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Abstract

Machine learning models often suffer from
a performance drop when they are applied
to out-of-distribution (OOD) samples, i.e.,
those drawn far away from the training data
distribution. Existing OOD detection work
mostly focuses on identifying semantic-shift
OOD samples, e.g., instances from unseen new
classes. However, background-shift OOD de-
tection, which identifies samples with domain
or style-change, represents a more practical yet
challenging task. In this paper, we propose
Background-Aware Representation Learning
(BARLE) for background-shift OOD detection
in NLP. Specifically, we generate semantics-
preserving background-shifted pseudo OOD
samples from pretrained masked language mod-
els. We then contrast the in-distribution (ID)
samples with their pseudo OOD counterparts.
Unlike prior semantic-shift OOD detection
work that often leverages an external text cor-
pus, BARLE only uses ID data, which is
more flexible and cost-efficient. In experi-
ments across several text classification tasks,
we demonstrate that BARLE is capable of im-
proving background-shift OOD detection per-
formance while maintaining ID classification
accuracy. We further investigate the properties
of the generated pseudo OOD samples, uncov-
ering the working mechanism of BARLE.

1 Introduction

Most state-of-the-art NLP models are evaluated
with the assumption that the training data and test-
ing data is drawn from the same distribution. How-
ever, when models are deployed in real-world set-
tings, this assumption can be easily violated, and
current NLP models tend to suffer from drastic per-
formance drops on out-of-distribution (OOD) data
(Hein et al., 2019; Hendrycks and Gimpel, 2016;
Nguyen et al., 2015). Identifying OOD samples
and distinguishing them from in-distribution (ID)
ones, known as OOD detection, plays an essential
role in a wide range of NLP applications (Kamath

et al., 2020; Kumar and Sarawagi, 2019; Mukherjee
and Awadallah, 2020).

Existing OOD detection methods in NLP mostly
focus on identifying semantic-shift OOD samples
(e.g., samples from unseen classes) (Yilmaz and
Toraman, 2020; Zhan et al., 2021; Shu et al., 2017).
However, Arora et al. (2021) point out that it is
rare to encounter semantic-shift OOD inputs in
real-world settings. In practice, background-shift
OODs may be more pervasive. These are sam-
ples that belong to the same task as the ID data,
but with a shift on background features, such as
changes in the domain or the style of the text (Ren
et al., 2019). For instance, a topic classification
model trained on news articles (ID) vs. tweet mes-
sages (OOD), or a sentiment classification model
trained on movie reviews (ID) vs. product reviews
(OOD). Background-shift OOD detection repre-
sents a more practical yet challenging task. For
example, consumer-facing manufacturers are rou-
tinely interested in building sentiment classifica-
tion models to understand consumer sentiment for
product-related issues in online reviews. How-
ever, such reviews also contain non-product de-
sign/aspect related reviews (such as retailer ship-
ping and customer service experiences). If the sen-
timent classification model is applied to this review
dataset without identifying the background-shift
OODs (i.e., non-product design/aspect related re-
views), the model may result in a lower prediction
performance and thus negatively affect the com-
pany’s decision on product-related issues. Other
applications of background-shift OOD include psy-
chometric NLP tasks such as inferring users’ trust,
anxiety, and literacy across domains like health and
finance (Ahmad et al., 2020; Abbasi et al., 2021).

In this work, we propose an efficient and effec-
tive approach for background-shift OOD detection.
First, our approach does not require any external
data. Prior OOD detection methods often rely on
external text corpora to simulate the OOD sam-
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ples and learn ID-specific representations (Chen
and Yu, 2021; Hendrycks et al., 2018; Xu et al.,
2021). However, it is difficult to decide which ex-
ternal data to use, and the choice of the external
dataset is critical for successful OOD detection
(Hendrycks et al., 2018). Moreover, incorporat-
ing prior knowledge in choosing OOD data for
training may introduce inductive bias to the OOD
detector (Arora et al., 2021). In our work, we uti-
lize pretrained language models (e.g., DistilBERT
(Sanh et al., 2019), BERT (Devlin et al., 2018)) and
perform a masked language modeling heuristic to
generate semantics-preserving background-shifted
pseudo samples from the ID data. For instance, a
sentiment classification ID example “a sane and
breathtakingly creative film” might be mapped to a
pseudo example “a massive and perfectly executed
painting”, where the background features (film) are
replaced but the positive semantics is preserved.
By taking advantage of pretrained language mod-
els, we can obtain better quality pseudo OODs in a
more principled manner.

Second, we design a background-aware con-
trastive loss to push the ID training samples apart
from their pseudo OOD counterparts. Combined
with another semantic contrastive loss, the learned
representations are not only semantically distin-
guishable (which is important for the main task)
but also encode rich ID background information
(which is important for OOD detection). We
then employ an existing OOD scoring mechanism
(Hendrycks and Gimpel, 2016; Liu et al., 2020; Lee
et al., 2018; Zhou et al., 2021) to map the learned
background-aware representation to a scalar that
indicates the OOD likelihood.

Our approach is named BARLE, short for
Background-Aware Representation Learning for
identifying background-shift OODs. In experi-
ments across several text classification tasks, we
show that BARLE achieves superior performance
in identifying background-shift OOD samples
while maintaining the ID task performance. This
implies that BARLE can be used as a 2-in-1 model
which not only delivers desirable performance for
the ID task, it can also detect any suspicious OOD
samples. We also investigate the properties of gen-
erated pseudo OOD samples to better understand
the working mechanism of BARLE, which may
shed light on future OOD detection work. The
code is publicly available via GitHub. 1

