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Abstract

Event extraction (EE) is the task of identify-
ing interested event mentions from text. Con-
ventional efforts mainly focus on the super-
vised setting. However, these supervised mod-
els cannot generalize to event types out of the
pre-defined ontology. To fill this gap, many
efforts have been devoted to the zero-shot EE
problem. This paper follows the trend of mod-
eling event-type semantics but moves one step
further. We argue that using the static em-
bedding of the event type name might not be
enough because a single word could be am-
biguous, and we need a sentence to define the
type semantics accurately. To model the def-
inition semantics, we use two separate trans-
former models to project the contextualized
event mentions and corresponding definitions
into the same embedding space and then mini-
mize their embedding distance via contrastive
learning. On top of that, we also propose a
warming phase to help the model learn the
minor difference between similar definitions.
We name our approach Zero-shot Event extrac-
tion with Definition (ZED). Experiments on
the MAVEN dataset show that our model sig-
nificantly outperforms all previous zero-shot
EE methods with fast inference speed due to
the disjoint design. Further experiments also
show that ZED can be easily applied to the
few-shot setting when the annotation is avail-
able and consistently outperforms baseline su-
pervised methods.

1 Introduction

Event extraction, the task of identifying event men-
tions from documents and classifying them into
pre-defined event types, is a fundamental NLP
problem (Grishman et al., 2005). As a centric in-
formation extraction task, event extraction is the
foundation of a series of event-centric NLP appli-
cations (Chen et al., 2021) including event relation
extraction (Wang et al., 2020a), event schema in-
duction (Li et al., 2020), and missing event predic-
tion (Chaturvedi et al., 2017).
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The ninth named storm and fifth hurricane of the 1995 Atlantic hurricane
season, Iris developed from a tropical wave to the east of the Lesser
Antilles on August 22 and attained hurricane status within 30 hours. The
hurricane weakened to a tropical storm before crossing the islands of the
eastern-Caribbean from August 26 through August 28. During that time,
Iris became ohe of four active tropical storms.in the Atlantic basin.

/

R4
A violent weather
condition with winds
and precipitation and
thunder and lightning

Come to become Go across or through

Event type: Coming_to_be Event type : Catastrophe Event type : Motion_direction

Figure 1: Zero-shot event extraction task demonstra-
tion. Given a corpus, the goal is to identify all event
mentions that fit the target event definitions without
using any annotation. The event definitions and cor-
responding mentions are indicated in the same color.

Traditional event extraction efforts (Wadden
et al., 2019; Wang et al., 2019; Lin et al., 2020)
mostly focus on learning to identify and classify
events under a supervised learning setting, where a
pre-defined event ontology and large-scale expert
annotations is available. However, the learned su-
pervised models cannot be easily applied to new
event types out of the pre-defined ontology, limit-
ing these models’ usage in real applications.

Recently, large-scale pre-trained language mod-
els have demonstrated strong semantics represen-
tation capabilities and motivated a series of works
to extract events in a zero-shot setting. For exam-
ple, Du and Cardie (2020) propose to manually
design templates for each event type to convert the
event extraction problem into a question-answering
(QA) task and then leverage QA models to extract
events. Following that, Lyu et al. (2021) propose
to verbalize candidate triggers and event types into
hypothesis and premises and leverage pre-trained
textual entailment models to extract events. How-
ever, as analyzed in (Lyu et al., 2021), these models
heavily rely on the template design and often suf-
fer from the domain-shifting problem between the
original training task and the new task. Moreover,
as these models require jointly encoding the event
mentions and event types, the time complexity is
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O(N = T), where N is the number of event men-
tion candidates and 7" is the number of event types.
Considering the low inference speed and high com-
putation cost of inference with a deep model, such
complexity could be a massive burden for real-time
EE systems.

