(U
e
i , U

e
i , U

e
i ))

si =
Ūi · Ū⊤

nc

∥Ūi∥2 · ∥Ūnc∥2
UW
i = si ∗ U e

i

(4)

where MEAN(·) represents mean pooling opera-
tion over self-attended word embeddings, si is the
weight scalar for the i-th turn4. Darker area means
larger value. The weighted representation UW

i has
the same dimension as U e

i .

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our methods on three public data
sets: Ubuntu Dialogue Corpus (Lowe et al., 2015),
Douban Conversation Corpus (Wu et al., 2017),
and E-commerce Dialogue Corpus (Zhang et al.,
2018).

The first data set we adopt is Ubuntu Dialogue
Corpus (Lowe et al., 2015) which is a multi-turn
English conversation data set constructed from chat
logs of the Ubuntu forum. We use the version pro-
vided by Xu et al. (2017). The data contain 1 mil-
lion context-response pairs for training, and 0.5
million pairs for validation and test respectively.
In all three sets, positive responses are human re-
sponses, while negative ones are randomly sampled.
The ratio of the positive and the negative is 1:1 in
the training set, and 1:9 in both the validation set
and the test set. Following Lowe et al. (2015), we
employ recall at position k in n candidates (Rn@k)
as evaluation metrics.

The second data set is Douban Conversation Cor-
pus (Wu et al., 2017) which is a multi-turn Chinese
conversation data set crawled from Douban group5.

4snc achieves the largest value since the dialogue query
unc attends to itself.

5https://www.douban.com/group
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Models
Metrics Ubuntu Corpus Douban Corpus E-commerce Corpus

R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5 R10@1 R10@2 R10@5
Multi-View (Zhou et al., 2016) 0.662 0.801 0.951 0.505 0.543 0.342 0.202 0.350 0.729 0.421 0.601 0.861
DUA (Zhang et al., 2018) 0.752 0.868 0.962 0.551 0.599 0.421 0.243 0.421 0.780 0.501 0.700 0.921
MRFN (Tao et al., 2019a) 0.786 0.886 0.976 0.571 0.617 0.448 0.276 0.435 0.783 - - -
IoI (Tao et al., 2019b) 0.796 0.894 0.974 0.573 0.621 0.444 0.269 0.451 0.786 0.563 0.768 0.950
BERT (Gu et al., 2020) 0.808 0.897 0.975 0.591 0.633 0.454 0.280 0.470 0.828 0.610 0.814 0.973
SMN (Wu et al., 2017) 0.726 0.847 0.961 0.529 0.569 0.397 0.233 0.396 0.724 0.453 0.654 0.886
SMN + TACM (Ours) 0.789* 0.889* 0.973* 0.564* 0.618* 0.451* 0.271* 0.429* 0.776* 0.521* 0.701* 0.920*
DAM (Zhou et al., 2018) 0.767 0.874 0.969 0.550 0.601 0.427 0.254 0.410 0.757 0.526 0.727 0.933
DAM + TACM (Ours) 0.803* 0.899* 0.979* 0.569* 0.610* 0.437* 0.269* 0.434* 0.775* 0.535* 0.732 0.934
MSN (Yuan et al., 2019) 0.800 0.899 0.978 0.587 0.632 0.470 0.295 0.452 0.788 0.606 0.770 0.937
MSN + TACM (Ours) 0.811* 0.904* 0.979 0.594* 0.640* 0.482* 0.303* 0.457 0.789 0.616* 0.793* 0.955*

Table 1: Evaluation results on three data sets. Numbers marked with ∗ mean that the improvement is statistically
significant compared with corresponding baseline (t-test with p-value < 0.05).

The data set consists of 1 million context-response
pairs for training, 50 thousand pairs for validation,
and 6, 670 pairs for test. In the training set and the
validation set, the last turn of each conversation
is regarded as a positive response and negative re-
sponses are randomly sampled. The ratio of the
positive and the negative is 1:1 in training and val-
idation set. In the test set, each context has 10
response candidates retrieved from an index whose
appropriateness regarding to the context is judged
by human annotators. The average number of posi-
tive responses per context is 1.18. Following Wu
et al. (2017), we employ R10@1, R10@2, R10@5,
mean average precision (MAP), mean reciprocal
rank (MRR), and precision at position 1 (P@1) as
evaluation metrics.