1https://github.com/hduanac/BARLE. Our implemen-

2 Related Work

Out-of-Distribution Detection. Out-of-
distribution (OOD) detection is one of the
essential ingredients in building safe and reliable
intelligent systems (Amodei et al., 2016; Caruana
et al., 2015; Eykholt et al., 2018). OOD detection
aims at identifying examples that diverge from the
training distribution during inference. According
to the literature (Ren et al., 2019; Yang et al.,
2021; Arora et al., 2021), OOD samples can
be categorized into semantic-shift OODs and
background-shift OODs, based on whether the
distribution shift is dominated by changes in the
semantic or background features, respectively.
Semantic-shift OOD detection assumes that the
class of an OOD sample does not belong to any of
the ID classes. Thus, some OOD detection work
directly uses the model’s confidence score output
(such as softmax probabilities) to indicate the
likelihood of OODs (Hendrycks and Gimpel, 2016;
Liu et al., 2020; Granese et al., 2021). Instead
of directly leveraging the model’s outputs, other
approaches learn a predictive model to detect
OOD samples (Li et al., 2021; Zhan et al., 2021;
Chen and Yu, 2021; Xu et al., 2020; Chen et al.,
2020a; Yan et al., 2020; Mohseni et al., 2020).
Compared to the semantic-shift OODs, samples
with background shifts are more common and are
also more difficult to identify (Arora et al., 2021).
However, despite its prevalence, background-shift
OOD detection has attracted limited attention. Our
work aims to fill this research gap.
Contrastive Learning for OOD Detection. Con-
trastive learning has shown remarkable success in
representation learning across different domains
and tasks (Chen et al., 2020b; He et al., 2020;
Giorgi et al., 2020), and has also been used for
OOD detection in NLP (Zeng et al., 2021a,b; Zhou
et al., 2022, 2021; Mou et al., 2022). However,
most prior works using contrastive learning focus
on semantic-shift OOD detection, where the con-
trastive OOD samples are usually constructed from
external corpora belonging to different NLP tasks.
Our work is novel in that we study background-
shift OOD detection - the contrastive samples and
contrastive learning objectives are different from
prior work.
Data Generation with PLMs. Recent research
has shown great interest in leveraging pretrained

tation is adapted from Zhou et al. (2021), we greatly appreciate
the authors for releasing the code to the community.
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language models (PLMs) to generate data for en-
hancing the performance of NLP tasks (Min et al.,
2021), such as information extraction (IE) (Guo
and Roth, 2021; Veyseh et al., 2021), sentiment
analysis (SA) (Yu et al., 2021; Li et al., 2020),
dataset generation (Schick and Schütze, 2021) and
few shot learning (Schick and Schütze, 2020). To
the best of our knowledge, no prior work has lever-
aged PLMs to augment ID samples and facilitate
OOD detection, and our work demonstrates that
this is a viable solution.

3 Method

3.1 Problem Formulation

We now formally define the background-shift OOD
detection task. For a given dataset DID =
{(xm, ym)}Mm=1 sampled from a data distribu-
tion PID(X ,Y) (i.e., in-distribution), our goal
is to build an OOD detector from DID to iden-
tify whether an arbitrary input x is drawn from
the ID data distribution (i.e., PID(X ,Y)) at infer-
ence time or not. We consider an input (x, y) to
be a background-shift OOD sample if (x, y) ∼
POOD(X ,Y) ̸= PID(X ,Y), i.e., it is generated
from a data distribution other than the ID data dis-
tribution PID(X ,Y) but its class y belongs to one
of the ID classes. We aim to learn an encoder
ϕ(x) : X → H that maps an instance x to a hid-
den representation h ∈ H. Then an OOD scoring
mechanism further maps the hidden representation
h to a scalar indicating the likelihood of the input
x being OOD.

3.2 An Overview of BARLE

The overall framework of our proposed BARLE
method is shown in Figure 1, and the procedure
pseudocode is presented in Algorithm 1. It is com-
posed of two major phases. In the first phase (§3.3),
we generate pseudo OOD samples using ID train-
ing data by performing masked language modeling
(MLM) with pretrained language models. This
phase aims at synthesizing semantics-preserving
background-shifted pseudo OOD samples. In the
second phase (§3.4), we use contrastive learning on
both the pseudo OOD samples and the ID training
samples. We hope to learn background-aware and
semantic-aware representations that can benefit not
only the OOD detection but also the main task. Fi-
nally, given the learned representations, an OOD
scoring mechanism is applied to identify the OOD
likelihood.

Algorithm 1 Background-Aware Representation
Learning (BARLE)

Input: ID training set DID and ID dev set Ddev.
Output: Main task classifier with OOD detector.

/* Initialization step*/
Load the generator G and main task model M .
/* Pseudo OOD generation step */
for x in DID do

Generate xpseudo for x using G.
Add xpseudo to Dpseudo.

/* Contrastive representation learning step */
for t = 1, . . . T do

Sample from DID and Dpseudo ∪ DID.
Calculate LCE , LconS , and LconB .
Total loss: L = LCE + αLconS + βLconB .
Update the model parameters by L.
/* Evaluation step */
if t%stepseval == 0 do

Evaluate M with Ddev.
Return the best model.

3.3 Pseudo OOD Sample Generation

We leverage a pretrained masked language model
to generate pseudo OOD samples using ID train-
ing data in a principled manner. To facilitate
background-shift OOD detection, we expect to
generate semantics-preserving background-shifted
pseudo samples. Specifically, for a given instance
x from the ID training set, we take a pretrained
masked language model (such as BERT or Distil-
BERT), denoted as the generator G, to produce a
corresponding pseudo sample xpseudo.