To avoid manually designing templates and
to improve the inference efficiency, another line
of work (Zhang et al., 2021) tries to leverage
pre-trained language representation models (i.e.,
BERT (Devlin et al., 2019)) to acquire a contextu-
alized event type representation. The model can
decouple the mention and label representations dur-
ing the inference time and predict the candidate
trigger to the most similar event type based on the
cosine similarity. As a result, this method could
significantly reduce the inference time complex-
ity from O(N = T') to O(N + T'). However, as
the experiments show, using only the label name
might not lead to a good event-type representation
because the selected words could be ambiguous.

In this work, we follow the trend of representa-
tion learning (Zhang et al., 2021; Gao et al., 2021)
and move forward from representing each event
type with a single name to a definition sentence.
Specifically, we propose a three-stage event repre-
sentation learning framework. In the offline pre-
training phase, we leverage auto-extracted context-
definition alignments to learn a definition encod-
ing model that can encode the contextualized men-
tions and definitions into the same embedding
space. In the second warming phase, we use the
target event types to retrieve hard negative exam-
ples to further polish the model. In the end, we
identify and classify event mentions based on the
cosine similarity between the mention represen-
tation and corresponding event-type representa-
tions. As our system is a disjoint model, the in-
ference time complexity is also O(N + T'). Experi-
ments on MAVEN (Wang et al., 2020b), the largest
EE dataset to the best of our knowledge, show
that ZED outperforms all previous zero-shot ap-
proaches with high inference efficiency. Further ex-
periments show that ZED could also be applied to
the supervised setting, where it achieves compara-
ble performance in the fully supervised setting and
consistently outperforms baseline supervised mod-
els in the data-scarce learning settings. Specifically,
with 10% of the training data, ZED could achieve
over 95% of the full performance. All the col-
lected alignment data, created definitions, and the

code are available at: https://github.com/tencent-
ailab/ZED.

2 Related Works

In this section, we introduce related works about
event extractions, contrastive representation learn-
ing, and definition modeling.

2.1 Event Extraction

As a fundamental information extraction
task (Chen et al., 2021), event extraction has
attracted many efforts in the NLP commu-
nity (Sundheim, 1992; Grishman and Sundheim,
1996; Riloff, 1996; Grishman et al., 2005; Chen
et al., 2021; Hong et al., 2022). Recent success
on the event extraction task mostly relies on
employing either symbolic features (Ji and
Grishman, 2008; Liao and Grishman, 2010; Liu
et al., 2016) or distributed features (Chen et al.,
2015; Nguyen et al.,, 2016; Liu et al., 2018;
Zhang et al., 2019; Wadden et al., 2019; Lin
et al., 2020) to learn supervised models with
large-scale high-quality annotations. However,
the requirement of a pre-defined ontology and
corresponding annotations limits the application of
these models in real applications.

To address this issue and extract unseen event
types, Huang et al. (2018) propose a zero-shot event
extraction task and use a transfer-learning frame-
work to apply the model trained with seen event
types to unseen ones. However, the prerequisite of
their high performance is the similarity between
seen and unseen event types. Recently, with the fast
development of large-scale language models, sev-
eral works (Du and Cardie, 2020; Lyu et al., 2021;
Zhang et al., 2021) propose to leverage the pre-
trained models to encode the label semantics either
with templates or contextualized embeddings. In
this work, we follow the effort of using deep mod-
els to model the label semantics but make a step fur-
ther. Instead of directly using a pre-trained model,
we train a disjoint context-to-definition alignment
encoding model, which can effectively map the can-
didate event mentions and definitions into the same
embedding space and thus more accurately and ef-
ficiently extract events for any arbitrarily defined
event types.

2.2 Contrastive Representation Learning

The contrastive loss (Chopra et al., 2005) is one of
the most popular training objectives for representa-
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Figure 2: Overall framework of ZED. In the offline training phase, we train the separate context and definition
encoders with auto-extracted context-definition alignment data. In the second warming phase, after knowing the
target event types, as no annotation is provided, we first retrieve similar concepts from WordNet (Miller, 1998) and
use corresponding alignment data to polish the representation model. In the last inference phase, after encoding all
candidate event type definitions, for each candidate event mention, we will encode it with the context encoder and
determine whether it belongs to one of the target event types based on the cosine similarity.