Apart from the above two data sets, we also
choose E-commerce Dialogue Corpus (Zhang et al.,
2018). The data consist of real-world conversations
between customers and customer service staffs in
Taobao6, which is the largest e-commerce platform
in China. There are 1 million context-response
pairs in the training set, and 10 thousand pairs in the
validation set and test set respectively. Each con-
text in the training and validation set corresponds
to one positive response candidate and one negative
response candidate, while in the test set, the number
of response candidates per context is 10 with only
one of them positive. Human responses are treated
as positive responses, and negative ones are auto-
matically collected by ranking the response corpus
based on conversation history augmented messages
using Apache Lucene7. Following Zhang et al.
(2018), we employ R10@1, R10@2, and R10@5 as
evaluation metrics.

6https://www.taobao.com
7http://lucene.apache.org/

4.2 Baselines and Matching Models
4.2.1 Referenced Models
Since the task of retrieval-based dialogues was
proposed, many impressive models have emerged.
Therefore, we choose these models as referenced
baselines including the multi-view matching model
(Multi-View) (Zhou et al., 2016), the deep utterance
aggregation model (DUA) (Zhang et al., 2018), the
multi-representation fusion network (MRFN) (Tao
et al., 2019a), the interaction-over-interaction net-
work (IOI) (Tao et al., 2019b) and BERT for re-
sponse selection (Gu et al., 2020).

4.2.2 Selected Matching Models
Since our proposed TACM layer can be adapted to
the existing multi-turn context-response matching
models, we choose the following three representa-
tive models to verify its effectiveness.

SMN: Wu et al. (2017) first lets each turn of utter-
ance interact with the response, and forms a match-
ing vector for the pair through CNNs. Then, all of
the matching vectors are aggregated with a RNN
as a matching score. We select the model as it is a
representative in the framework of representation-
matching-aggregation, where the fIUR is a RNN
encoder, fURM is an inner-product similarity func-
tion and fAGG is a 2D CNN followed by an RNN.

DAM: Zhou et al. (2018) constructs representa-
tions of utterances in the context and the response
with stacked self-attention and cross-attention. We
select the model as it is a representative context-
response matching model based on Transformer
architecture (Vaswani et al., 2017), where the fIUR
is an Attentive Module, fURM is a similarity function
over representations and fAGG is a 3D CNN.

MSN: Yuan et al. (2019) firstly utilizes a multi-
hop selector to select relevant utterances as context.
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Then, the model matches the filtered context with
candidate response and obtains a matching score.
We choose the model as it is the best performing
multi-turn context-response matching model with-
out PLMs on three benchmarks, where fIUR is a
multi-hop selector network, fURM is the ensemble of
inner-product and cosine similarity functions over
self-attention and cross-attention representations
and fAGG is a 2D CNN followed by an RNN.

It is worth noting that we do not adopt PLMs
as backbone in our main experiments because they
concatenate multi-turn context and treat the prob-
lem in single-turn scenario. Take BERT as an ex-
ample, it conducts full interaction over the whole
dialogue turns of utterances for context comprehen-
sion (Gu et al., 2020). This interaction is direct, but
there may be redundant calculations for multi-turn
context, resulting in a large amount of parameters.
Instead, we put forward series of heuristic strate-
gies to conduct turn-aware interactions for multi-
turn dialogue context. In subsequent experiments,
we find that our model can achieve comparable per-
formance to BERT8 with one third of parameters.

4.3 Implementation Details

We implement all models with PyTorch (Paszke
et al., 2017). Word embedding is pre-trained with
Word2Vec (Mikolov et al., 2013) on the training set
of each corpus, and the dimension of word vectors
is 200. For fair comparison, we limit the maximum
number of utterances in each context as 10 and the
maximum number of words in each utterance and
response as 50 following Wu et al. (2017); Zhou
et al. (2018); Yuan et al. (2019). Truncation or
zero-padding is applied to a context or a response
candidate when necessary. All other settings such
as the kernel size of CNN in matching module and
the dimension of hidden states of RNN in aggrega-
tion layer are consistent with the original papers.
The batch size and initial learning rate are also
consistent with the default setting of the proposed
baselines (SMN, DAM, MSN). We used their pub-
lic code to reproduce their models, and the results
were similar to those reported in the original papers.
For more detailed settings of baselines, please refer
to Appendix A.1. The parameters were updated by
Adam (Kingma and Ba, 2015). In “Window” strat-

8Without loss of generality, we adapt the idea of TACM to
standard BERT (Devlin et al., 2019) and do not consider any
self-supervised post-training (Whang et al., 2020; Xu et al.,
2021) or data augmentation strategies (Han et al., 2021) in this
paper.

egy, γ is set as 1. Early stopping on the validation
data is adopted as a regularization strategy.