The generation process works as follows. The
first step is to perform token masking. Given
an instance x = [x1, x2, . . . , xn] as the input
to the generator G, say a sentence with n to-
kens, we randomly select one position m (an in-
teger between 1 and n) to mask out. The to-
ken of the selected position m is replaced with
a [MASK] token. We denote the masked instance
as xmasked = REPLACE(x,m, [MASK]). The
second step is to predict the masked token. The
generator produces an output distribution over
all the tokens in the vocabulary for that masked-
out position, i.e., PG(xm | xmasked). We sam-
ple a token from this distribution (i.e., x̂m ∼
PG(xm | xmasked)) to replace the original token,
i.e., xpseudo = REPLACE(x,m, x̂m). Instead
of sampling from the entire vocabulary, we sam-
ple the target token from a candidate set composed
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Figure 1: Illustration of BARLE process. Pseudo OODs are generated from pretrained masked language models,
and contrastive losses are applied to learn background-aware representations. The traditional cross-entropy training
scheme may fail to detect background-shift OODs.

of the tokens with top-k highest probabilities be-
cause we want to avoid syntactic and semantic er-
rors in the generated text. We apply the two steps
iteratively until the replacement ratio ρ, the per-
centage of replaced tokens, achieves a pre-defined
threshold. Finally, we add both the ID examples
and the corresponding OOD samples together as
DID ∪ Dpseudo for subsequent use.

We provide some examples of the generated
pseudo OOD samples in Table 1. The examples
provide us an intuitive understanding of the pro-
posed pseudo OOD generation mechanism. We
can observe that the background features such as
movie and film of the ID data shift to diverse do-
main features such as painting and web, whereas
the sentiment features are well-preserved in the
generated pseudo OOD samples. Moreover, we
also empirically show, in the experiment section,
that the generated pseudo samples data can indeed
preserve semantics but with background shift (See
Figure 2).

3.4 Contrastive Representation Learning
We now present how to effectively utilize the
pseudo OOD samples (§3.3) for background-shift
OOD detection.
Contrasting Background-Shifted Instances. In
prior works, most contrastive learning schemes ap-
plied to OOD detection problems act by pulling in-
stances from the same semantic class closer while
pushing samples with different class labels apart
(Zeng et al., 2021a,b; Zhou et al., 2021). However,
this may fail to detect background-shift OOD sam-
ples because such learning processes are mainly
based on contrasting semantic features, while the
background features are ignored. In other words,
prior semantic-shift OOD detection works may
very well distinguish a sentiment review from a
machine translation text, but they may not tell a

movie review apart from a restaurant review.
To address this issue, we propose to contrast

the ID training samples with their semantics-
preserving background-shifted augmentations (i.e.,
the pseudo OOD samples) to encode the ID back-
ground information into the learned representations.
We utilize a margin-based contrastive loss (Chopra
et al., 2005). Specifically, we first sample a batch of
instances B = {xi}Ni=1 from DID ∪ Dpseudo, and
let xi be a query instance drawn from the batch. If
xi is an ID sample, all the ID samples in the batch
except the query instance construct the positive set
{x+

i }, and the negative set {x−
i } is composed of

all the pseudo OOD samples in the batch. Similarly,
if xi is a pseudo OOD sample, the positive set con-
sists of all the pseudo OOD samples in the batch
except xi, and all the ID samples in the batch con-
struct the negative set. Formally, we denote the an-
chor set of the query instance xi as A(xi) = B\xi.
Then the positive set and the negative set are de-
fined as {x+

i } = {p ∈ A(xi) : yi = yp} and
{x−

i } = {n ∈ A(xi) : yi ̸= yn}, respectively.
The background contrastive loss is formulated as:

Lpos(xi, {x+
i }) =

∑

x′
i∈{x+

i }

∥ ϕ(xi)− ϕ(x′
i) ∥2, (1)

Lneg(xi, {x−
i }) =

∑

x′
i∈{x−

i }

(ξ − ∥ ϕ(xi)− ϕ(x′
i) ∥2)+,

(2)

LconB =
1

N
(
∑

x∈B

1

| {x+} |Lpos(x, {x+})

+
∑

x∈B

1

| {x−} |Lneg(x, {x−})), (3)

where the margin ξ is defined following the prior
work (Zhou et al., 2021) as the maximum distance
between pairs of instances from the same class in a
batch, and ϕ(x) denotes the hidden representation
(i.e., the input to the softmax layer) of an instance.
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Original ID examples Generated pseudo OOD examples
the great films about movie love. (+) the great songs about philippine theater. (+)

the film runs on a little longer than it needs to. (-) the lawsuit stalled on a price cheaper than it intended to. (-)
the movie is brilliant, really. (+) the decor is clean, flawless. (+)

without having much dramatic impact. (-) without having real economic implications. (-)
an extremely unpleasant film. (-) an extremely sour odor. (-)

a sane and breathtakingly creative film. (+) a massive and perfectly executed painting. (+)
this disappointed by a movie in a long time. (-) this follows by a break in a limited budget. (-)

it ’s still unusually crafty and intelligent for hollywood horror. (+) it’s therefore fairly creative and exciting for web designers. (+)

Table 1: Generated pseudo OOD examples with their corresponding ID examples sampled from the SST2 dataset.
The "+" denotes the positive sentiment label and "-" denotes the negative sentiment label. We highlight (underline)
the potential background words with blue (dashed line) and sentiment words with red (solid line).

Contrasting Semantically Different Instances.
We use another contrastive loss that contrasts se-
mantically different instances. The idea is to learn
compact semantic representation clusters, which
may facilitate the main task performance. Similarly,
we define the semantics contrastive loss as:

LconS =
1

N
(

∑

x∈BID

1

| {x+} |Lpos(x, {x+})

+
∑

x∈BID

1

| {x−} |Lneg(x, {x−})), (4)

where BID denotes a batch of instances sampled
from the ID training set DID, and the positive set
and negative set are constructed based on the class
label of the main task. The model is also trained
with cross-entropy loss LCE . We formulate the
overall total training loss as:

L = LCE + αLconS + βLconB , (5)

where α and β control the strengths of the seman-
tics contrasting and the background contrasting,
respectively, both of which are tuned on the ID de-
velopment set. With this loss, we expect the model
to learn background-aware and task-specific repre-
sentations that benefit not only the OOD detection
but also the main task.