tion learning. The original contrastive loss and its
variations (e.g., triplet loss (Schroff et al., 2015),
lifted structured loss (Oh Song et al., 2016), N-pair
loss (Sohn, 2016), and NCE loss (Gutmann and
Hyvérinen, 2010)) have been shown helpful for a
series of vision applications (Radford et al., 2021).
After being introduced to the NLP community, the
contrastive learning-based method also leads to the
success of a series of representation learning tasks
such as sentence representation (Gao et al., 2021).
Different from previous works, where the anchors
and positive/negative examples typically belong to
the same category (e.g., image/sentence), we pro-
pose to use the contextualized token representation
as the anchor and event type definition represen-
tations as the positive/negative examples to better
solve the zero-shot event extraction task. Moreover,
motivated by the success of the “pre-training+fine-
tuning” paradigm, we propose a novel three-stage
representation learning framework.

2.3 Definition Modeling

Humans are capable of understanding new con-
cepts by reading their glosses or definitions. Thus,
how to leverage the definitions and explanations
from dictionaries to help understand human lan-
guage is a long-standing question in the NLP com-
munity. Most of the previous efforts in this direc-

tion are working on the word sense disambigua-
tion task (Luo et al., 2018; Huang et al., 2019;
Blevins and Zettlemoyer, 2020; Kumar et al., 2019;
Bevilacqua and Navigli, 2020; Yao et al., 2021;
Su et al., 2022a,b). These models learn to map a
token into the correct pre-defined synset by either
jointly or disjointly encoding the tokens and defi-
nitions. Even though the setting of our model and
these WSD models are similar, identifying event
mentions that satisfy an arbitrary event type defini-
tion is a more challenging task (Senel et al., 2022).
WSD aims to learn to distinguish the correct synset
versus several (typically less than 10) other pre-
defined synsets, while our goal is to align an event
mention and the corresponding definition, where
all other arbitrary definitions are considered to be
the negative candidates. To address the engineering
limitation that negative candidates exceed the GPU
memory limitation, we propose a coarse-to-fine
negative sampling strategy to help models learn
the minor differences between similar definitions
without forgetting the big picture.

3 Task Definition

We define the zero-shot event extraction task as fol-
lows. Given a document in the format of a sentence
set S and event type set £. Each event type F € £
is defined with a natural sentence d. The task is
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Mention in Context \ Definition

I love playing basketball.
Bob is studying computer
science.

get pleasure from

be a student; follow a course
of study; be enrolled at an
institute of learning

give a promotion to or assign
to a higher position

1 got promoted after many
years of hard work

Table 1: Demonstration of collected context and defini-
tion alignments. Target mentions are underlined.

to identify all mentions Mg in S that satisfy the
definition of E for each E € £ without using direct
annotations during the training phase.

4 Model

We present the model framework in Figure 2. Mo-
tivated by the success of the “pre-training + fine-
tuning” learning paradigm, we propose to address
the zero-shot event extraction problem with a three-
stage framework. Technical details are as follows.

4.1 Offline Pre-training

The offline pre-training step aims to train a decent
definition encoder to map the target mention rep-
resentation and corresponding definitions into the
same embedding space. To achieve this goal, as
no annotation is provided, we first collect context-
definition alignments and then train the encoder
with a contrastive learning loss.

4.1.1 Data Preparation

We select all verbal synsets from the WordNet
ontology (Miller, 1998) to form our open-world
event definition set. In total, we collect 13,814
event synsets. After that, to collect large-scale
alignment data between context and definitions, we
apply the current state-of-the-art word sense dis-
ambiguation model (Yao et al., 2021) to the NYT
corpus (Sandhaus, 2008) to align tokens in NYT
with their correct definitions. We randomly se-
lect 10 context instances for each synset to speed
up the training process. As a result, we collect
775K context-definition alignments. Examples of
extracted alignments are presented in table 1.