4.4 Evaluation Results
Table 1 reports the evaluation results of training
with turn-aware context modeling with “Rolling”,

“Window”, “Highway” and “Weighted” strategies.
We can see that all modeling strategies can consis-
tently improve the original matching models on all
three data sets. The improvement from the corre-
sponding baselines is statistically significant (t-test
with p-value < 0.05) on R10@1 (the most impor-
tant evaluation metric in retrieval-based chatbots)
and many other metrics. In particular, as SMN and
DAM both use non-turn-aware representation, the
improvement also shows the effectiveness of turn-
awareness. Furthermore, we can observe that as the
performance of the original model enhances (that
is, from SMN to DAM to MSN), the improvement
brought by TACM layer gradually decreases. This
may due to the increasing complexity of the orig-
inal model’s utterance-response matching (fURM)
and feature fusion (fAGG), which alleviates the miss-
ing semantic relationship among different turns of
utterances. Besides, it is interesting to find that a
simple SMN with TACM even performs better than
DAM (encoding the context with five self-attention
layers) on the Ubuntu and Douban data, although
DAM is in a more complicated structure.

In addition, we are surprised to find that
MSN+TACM achieves comparable or even better
performance in most metrics to BERT but uses
fewer parameters. It should be noted that the
number of parameters of SMN + TACM , DAM
+ TACM and MSN + TACM are 35.1M, 35.7M,
39.6M respectively, which is almost 1/3 of BERT
(110M). Such results indicate that the heuristic
TACM strategies are lighter and more effective than
the full-interaction in multiple transformer layers
(such as BERT), which may contains amounts of re-
dundant semantic interactions among the dialogue
turns, thus greatly increasing the complexity. The
above experimental phenomenon suggests that a
dynamic interaction strategy among dialogue turns
in PLMs can be explored in future work.

4.5 Further Discussions
Ablation Study. We also conducted additional
comprehensive ablation experiments to explore the
improvement of the model brought by the above
four TACM strategies on Ubuntu data with SMN,
DAM and MSN respectively as demonstrated in Ta-
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Figure 3: Performance of models (with or without TACM) across different length of contexts on Ubuntu.

Models
Metrics

R10@1 R10@2 R10@5

SMN 0.726 0.847 0.961
SMN + TACMrolling 0.778 0.882 0.972
SMN + TACMwindow 0.771 0.878 0.970
SMN + TACMhighway 0.780 0.883 0.971
SMN + TACMweighted 0.768 0.874 0.970
SMN + TACMtop2 0.782 0.885 0.973
SMN + TACMall 0.789 0.889 0.973
DAM 0.767 0.874 0.969
DAM + TACMrolling 0.779 0.883 0.971
DAM + TACMwindow 0.793 0.892 0.975
DAM + TACMhighway 0.797 0.894 0.976
DAM + TACMweighted 0.787 0.890 0.974
DAM + TACMtop2 0.799 0.896 0.977
DAM + TACMall 0.803 0.899 0.979
MSN 0.800 0.899 0.978
MSN + TACMrolling 0.805 0.900 0.978
MSN + TACMwindow 0.804 0.899 0.977
MSN + TACMhighway 0.806 0.901 0.978
MSN + TACMweighted 0.807 0.901 0.978
MSN + TACMtop2 0.808 0.903 0.979
MSN + TACMall 0.811 0.904 0.979

Table 2: Evaluation results of model ablation on Ubuntu
data. Numbers in bold indicate the best strategies for
the corresponding models.

ble 2. We denote the models using matching model
X and modeling strategy Y as X+TACMY . Specif-
ically, we define X+TACMall as all four strategies
are used. From the table, we can clearly find that
different strategies have different performance im-
provements on different matching models. For the
case of SMN or DAM as the matching model, the
best strategy is “Highway”. With respect to MSN,

“Highway” and “Weighted” show comparative best
performance. Moreover, as we can see, all strate-
gies can independently improve the performance
of the original matching models.