Finally, we use an OOD scoring mechanism to
map the learned hidden representation to a scalar
indicating the likelihood of the instance being an
OOD sample. Various scoring mechanisms have
been proposed such as MSP (Hendrycks and Gim-
pel, 2016), Energy (Liu et al., 2020), MHLNB (Lee
et al., 2018) and Cosine (Zhou et al., 2021), and our
proposed training scheme is scoring mechanism-
agnostic. A brief introduction of these four scoring
mechanisms and how they work with BARLE are
presented in Appendix A.

4 Experiments

4.1 Datasets

We consider two NLP tasks in the experiments:
topic categorization and sentiment classification.
For topic categorization, we use the Yahoo-
AGNews-five testbed (Li et al., 2021). This dataset
is composed of a subset of Yahoo!Answers as the
ID data, and a subset of AGNews Corpus as the
OOD data 2. The two datasets share the same label
space, but their text style shifts.

For sentiment classification, we use three pop-
ular datasets (i.e., SST2, IMDB, and Amazon).
Among the three datasets, SST2 and IMDB encom-
pass movie reviews, whereas Amazon includes on-
line consumer reviews of Amazon products (Blitzer
et al., 2007). For the Amazon data, consistent with
prior work, we retain the reviews from four cate-
gories (i.e., Books, DVDs, Electronics, and Kitchen
appliances) to simulate the text domain shift sce-
nario. The statistics of these datasets are shown
in Table 2. These datasets have all been used in
prior work for benchmarking semantic shift OOD
detection (Hendrycks et al., 2020; Li et al., 2021).

Dataset # ID training # ID dev # ID test # OOD test # Class
Yahoo-AGNews-five 10,000 2,500 2,500 2,500 5

SST2 67,349 872 1821 - 2
IMDB 22,500 2,500 25,000 - 2

Amazon 6,400 800 800 - 2

Table 2: Statistics of the datasets.

We then construct the ID/OOD dataset pairs for
background-shift OOD detection by pairing the
datasets belonging to the same task, summarized
in Table 3. We train the model on the ID training
set, and the ID development set is used for param-

2The ID instances are selected from 5 classes (i.e.,
“Health”, “Science & Mathematics”, “Sports”, “Entertain-
ment & Music”, and “Business & Finance”) of the original
Yahoo!Answers, and the OOD set is constructed by the sam-
ples of the original AG Corpus from “Health”, “Sci/Tech”,
“Sports”, “Entertainment”, and “Business”.
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eter tuning. We evaluate the model’s main task
performance on the ID test set. The OOD detection
performance is assessed on the OOD test set.

Task ID dataset OOD dataset
Topic categorization Yahoo!Answers AGNews

Sentiment classification

SST2
IMDB

Amazon

Amazon
IMDB
SST2

Amazon-Books
Amazon-DVDs

Amazon-Electronics
Amazon-Kitchen

Table 3: ID/OOD setups in the experiments.

4.2 Evaluation Metrics and Benchmarks
Evaluation Metrics. For OOD detection, we con-
sider two commonly used metrics following prior
work (Hendrycks and Gimpel, 2016; Lee et al.,
2018), i.e., the AUROC and the FAR95. AUROC
measures how much the model can distinguish the
OOD samples from ID samples. Higher AUROC
scores indicate better OOD detection capabilities,
and a random guess detector would have an AU-
ROC score of 0.5. FAR95 can be interpreted as the
probability that an OOD sample (negative) is mis-
classified by the detector as an ID sample (positive)
when the true positive rate (TPR) is equal to 95%.
A lower FAR95 value indicates better OOD detec-
tion performance. We use classification accuracy
(ACC) as the main task metric.
Benchmarks. Prior work has empirically showed
that existing approaches for semantic-shift OOD
detection perform poorly on background-shift
OOD detection tasks, and there is little work on
background-shift OOD detection (Arora et al.,
2021; Li et al., 2021). Therefore, to choose suitable
benchmarks to compare with, we consider the fol-
lowing two approaches. We first consider training
the ID model using the vanilla cross-entropy loss
on the ID data, only. We denote this benchmark
as “Vanilla” (VAN). The second benchmark fol-
lows existing semantic shift OOD detection work
by using an arbitrarily chosen external dataset as
the pseudo OODs. We denote this benchmark as
“External” (EXT). Following (Zhou et al., 2021),
we choose the English text of a machine transla-
tion dataset (i.e., English-German WMT16 (Bojar
et al., 2016)) as the auxiliary external data for EXT.
In addition, we consider a density-based method
(PPL) following (Arora et al., 2021). Specifically,
we fine-tune GPT-2 (Radford et al., 2019) on the
original ID data, and use the token perplexity as the

OOD score. We implement the officially pretrained
GPT-2Small using the transformers library 3.

4.3 Hyperparameter Settings

For pseudo OOD generation, we use the replace-
ment ratio in the range of {0.1, 0.3, 0.5, 0.7, 0.9}
and set the candidate size to 100. We do not
substitute stopwords and synthesize pseudo OOD
samples for all the ID training instances. For
the representation learning, we build the classifier
upon the officially pretrained RoBERTa (Liu et al.,
2019) and BERT (Devlin et al., 2018) with differ-
ent model scales using the transformers library4.
The model is optimized by AdamW (Loshchilov
and Hutter, 2017) with 0.01 weight decay and 0.06
warmup ratio. We choose the learning rate from the
range of [1e−7, 1e−6], and we use a batch size of
8. The maximum sequence length is set to 256, and
the parameters are tuned based on the contrastive
loss and the classification performance on the ID
development set.

To make it easier for practitioners to integrate
BARLE in their working pipelines, we provide a
guidance on hyperparameter selection as follows.
For the replacement ratio ρ, we recommend ad-
justing it based on the average length of input text.
In general, we recommend setting a larger ratio
(e.g., 0.5) for longer input text (e.g., hundreds of
words on average) and smaller ratio (e.g., 0.1) for
those with only dozens of words. For the number
of generated pseudo OOD samples, we generate
one pseudo OOD for one ID training example. As
noted (§6), selecting informative pseudo OODs for
efficient OOD detection may constitute an interest-
ing future direction. For the top candidate k, as we
demonstrate in Figure 3, values that are too large
or too small will not generate favourable pseudo
OOD examples for the subsequent detection. We
recommend a moderate size of 100 as a sensible
default value.