4.1.2 Context-definition Alignment Encoding
with Contrastive Learning

The goal of the context-definition alignment encod-
ing is encoding the contextualized representation
of the target mention and the sentence represen-
tation of the definition into the same embedding
space and pushing them to be closer to each other

because they should have similar semantic mean-
ings. As this objective aligns well with the learning
objective of the contrastive learning framework,
we follow the standard contrastive learning frame-
work (Chopra et al., 2005). Specifically, we de-
note the pre-processed context-definition alignment
set as T, where each instance (S,i,5,D) € T
contains context sentence .S, which is a list of
tokens wls , wg ..., w>, target word starting posi-
tion i, target word ending position' j, and a def-
inition sentence D, which is also a list of tokens
wf) , wf , ..., w> . We follow the standard approach
to get the contextualized word representation as the

mean pooling of all sub-token representations:

Di<ks) ©k

1
j—i+1’ M

€S,i,j =
where ey, is the contextualized representation of to-
ken k produced by a transformer baseline language
model (e.g., BERT (Devlin et al., 2019)). For the
sentence encoding, we choose to use the average
representation of all tokens as follows:

FFN(e
4y = Dz FEN@)

where F'F'N represents a two-layer feed-forward
neural network and ey, is the token representation
of token wy,.

Following the contrastive learning framework,
during this step, we optimize the marginal ranking
loss>. Assume that the set of randomly sampled
negative definitions is D', for each D’ € D', we
could follow equation 2 to compute its representa-
tion as d . For each instance (S, i, j, D) € T and
a randomly sampled negative definition set D’, we
minimize the following marginal ranking loss:

> prep max(0,e — (cos(es,i,j,dp) — cos(es,i,j, dpr)))
[r2d|

3
where max means the maximum operation, cos is
the cosine similarity, and € is the margin.

4.2 Query-specific Warming

After the pre-training phase, the model briefly un-
derstands how to project the contextualized event

"Each word could have multiple tokens because we follow
the standard tokenization of BERT (Devlin et al., 2019).

“We chose ranking loss over entropy loss mainly because
the alignment data we used for the pre-training is automatically
collected, and the training signal may contain noise.
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mentions and corresponding definitions into sim-
ilar positions in the embeddings. However, its
capability of distinguishing similar definitions is
still limited because the previous negative sampling
strategy does not encourage such capabilities. To
address this issue, we introduce an additional warm-
ing phase to help models learn the minor difference
between similar definitions.

Similar to how human beings understand new
concepts by recalling relevant knowledge, we also
retrieve relevant knowledge from 7 to further fine-
tune the model. Specifically, assume that the set of
interested event definitions is D, for each D € D,
we first retrieve the most similar definition D from
the original definition set D by:

D = arg max sim(PLM (D), PLM(D)), (4)
€

where sim is the similarity measurement and
PLM represents the encoding with a pre-trained
language model. In our experiment, we select co-
sine similarity as the similarity measurement and
average contextualized token embedding encoded
with BERT-base (Devlin et al., 2019) as the encod-
ing. But other techniques could also be applied.

We thus denote the set of all retrieved relevant
definitions as D and select a subset Z of Z such that
all definitions in Z belong to D to further fine-tune
the model. After generating all the data, we will
fine-tune all models following the loss function in
Equation 3.

4.3 Inference

During the inference, we compute the representa-
tion for each candidate event mention in and target
event type descriptions. After that, for each can-
didate mention, we compute its cosine similarity
with all the target event-type representations. If
the largest similarity is larger than a threshold ¢,
this mention is identified and labeled as the most
similar event type. Assume that the size of all can-
didate mentions and target event types are N and
T, respectively. Compared with previous zero-shot
models that rely on the joint encoding of the candi-
date mention and target event types (Du and Cardie,
2020; Lyu et al., 2021; Yao et al., 2021), we suc-
cessfully reduce the computation complexity from
O(N*T)to O(N+T). A numerical evaluation of
the computation efficiency is shown in Section 6.2.

5 Experiments

This section introduces experiment details, includ-
ing the selected baseline methods, experiment
datasets, and implementation details.