We also expose the experimental parameters of
each matching model when using the best strat-

Models
Metrics

Parameters R10@1

SMN + TACMbest ↑6.68% ↑5.4%
DAM + TACMbest ↑12.3% ↑3.0%
MSN + TACMbest ↑5.95% ↑0.7%

Table 3: Experimental parameter statistics when the
model uses the best strategy on Ubuntu data. ↑ stands
for the growth rate.

egy in Table 3, where the training environment
and hyper-parameters are strictly consistent. The
results show that we can obtain a significant perfor-
mance improvement with a considerable increase
of model parameters. Comparing the performance
of the model that uses the best strategy and the
model that uses all strategies, we can find that if
all strategies are exploited, the performance of the
matching model will be further improved. Intu-
itively, the representation features obtained by the

“Rolling” and “Window” strategies have a certain
degree of redundancy, since the effect of “Window”
strategy might be covered by that of “Rolling”,
because of the update mechanism of recurrent at-
tention. Besides, “Highway” and “Weighted” can
also capture similar query-aware features since the
query-aware representation of “Highway” strat-
egy is based on word-level attention, which may
cover the utterance-level weighting mechanism
of “Weighted” strategy. To verify our assump-
tion, we conducted an additional group of experi-
ments: For each matching model, we selected two
strategies X,Y and equipped them, where X rep-
resents a strategy with better performance chosen
from “Rolling” and “Window”, and Y stands for
another strategy with better performance selected
from “Highway” and “Weighted”. We denote the
model as X+TACMtop2 and demonstrate the re-
sults in Table 2. It is interesting to find that uti-
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lizing two better strategies (such as “Rolling” and
“Highway”) leads to a slight performance drop com-
pared to X+TACMall, though each representation
is useful. In real application, we can choose one of
them for multi-turn response selection.

Impact of Context Length We further study how
the number of turns influences the performance of
different models when the TACM layer is incorpo-
rated. Figure 3 shows how the performance of the
models changes with respect to different numbers
of turns in contexts. We observe a similar trend
for all models: they first increase monotonically
until context length reaches a certain value (9 for
all three matching models), and then drop when
context length keeps increasing. The reason might
be that when only a few utterances are available in
contexts, the model could not capture enough infor-
mation for matching, but when the contexts become
long enough, noise will be brought to matching as
utterances in early history could be irrelevant to
the query utterance. Despite the fact that long con-
text (Turn=10) is still challenging, the gap between
the two forms is bigger on long contexts than it is
on short contexts, indicating that our TACM lay-
ers can improve the capability of modeling long
context and demonstrate higher improvement of
matching accuracy on long contexts. It is noted
that the performance gap between MSN and MSN
with TACM layer does not widen obviously as the
number of turns increases. The reason might be
that the architecture of MSN is complex and it in-
troduces query-aware features for context-response
matching. Nonetheless, MSN with TACM still
significant outperforms MSN, which confirms the
effectiveness of our framework.

We provide more empirical studies of TACM
including comparison between PLM-based inter-
action and heuristic interaction, case visualization
and analysis of hyper-parameter sensitivity in Ap-
pendix A.2, A.3 and A.4 respectively.

5 Conclusion

This paper investigates how to improve the perfor-
mance of existing matching models with a better
context modeling method. Empirical results on
three benchmarks indicate that query-aware context
modeling is the best strategy and employing mul-
tiple context modeling strategies can consistently
improve the performance of existing response se-
lection models. Additionally, our TACM layer can
improve the capability of modeling long context.

Limitations

Besides its merits, our framework still has a few
limitations could be further explored in future
works. On the one hand, although we try our best
to summarize the existing context modeling strate-
gies into three categories, there may still be hybrid
or complex methods that cannot be directly cate-
gorized; On the other hand, although our methods
have been shown to be effective for retrieval-based
dialogue models, it also seems reasonable for gen-
erative approaches, which needs to be investigated
in future work.