4.4 Background-Shift OOD Detection Results

We use DistilBERT (Sanh et al., 2019) as the gen-
erator to synthesize pseudo OOD samples 5 us-
ing the nlpaug library (Ma, 2019). We tune and
set the contrastive loss hyperparameter α and β to

3https://huggingface.co/gpt2
4https://github.com/huggingface/transformers
5We also use BERT (Devlin et al., 2018) as the generator

and find that the results are consistent. Thus we use Distil-
BERT in the experiments for its small scale and the efficiency
purpose.
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1.5 and 2.0 in the experiments. We use four dif-
ferent OOD scoring mechanisms, including MSP
(Hendrycks and Gimpel, 2016), Energy (Liu et al.,
2020), MHLNB (Lee et al., 2018) and Cosine
(Zhou et al., 2021). Details about the scoring mech-
anisms appear in Appendix A.

The main experimental results (with RoBERTa-
Large as the underlying model) appear in Table
4, Table 5 and Table 6. Full results using other
pretrained models (RoBERTa-Base and BERT-
Large/Base) are presented in Appendix B. First, we
see that BARLE significantly outperforms bench-
marks VAN and EXT on OOD detection, and
the performance lift is consistent across tasks and
datasets. The improvement over EXT indicates
that our pseudo OOD generation is more effec-
tive than an arbitrary external dataset. Second, we
find that BARLE gets more significant gains when
combined with the density-based scoring mecha-
nisms (i.e., MHLNB, and Cosine) compared with
the calibration-based ones (MSP and Energy). We
interpret this as follows: both density-based meth-
ods and our proposed contrastive losses work on the
same hidden representation space so that such scor-
ing mechanisms can directly benefit from the con-
trastively learned representations. This is consis-
tent with (Arora et al., 2021) that density estimation
methods can better account for background infor-
mation shifts. We also examine the model’s main
task classification accuracy on the ID testbed. The
results appearing in Appendix C show that BARLE
maintains desirable main task performance.

ID dataset Model OOD metrics
AUROC ↑ FAR95 ↓

Yahoo!Answers

AGNews
PPL

GPT-2 0.596 0.942
VAN

RoBERTa-Large w/ MSP 0.696 0.864
RoBERTa-Large w/ Energy 0.740 0.778
RoBERTa-Large w/ MHLNB 0.888 0.436
RoBERTa-Large w/ Cosine 0.796 0.630

EXT
RoBERTa-Large w/ MSP 0.704 0.885
RoBERTa-Large w/ Energy 0.775 0.722
RoBERTa-Large w/ MHLNB 0.945 0.288
RoBERTa-Large w/ Cosine 0.883 0.498

BARLE
RoBERTa-Large w/ MSP 0.747 0.853
RoBERTa-Large w/ Energy 0.788 0.764
RoBERTa-Large w/ MHLNB 0.960 0.218
RoBERTa-Large w/ Cosine 0.922 0.337

Table 4: Topic categorization OOD detection.

Ablation Study To conduct an ablation analysis
on the contrastive objectives, we turn off the se-
mantics loss and background loss by setting α
and β in Equation 5 to zero, respectively. The
results on topic categorization and the SST2/IMDB

ID dataset Model OOD metrics
AUROC ↑ FAR95 ↓ AUROC ↑ FAR95 ↓

Amazon

IMDB SST2
PPL

GPT-2 0.504 0.890 0.932 0.324
VAN

RoBERTa-Large w/ MSP 0.600 0.934 0.950 0.302
RoBERTa-Large w/ Energy 0.592 0.931 0.964 0.216
RoBERTa-Large w/ MHLNB 0.537 0.964 0.947 0.411
RoBERTa-Large w/ Cosine 0.545 0.964 0.837 0.666

EXT
RoBERTa-Large w/ MSP 0.596 0.926 0.971 0.085
RoBERTa-Large w/ Energy 0.568 0.932 0.962 0.210
RoBERTa-Large w/ MHLNB 0.727 0.904 0.982 0.059
RoBERTa-Large w/ Cosine 0.653 0.932 0.971 0.140

BARLE
RoBERTa-Large w/ MSP 0.618 0.931 0.978 0.034
RoBERTa-Large w/ Energy 0.604 0.931 0.968 0.236
RoBERTa-Large w/ MHLNB 0.803 0.650 0.992 0.003
RoBERTa-Large w/ Cosine 0.722 0.813 0.985 0.058

SST2

IMDB Amazon
PPL

GPT-2 0.919 0.271 0.875 0.486
VAN

RoBERTa-Large w/ MSP 0.756 0.890 0.744 0.926
RoBERTa-Large w/ Energy 0.770 0.886 0.745 0.891
RoBERTa-Large w/ MHLNB 0.993 0.018 0.989 0.043
RoBERTa-Large w/ Cosine 0.989 0.043 0.982 0.089

EXT
RoBERTa-Large w/ MSP 0.908 0.600 0.769 0.793
RoBERTa-Large w/ Energy 0.861 0.997 0.740 0.968
RoBERTa-Large w/ MHLNB 0.999 0.001 0.980 0.064
RoBERTa-Large w/ Cosine 0.997 0.006 0.909 0.238

BARLE
RoBERTa-Large w/ MSP 0.927 0.520 0.845 0.706
RoBERTa-Large w/ Energy 0.870 0.996 0.795 0.975
RoBERTa-Large w/ MHLNB 0.999 0.001 0.998 0.010
RoBERTa-Large w/ Cosine 0.999 0.003 0.994 0.020

Table 5: Sentiment classification OOD detection.

pair appear in Table 7. From the results, we can
see that applying either the semantics-contrastive
loss or the background-contrastive loss can out-
perform the one with the cross-entropy loss ap-
plied only. Moreover, applying the background-
contrastive loss are more effective than applying
the semantics-contrastive loss for background-shift
OOD detection, and applying both can further im-
prove the performance. The results on all eight
ID/OOD pairs are presented in Appendix D.