5.1 Baseline Methods

In the past two years, the community has been
devoting significant effort to solving the zero-
shot event extraction problem with different ap-
proaches. Specifically, we select the following
best-performing models as our baselines.

1. Pre-trained Question Answering Models (Du
and Cardie, 2020) (QA): Most NLP tasks can
be converted into a QA format and event extrac-
tion is not an exception. Motivated by this, Du
and Cardie (2020) propose to design a question
template for each target event type and directly
ask a QA model to answer whether a mention is
the target event.

2. Pre-trained Textual Entailment Models (Lyu
et al., 2021) (TE): Motivated by the QA ap-
proach, Lyu et al. (2021) explore the possibility
of utilizing a pre-trained textual entailment (TE)
model to automatically extract events. Specifi-
cally, for each target event type, Lyu et al. (2021)
manually design a template to convert it into a
hypothesis, treat the target event mention as the
premise, and ask the TE model whether the tar-
get event mention can entail an event type.

3. Word Sense Disambiguation Models (Yao
et al., 2021) (WSD): Prior WSD works also
heavily rely on the correctly modeling of the
definitions, so conceptually they could also be
applied to the event extraction task following
our setup. There are mainly two key differences
between our work and (Yao et al., 2021): (1)
Yao et al. (2021) encode the context and defini-
tion jointly while our model encodes them sepa-
rately; (2) Yao et al. (2021) aim at modeling the
minor difference between different synsets of
the same word while our work aims at modeling
general definition semantics.

4. Contextualized Label Embedding (Zhang
et al., 2021) (CLE): The last baseline we com-
pare with is the contextualized label represen-
tation. Specifically, for each target event type,
Zhang et al. (2021) generate a contextualized
label representation by putting the label name
back into contexts and directly extracting events
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Identification Identification+Classification

Model P R F1 P R F1

Chance Performance 19.33  20.05 19.68 0.11 0.11 0.11
Most Popular Event Type 18.59 1945 19.01 | 0.74 0.77 0.75
QA (Du and Cardie, 2020) 19.76  45.18 27.49 | 4.19 9.58 5.83
TE (Lyu et al., 2021) 20.20 32.83 25.01 4.59 7.46 5.68
WSD (Yao et al., 2021) 24.66 80.52 3776 | 536 17.51 8.21
CLE (Zhang et al., 2021) 55.07 14.63 23.00 | 4299 11.34 17.95
ZED H 59.37 42.28 49.39 \ 39.63 28.22 32.96

Table 2: Zero-shot Event identification and classification results on MAVEN (Wang et al., 2020b), which has 168
event types. Best F1 performances are indicated with bold font.

based on the similarity between the mention | F1 () | F1{I+C)
representation and event type representations. ZED | 4939 | 32.96

. . - Warming 47.86 (-1.53) | 21.89 (-11.07)
Besides these baselines, we also present the - Strong Negative Sampling ‘ 48.91 (-0.48) | 29.20 (-3.76)

“Chance” performance, where a mention is ran-
domly selected following the percentage of gold
mentions and randomly assigned an event type,
and the “Most Popular Event Type” performance,
where a mention is also randomly selected follow-
ing the percentage of gold mentions and is always
predicted to be the most popular event type.

5.2 Evaluation Dataset

We select MAVEN (Wang et al., 2020b) as the eval-
uation dataset due to its large-scale and balanced
distribution. Specifically, MAVEN contains 186
unique event types selected from FrameNet (Baker
et al., 1998) and 118,732 annotated event mentions,
which is almost two magnitudes larger than the
previous datasets such as ACE (Grishman et al.,
2005). Moreover, MAVEN provides the official
event mention candidates to evaluate the mention
understanding capability of all event extraction
models more fairly. As the original dataset only
provides the event name in the format of a phrase
(e.g., “Body_movement”), we directly use defini-
tions from Wordnet as the description®. Examples
of the event types and corresponding definitions
are presented in Appendix Table 5.