We hope our results could encourage future work
on addressing these limitations to further explore
context modeling for multi-turn response selection.
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A Appendix

A.1 The Detailed Settings of the Experiments
for Baselines

We used public codes to reproduce all three base-
lines (SMN, DAM, MSN), and the results were
similar to those reported in the original papers.
Specifically, we limited the maximum number of
utterances in each context as 10 and the maximum
number of words in each utterance and response as
50. Following Wu et al. (2017); Zhou et al. (2018);
Yuan et al. (2019), we padded zeros if the num-
ber of turns in a context is less than 10, otherwise
we kept the last 10 turns. If the length of each ut-
terance or each response candidate exceeded the
limitation, we only kept the first tokens because we
assume that the most important part will be given
first, otherwise we padded zeros behind. Word
embeddings were all initialized by the results of
Word2Vec (Mikolov et al., 2013) which ran on the
training data, and the dimension of word vectors is
200. Adam (Kingma and Ba, 2015) algorithm was
used in all baselines. For SMN, the window size
of CNN was (3, 3) and the initial learning rate was
0.001. The batch size was 200. The hidden size
of the two GRUs was 200 and 50. For DAM, the
number of stacked self-attention layers was 5. The
learning rate was initialized as 1e − 3 and gradu-
ally decreased during training, and the batch size
was 256. For MSN, the dimension of the hidden
states of GRU was 300. The learning rate was also
initialized as 1e− 3 and gradually decreased dur-
ing training. The batch size was 200, 150, 200 on
Ubuntu, Douban and E-commerce Corpus respec-
tively.

A.2 PLM-based Interaction v.s. Heuristic
Interaction

We are also curious about how to adapt turn-aware
context modeling strategies to existing PLMs. Take
BERT as an example, all utterances in context and
response candidate are concatenated as a single
consecutive token sequence with special tokens sep-
arating them, which converts multi-turn context un-
derstanding into a single-turn scenario and makes
context interaction non-turn-aware (Gu et al., 2020).
Thus, we cannot directly use the several strategies
introduced in Section 3.3. But we can still borrow
the idea and validate the effectiveness of the afore-
mentioned context interaction patterns on PLMs
by masking the partial input sequence at the turn
level in each transformer layer. Figure 4 depicts
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Figure 4: Transformer attention masks for different
turn-aware context modeling strategies in BERT, and
white color indicates absence of attention. (a) Sequen-
tial Context Modeling; (b) Local Context Modeling;
(c) Query-Aware Context Modeling. For convenience,
we only draw five turns of utterances. In other words,
nc = 5 and u5 is the query utterance. For the Sequen-
tial Context Modeling, we only test the forward rolling
process. As for the Local Context Modeling, we only
consider γ = 1 consistent with the “Window” strategy.

Models
Metrics

R10@1 R10@2 R10@5

BERT∗ 0.808 0.897 0.975
BERT + TACMSequential 0.816 0.901 0.979
BERT + TACMLocal 0.818 0.904 0.979
BERT + TACMQuery−Aware 0.820 0.904 0.980

Table 4: Performance of the BERT models with heuris-
tic context interaction on Ubuntu data. ∗ means the
results copied from Gu et al. (2020).

the visualization of turn-aware masking.
Specifically, for all strategies, [CLS] can be

aware of any other words, [SEP ] is consistent with
the utterance it follows. To simplify our exposition,
we operate on the attention matrix A ∈ [0, 1]ns×ns

of the self-attention mechanism, where ns is the
length of concatenated input sequence of BERT. In
order to distinguish the query, key and value in the
attention mechanism of BERT from the dialogue
query unc , here we denote the query, key, and value
in the attention mechanism as Q, K and V . As for
the Sequential Context Modeling, each turn of ut-
terances can only see the previous turns (here we
only test the forward rolling process) and the other
turns are masked out. The value of i-th Q word and
j-th K/V word in the attention mask matrix is:

Aij =

{
1, T (i) ≥ T (j)

0, otherwise
(5)

where T (i), T (j) stand for the turn id of i-th Q
word and j-th K/V word respectively. As for the
Local Context Modeling, each turn of utterances
can only be aware of the two adjacent turns of
utterance (here we only consider γ = 1 consistent
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(b) Window

u1:cool i ll try
u2:this is not a programmers channel - its only for ubuntu support
u3:i know just had to ask (
u4:did you follow the install instructions ( there is usually a readme or install )
u5:well the website told me just to say make install at the root of the dir ..
u6:usually there is __path__ then make then sudo make install
u7:there s a confi g.h file ..
u8:thats another thing but your system is missing gnome-config did you istall build-essentials
u9:no i do n't think so .. never had to use them befor now
u10:i ve now installed build-essentials and automake and checkinstall