4.5 Analysis of the Pseudo OOD samples
Visualization of feature distributions. Pseudo
OOD sample generation using PLMs is a critical
component in our work. Here, we compare the
pseudo OOD feature distributions with that of the
ID data. We use the SST2 dataset in this analy-
sis. Following (Ren et al., 2019), we investigate
the semantic feature and background feature dis-
tributions respectively. To capture the semantic
features, we utilize the VADER lexicon 6 to obtain
sentiment scores of ID samples and pseudo OOD
samples. We compare their sentiment polarity dis-
tributions in Figure 2 (left). We can observe that
these two distributions are very well-overlapped,
which indicates that the semantic meanings of the
ID samples are well-preserved in the generated

6https://www.nltk.org/api/nltk.sentiment.
vader.html
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ID dataset Model OOD metrics
AUROC ↑ FAR95 ↓ AUROC ↑ FAR95 ↓ AUROC ↑ FAR95 ↓

Books

Kitchen Electronics DVDs
PPL

GPT-2 0.524 0.900 0.555 0.850 0.556 0.861
VAN

RoBERTa-Large w/ MSP 0.699 0.928 0.724 0.924 0.573 0.947
RoBERTa-Large w/ Energy 0.647 0.944 0.717 0.913 0.547 0.948
RoBERTa-Large w/ MHLNB 0.750 0.889 0.786 0.840 0.571 0.961
RoBERTa-Large w/ Cosine 0.684 0.928 0.746 0.904 0.503 0.965

EXT
RoBERTa-Large w/ MSP 0.696 0.952 0.727 0.937 0.559 0.939
RoBERTa-Large w/ Energy 0.699 0.955 0.725 0.932 0.561 0.922
RoBERTa-Large w/ MHLNB 0.756 0.928 0.779 0.923 0.618 0.940
RoBERTa-Large w/ Cosine 0.724 0.920 0.763 0.907 0.600 0.923

BARLE
RoBERTa-Large w/ MSP 0.723 0.950 0.770 0.923 0.575 0.919
RoBERTa-Large w/ Energy 0.704 0.954 0.762 0.932 0.579 0.925
RoBERTa-Large w/ MHLNB 0.772 0.898 0.804 0.866 0.665 0.857
RoBERTa-Large w/ Cosine 0.757 0.907 0.811 0.888 0.628 0.895

Table 6: Sentiment classification OOD detection, on the subsets (Books, Kitchen, Electronics, and DVDs) of
Amazon review data.

Task α/β
OOD metric ID metric

AUROC ↑ FAR95 ↓ ACC ↑

Topic categorization
(Yahoo!Answers / AGNews)

- / - 0.780 0.677 0.829
+ / - 0.792 0.636 0.822
- / + 0.843 0.553 0.842
+ / + 0.854 0.543 0.830

Sentiment classification
(SST2 / IMDB)

- / - 0.877 0.459 0.960
+ / - 0.899 0.438 0.956
- / + 0.927 0.424 0.947
+ / + 0.949 0.380 0.954

Table 7: Ablation study on the contrastive losses. The
"-" and "+" denote setting the corresponding parameters
to zeros or not respectively. The results are averaged
across four scoring mechanisms.

pseudo OOD samples. To examine the background
features, we first train a doc2vec (Le and Mikolov,
2014) model with the ID training samples for cap-
turing the surface ID background information. For
each ID test sample and each pseudo OOD sam-
ple, we retrieve their most similar instances in the
ID training set and calculate their cosine similarity
scores. We plot the similarity score distributions in
Figure 2 (right). We can see a clear distributional
shift, which reflects the differences of the back-
ground statistics between the ID data and the gener-
ated pseudo OOD data. This analysis validates
that BARLE can generate semantics-preserving
background-shifted pseudo OOD samples.

Hard Examples. The quality of pseudo OOD sam-
ples is a common concern for OOD detection in
prior works, as they often use external text corpus
as OODs. In this analysis, we show that our gen-
erated pseudo OOD samples are “hard” negative
examples whose native representations are located
near the ID distribution. This is important because
Robinson et al., 2020 show that contrastive learning

Figure 2: Semantic feature distributions (left) and back-
ground similarity distributions (right) for the ID and
pseudo OOD samples via kernel density estimation.

can benefit from “hard” negative examples. Specif-
ically, we fit a multivariate Gaussian distribution
on the ID training (i.e., Amazon) examples’ hidden
representations. We then measure the distance be-
tween the estimated distribution and each instance
from the ID test set, the pseudo OOD set, and an
arbitrarily chosen external set (i.e., WMT16) using
the Mahalanobis distance metric. We visualize the
distance distributions on a log scale in Figure 4.
It shows that the pseudo OOD samples generated
by BARLE are distributed much more closely to
the ID samples on the hidden representation space
compared with the arbitrarily chosen external in-
stances, which shows that our generated pseudo
OOD samples are hard examples. On the contrary,
the external data distributions are far away from
the ID test, indicating that they are easy negative
examples so that contrastive learning may not suffi-
ciently learn ID-specific information. This analy-
sis also reveals that the common strategy of using
external text corpora for background-shift OOD
detection may not be effective.
Sensitivity Analysis. As part of our sensitivity
analysis on pseudo OOD sample generation, we
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Figure 3: Average OOD detection performances evaluated under different number of pseudo OOD samples (left),
candidate sizes (mid), and replacement ratios (right). The candidate size "All" represents the entire vocabulary.