5.3 Implementation Details

For baseline models, we conduct experiments with
officially released code, hyperparameters, tem-
plates, and pre-trained models. For ZED, we use
two separate encoders for the context and defini-
tion encoding. Both of them are initialized with
BERT-base (Devlin et al., 2019). As no training

3For event names that have multiple synsets or not covered

by WordNet, we manually select the most accurate description
from WordNet.

Table 3: Ablation study. “I” and “C” represent the iden-
tification and classification, respectively.

set is needed in the zero-shot setting and the test
set of MAVEN is not publicly available, we report
the performance on the dev set. Specifically, we
set the margin to 0.2 for the marginal ranking loss
and set the number of negative examples to 2. The
selection threshold at the inference phrase is set to
be 0.7. We train the model with ten epochs for both
the pre-training and warming phrases. We directly
evaluate the last checkpoint to simulate the real ap-
plication, where no dev set is available. All models
are trained with Tesla P40 with batch size 16. The
pre-training and warming phrases will take around
200 and 3 hours on a single GPU, respectively, but
we could speed it up with multiple GPUs.

6 Zero-shot Performance

The zero-shot performance of all models is pre-
sented in Table 2, from which we can make the
following observations:

1. All models significantly outperform the naive
baselines even though they do not use any an-
notations. This observation shows that current
deep models can indeed learn rich semantics
that could generalize outside of their original
training goal.

2. The overall performance of pre-trained QA, TE,
and WSD models is not satisfying because they
suffer from domain shifting. For example, even
though current deep-model-driven QA models
have surpassed human performance on several
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Figure 3: Effect of training instance number per def-
inition.  (Zero-shot performance on the Identifica-
tion+Classification F1 is reported.)

leaderboards, they are still not ready to be used
as a general QA model for solving tasks that
require deep understanding, such as zero-shot
event extraction.

3. Compared with other methods, Contextualized
label embedding achieves lower identification
F1 but higher classification accuracy, which
aligns with the original observation in (Zhang
et al., 2021). The reason behind this is that
due to the cone property of the BERT represen-
tation (i.e., most of the token representations
of BERT are grouped in a small region), it is
tough to determine the cosine similarity bound-
ary of whether an event mention fits a specific
event type. As a result, even though CLE could
accurately identify high-confident mentions, it
cannot handle boundary ones very well.

4. Compared with baseline methods, ZED could
perform better on both the identification and
classification tasks. The main reason is that we
are using definitions to model the label seman-
tics, which is more accurate than a single word.

6.1 Ablation Study

From the ablation study results in Table 3, we
can see that if we remove the warming phase, the
model’s performance will drop on both the identi-
fication and classification, especially the classifi-
cation step. This aligns well with our assumption
that the model can learn to model the general defi-
nition semantics after the pre-training step but can-
not distinguish minor differences very well. The

Inference Speed

2 2073 20.71
S
5 10
g
=]
=]
&
2 10"
5 025 921
s 0.12
0" 0A TE WSD CIE ZED

Figure 4: Inference Speed of all zero-shot models. For
a fair comparison, we evaluate all models with the same
GPU and use batch size 1. As our model is smaller than
baseline models, we could use a larger batch size in real
applications to further boost efficiency.

performance drop of removing the strong nega-
tive sampling module indicates that strong nega-
tives are crucial for the success of representation
learning, which aligns well with previous observa-
tions (Clark et al., 2020).

Besides those ablation studies, we also show the
impact of the pre-training data scale in Figure 3.
As expected, the more data we use, the better per-
formance we will get. However, the performance
gain after 10 instances per synset is limited. As a
result, we select 10 instances for each synset as the
pre-training data for training efficiency.

6.2 Inference Efficiency

We present the inference speed of all evaluated
models in Figure 4. As ZED adopts a disjoint
encoding design, we successfully reduce the com-
putation complexity from O(N *T") to O(N + 1),
where N is the number of event mentions and 7’
number of event types. On Maven, which has 168
different event types, ZED could speed up the in-
ference efficiency by almost two magnitudes.