(c) Weighted

Figure 5: Visualization of different strategies in DAM. Experiments are conducted on Ubuntu data. (a) Attention

weights between Ue
6 and

−→
US
5 in “Rolling” strategy, (b) Attention weights between Ue

6 and C6 in “Window” strategy,
(c) Weights between dialogue query u10 and dialogue context {u1, · · · , u10} in “Weighted” strategy. Darker square
means larger value in the heatmap.

with the “Window” strategy) and the other turns
are masked out. The value of i-th Q word and j-th
K/V word in the attention mask matrix is:

Aij =

{
1, |T (i)− T (j)| ≤ 1

0, otherwise
(6)

As for the Query-Aware Context Modeling, in each
transformer layer, we force every word wui,k in ui
to be able to pay attention to dialogue query unc ,
but ui cannot see other turns of utterance except
query and itself. This process is achieved by mask-
ing out the words of other turns of utterances. The
value of i-th Q word and j-th K/V word in the
attention mask matrix is formulated as:

Aij =




1,

T (i) = T (j) or T (i) = nc

or T (j) = nc

0, otherwise
(7)

We conduct experiments on BERT on Ubuntu
data and the results (shown in Table 4) indicate
that by adapting the idea of TACM to BERT, the
performance of the model can be improved, which
means our TACM strategies are superior to the full
interaction in BERT-based models. Among three
categories of TACM strategies, Query-Aware Con-
text Modeling is the best, which is consistent with
traditional multi-turn response matching models.

A.3 Case Visualization

For a better insight into how four TACM strate-
gies capture turn-aware context information, we
perform a case study by visualizing the attention
weights between different turns of utterances in
DAM. The example is shown in Figure 5, which
comes from the test sets of Ubuntu Corpus, and
the model successfully selected the best response
candidate for it while the corresponding baseline
failed. Figure 5(a) gives the visualization results
of the attention weights in formation of unidirec-
tional rolling representation of u6 (calculated by

fATT(U
e
6 ,
−→
US
5 ,
−→
US
5 ) in formula 1), denoted as

−→
US
6 .

We can see that between u6 and u5, associated pairs
like “path” & “dir”, “sudo” & “root” are success-
fully identified, indicates that “Rolling” strategy
is useful to recognize such temporal relationships
between dialogue turns. In Figure 5(b), intersec-
tion areas between the segment “make install” in u6
and word pieces “confi g” in C6 got larger matching
scores, reveals that the “Window” strategy is bene-
ficial to capture the semantic association between
adjacent turns of utterances. It is worth noting that
the “Window” strategy can also grab the correlated
word pairs “sudo” & “root”, “path” & “dir”, which
confirms our conjecture once again that there may
be redundancy between “Rolling” and “Window”
representations. To examine whether the “Weight-
ed” strategy helps to recognize the different corre-
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Figure 6: Effects of γ to “Window” strategy. Experi-
ments are conducted on Ubuntu data.

lations of multi-turn query-aware history utterances
for selecting the response, Figure 5(c) illustrates
the correlated weights distribution of each turn of
utterance in context {ui}nc

1 (calculated by the co-
sine similarity in formula 4), denoted as {si}nc

1 .
As demonstrated, the model significantly identi-
fies the informative query-aware utterances like u8,
and chooses to discard u9, which is unrelated to
the topic and has little information compared with
dialogue query unc (nc = 10 in our experiments).
Since the “Highway” strategy adopt gate mech-
anism for each entry of the representation vector
of ui, it is difficult for us to visualize it intuitively
with an attention matrix, so we only depict the

“Weighted” strategy to demonstrate the query-aware
context modeling. To sum up, this example ex-
plains why TACM works well.

A.4 Analysis of Hyper-parameter Sensitivity
We also check the effect of hyper-parameters in

“Window” strategy. Figure 6 illustrates how the per-
formance of “Window” strategy varies under differ-
ent offsets γ in Ubuntu data with matching model
SMN and DAM since the absolute improvement
on these two models exceeds 1%. We can observe
that the performance of the model fluctuates less
with γ changes. We guess this is because the far-
ther utterances are less semantically dependent on
the current utterance. Thus, we conclude that the

“Window” strategy is not sensitive and robust to the
choice of offset γ.
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