Figure 4: Distance distributions between ID training
(Amazon data) and ID test, Pseudo OODs (our ap-
proach), and an external dataset respectively.

study the impact of 1). the number of pseudo OOD
samples, 2). the candidate size k, and 3). the
replacement ratio ρ on the OOD detection perfor-
mance. The analysis is conducted on the Yahoo-
AGNews-five dataset and the results appear in Fig-
ure 3. Note that the AUROC score is averaged
across the four scoring mechanisms. First, the
OOD detection can benefit from a large number
of pseudo OOD samples. In the main experiments,
we generate one OOD sample for each of the ID
samples, which corresponds to 10,000 OOD sam-
ples for this task. By decreasing the total number
of pseudo OOD samples, we can see that the OOD
detection performance decreases (Figure 3 (left)).
Second, candidate size k denotes the number of
top-k highest probability words to be considered
for data augmentation. Figure 3 (mid) shows that
neither large candidate size nor small candidate
size produces optimal detection performance. This
implies that we should adjust the candidate size
according to the specific downstream tasks. Third,
overly diversified pseudo OOD samples (i.e., large
replacement ratio) cannot benefit OOD detection
substantially (Figure 3 (right)). This is expected be-
cause the semantic features are likely to be changed

in the pseudo OOD samples if the replacement ra-
tio is large, and that would violate our objective of
having semantics-preserving pseudo samples.

5 Conclusion

In this work, we propose a simple yet effec-
tive method for background shift OOD detection.
Our method leverages pretrained language mod-
els to synthesize semantics-preserving background-
shifted pseudo OOD samples from the ID training
data. By contrasting the ID training samples with
the their pseudo OOD counterparts, our proposed
training scheme learns background-aware represen-
tations and improves OOD detection performance.
Additional analyses on the properties of the gener-
ated pseudo OOD samples also validates our design
effectiveness. We believe our work sheds new light
on OOD detection for building robust NLP systems.
As noted, possible applications include an array of
NLP-based user modeling tasks including inferring
psychometrics, text-based personality detection in
forums and social media (Yang et al., 2022), and
stylometric authorship identification where style is
the primary task and topics and genres are back-
ground (Abbasi and Chen, 2008).

6 Limitations

This work has several limitations that can be im-
proved in future research. First, we do not evalu-
ate the effectiveness of our proposed method on
semantic-shift OOD detection, since our main fo-
cus is background-shift OOD detection. Future
work can build upon our pseudo OOD generation
approach and further investigate its performance on
semantic-shift OOD detection, or develop a unified
framework that can detect OODs of different kinds.
Second, our approach generates one pseudo OOD
for each of the ID training sample. This may not be
very efficient for large datasets. Therefore, select-
ing informative pseudo OODs for efficient OOD
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detection may constitute an interesting future direc-
tion. Third, our experiments are conducted on two
text classification tasks where the label space is gen-
erally small (five for topic categorization and two
for sentiment classification). How the approach per-
forms in real-world NLP settings where the label
space is large, or perhaps even going beyond text
classification to prediction/regression tasks, war-
rants further investigation. Finally, our experiments
show that the proposed approach works better with
density-based OOD scoring mechanisms than with
the calibration-based ones. This is consistent with
(Arora et al., 2021) in that density-based methods
can better account for background shifts. Future
work may be needed to delve deeper into the rela-
tionship between OOD representation learning and
OOD scoring mechanisms to better understand this
OOD phenomenon.
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A OOD Scoring Mechanisms

Our proposed method can generate background-
aware representations. Given the representations,
an OOD scoring mechanism is applied to infer
the OOD likelihood. In this appendix, we briefly
describe the OOD scoring mechanisms considered
in our experiments.
Maximum Softmax Probability (MSP). MSP is
first introduced for OOD detection by (Hendrycks
and Gimpel, 2016). This method retrieves the max-
imum class probability from a softmax distribution
for calculating the OOD score. Intuitively, higher
maximum class probability implies lower likeli-
hood of an OOD. Specifically, the MSP score is
defined as:

gmsp = 1− max
i∈{1,...,C}

pi, (6)

where C denotes the number of classes in a classi-
fication task, and pi represents the softmax prob-
ability for the i-th class. The idea is that a more
uniform softmax distribution indicates a higher like-
lihood to be OOD. Since our method BARLE is
also trained with the main task, the output class
probability can be directly used by MSP as the
OOD likelihood.
Energy Score (Energy). Instead of using the max-
imum class probability, Liu et al., 2020 propose to
measure an energy score of the output probabilities:

genergy = − log
C∑

i=1

ew
T
i h, (7)

where wi is the weight of the softmax layer in
terms of the i-th class, and h denotes the input to
the softmax layer, i.e., wT

i h represents the logit
corresponding to the i-th class label. The energy
score can better distinguish ID and OOD samples
since it is theoretically aligned with the probability
density of the inputs, and less sensitive to the over-
confidence issue. A higher energy score indicates a
higher OOD likelihood. Similar to MSP, the output
logits of BARLE are used to calculate the energy
score.
Mahalanobis Distance (MHLNB). Lee et al.,
2018 fit a class conditional Gaussian distribution
on the ID development set Ddev = {(xi, yi)}Ni=1

under Gaussian discriminant analysis. They first
compute the empirical class mean and covariance
by:

µ̂c =
1

Nc

∑

i:yi=c

hi, (8)

Σ̂ =
1

N

∑

c

∑

i:yi=c

(hi − µ̂c)(hi − µ̂c)
T , (9)

where c denotes the class label, Nc is the number
of instances with the class c, and hi represents the
input to the softmax layer of the i-th instance. Then,
the detection score is defined by the Mahalanobis
distance between the test sample and the closest
class conditional Gaussian distribution, i.e.,

gMHLNB = max
c

−(h− µ̂c)
T Σ̂−1(h− µ̂c), (10)

where h denotes the hidden representation (i.e.,
the input to the softmax layer) of the instance.
The above metric corresponds to measuring the
log of the probability density of the test sample in
the estimated Gaussian distribution. The learned
background-aware representations from BARLE
can be utilized by MHLNB to infer its OOD likeli-
hood.
Cosine Similarity (Cosine). We consider an-
other distance metric based on the cosine similarity
(Zhou et al., 2021). Given a test sample, the OOD
score is defined by the maximum cosine similarity
between the test sample and the instances in the
development set:

gcosine = − max
i∈{1,...,N}

cos(h,hi), (11)

where N denotes the size of the development set,
and h is the hidden representation, i.e., the input to
the softmax layer. Similar to MHLNB, the learned
representations from BARLE can be utilized by
Cosine to infer its OOD likelihood.