7 Warming with Gold Annotation

ZED can also be adapted to a fully supervised or
few-shot learning setting when the annotation is
available. Specifically, during the warming phase
of our model, we can replace the auto-retrieved
examples with the annotated ones and fine-tune
the model. In this section, we follow the bench-
mark paper (Wang et al., 2020b) to compare with
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Identification

Identification+Classification

Model H P R Fl ‘ P R Fl
DMBERT 73.37 87.82 79.95 | 61.20 73.25 66.69
BERT+CRF 75.19 81.80 78.35 | 64.40 70.28 67.21
ZED + Supervision || 82.48 80.76 81.61 | 67.87 66.46 67.16

Table 4: Model Performance with full annotations, Best F1 performances are indicated with the bold font. “I” and
“C” indicate the event identification and classification, respectively.
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Figure 5: Model performance With limited annotation.

the recent language model-driven baselines*: DM-
BERT (Wang et al., 2019) and BERT (Devlin et al.,
2019) + CRF (Lafferty et al., 2001), which also
achieved the previous best performance. Please
refer to the original papers for technical details of
these baseline models. We implement all models
with the officially released code’ and report the
average performance of five trials on the develop-
ment set. All models are trained for ten epochs,
and the final model is evaluated. Like the zero-shot
setting, we also report the micro precision, recall,
and F1 for both the “identification” and “identifica-
tion+classification” settings. All hyper-parameters
are based on the officially released code.

Results in Table 4 show that with the help of
the pre-training step, our model can outperform all
previous supervised models on the identification

4Several other recent works (e.g., OnelE (Lin et al., 2020))
further improves the performance on event extraction by utiliz-
ing the constraints between trigger and arguments. However,
as such information is not available in MAVEN and extract-
ing arguments is beyond the research scope of this paper, we
cannot compare with them.

Shitps://github.com/THU-KEG/MAVEN-dataset

task and comparable performance on the classifi-
cation task. This makes sense because a carefully
designed deep model could learn to identify and
classify event mentions well with the large-scale
annotation provided by MAVEN.

However, we argue that such a large-scale an-
notation is often expensive in terms of money and
time. The data-scarce learning setting might be
more applicable in real applications. Thus, we also
test the performance of these supervised settings
under the data-scarce learning setting. Specifically,
we randomly select 1% to 10% of the training sen-
tences to be sampled from the training data and
report the performances in Figure 5. Our model
can constantly outperform baseline models with
a small number of annotations. Especially when
only 1% of the data is available, we only have 7.07
mentions per event type, ZED could achieve over
50 F1. With 10% of the training data, ZED could
achieve over 95% of full supervised performance.
These observations show that our framework could
be applied to broader applications where limited
or enough annotations are available besides the
zero-shot setting. Besides that, another interesting
finding is that even though “BERT+CRF” could
outperform “DMBERT” slightly when enough an-
notation is available, which is consistent with the
observations in (Wang et al., 2020b), its perfor-
mance is worse under the data-scarce setting. This
observation indicates that using CRF might not be
the optimal option when the annotation scale is
limited.

8 Conclusion

This paper proposes a novel zero-shot event ex-
traction framework ZED. Given a set of interested
event types in the format of definitions, ZED could
automatically extract all the event mentions that fit
the definitions from raw documents much better
than previous methods. Experiments show that the
proposed warming phase and the mixed strong neg-
ative examples sampling strategies contribute to the
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success of ZED. Additional experiments also show
that ZED could be applied to the supervised setting.
Thanks to the pre-training phase, it could achieve
good performance under both the fully supervised
and data-scarce settings.
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A MAVEN Ontology Demonstration

Name | Definition

Manufacturing | make or cause to be or to become
Achieve to gain with effort
Communication | express in words

Employment engage or hire for work

Process_start

Theft
Legal_rulings
Influence
Give_up

Catastrophe

take the first step or steps in carrying
out an action

take without the owner’s consent
pronounce a sentence in a court of law
have an effect upon

give up, such as power, as of monar-
chs and emperors, or duties and obli-
gations

a violent weather condition

Table 5: Representative MAVEN event types and asso-
ciated definitions. All used definitions will be released

with the code.
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