B Additional OOD Detection Results

In the paper, we present the OOD detection results
where the NLP tasks are fine tuned on RoBERTa-
Large model. In this appendix, we change the
underlying model to RoBERTa-Base, BERT-Base,
and BERT-Large, and present the OOD results in
Table 8 respectively.

C Main Task Performance

Although our focus is OOD detection, we need to
examine if the background-aware representation
learning will have negative effect on model’s main
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ID dataset Model OOD metrics
AUROC ↑ FAR95 ↓

Yahoo!Answers

AGNews
VAN

RoBERTa-Base w/ MSP 0.707 0.851
RoBERTa-Base w/ Energy 0.738 0.733
RoBERTa-Base w/ MHLNB 0.883 0.432
RoBERTa-Base w/ Cosine 0.796 0.649

EXT
RoBERTa-Base w/ MSP 0.705 0.837
RoBERTa-Base w/ Energy 0.729 0.714
RoBERTa-Base w/ MHLNB 0.940 0.322
RoBERTa-Base w/ Cosine 0.845 0.462

BARLE
RoBERTa-Base w/ MSP 0.726 0.798
RoBERTa-Base w/ Energy 0.756 0.694
RoBERTa-Base w/ MHLNB 0.955 0.238
RoBERTa-Base w/ Cosine 0.872 0.429

VAN
BERT-Large w/ MSP 0.732 0.867
BERT-Large w/ Energy 0.695 0.803
BERT-Large w/ MHLNB 0.935 0.288
BERT-Large w/ Cosine 0.792 0.776

EXT
BERT-Large w/ MSP 0.714 0.913
BERT-Large w/ Energy 0.790 0.538
BERT-Large w/ MHLNB 0.912 0.501
BERT-Large w/ Cosine 0.779 0.743

BARLE
BERT-Large w/ MSP 0.756 0.824
BERT-Large w/ Energy 0.821 0.772
BERT-Large w/ MHLNB 0.934 0.311
BERT-Large w/ Cosine 0.861 0.508

VAN
BERT-Base w/ MSP 0.686 0.878
BERT-Base w/ Energy 0.778 0.758
BERT-Base w/ MHLNB 0.857 0.670
BERT-Base w/ Cosine 0.749 0.874

EXT
BERT-Base w/ MSP 0.738 0.832
BERT-Base w/ Energy 0.855 0.568
BERT-Base w/ MHLNB 0.957 0.213
BERT-Base w/ Cosine 0.861 0.550

BARLE
BERT-Base w/ MSP 0.746 0.818
BERT-Base w/ Energy 0.857 0.580
BERT-Base w/ MHLNB 0.977 0.107
BERT-Base w/ Cosine 0.945 0.244

Table 8: OOD detection performance of Yahoo-
AGNews-five with different model scales.

task performance. We examine the main task per-
formance in Table 9 and Table 10. We use the
classification accuracy (ACC) as the evaluation
metric. Since VAN is the approach trained with
only the cross entropy loss (without pseudo data
and the contrastive objectives), it can be seen as the
benchmark. The experimental results in both tables
show that the main task performance of BARLE
remains consistent with that of VAN. This analy-
sis confirms that BARLE is capable of improving
the background-shift OOD detection performance
while maintaining the ID task performance.

D Full Ablation Study Results

We present the full ablation study results on all
ID/OOD pairs in Table 11. The results consistently
show that applying background-contrastive loss
is more effective than semantics-contrastive loss
in background-shift OOD detection, and applying
both can further improve the performance.

Task ID dataset OOD dataset Method ID ACC ↑

Topic categorization Yahoo!Answers AGNews
VAN 0.829
EXT 0.830

BARLE 0.830

Sentiment classification

SST2

IMDB (T)
VAN 0.960
EXT 0.955

BARLE 0.954

Amazon (T)
VAN 0.959
EXT 0.954

BARLE 0.946

Amazon

IMDB (T)
VAN 0.956
EXT 0.954

BARLE 0.951

SST2 (T)
VAN 0.955
EXT 0.952

BARLE 0.953

Amazon-Books

Amazon-DVDs (T)
VAN 0.958
EXT 0.960

BARLE 0.950

Amazon-Electronics (T)
VAN 0.953
EXT 0.956

BARLE 0.950

Amazon-Kitchen (T)
VAN 0.954
EXT 0.960

BARLE 0.950

Table 9: Main task classification performance averaged
across four scoring mechanisms based on RoBERTa-
large.

Model Method ID ACC ↑

RoBERTa-Large
VAN 0.829
EXT 0.830

BARLE 0.830

RoBERTa-Base
VAN 0.801
EXT 0.802

BARLE 0.810

BERT-Large
VAN 0.810
EXT 0.805

BARLE 0.814

BERT-Base
VAN 0.782
EXT 0.765

BARLE 0.769

Table 10: Main task classification performance averaged
across four scoring mechanisms on Yahoo-AGNews-
five with different model scales.

763



Task ID/OOD dataset pair α/β
OOD metric ID metric

AUROC ↑ FAR95 ↓ ACC ↑

Topic categorization Yahoo!Answers / AGNews

- / - 0.780 0.677 0.829
+ / - 0.792 0.636 0.822
- / + 0.843 0.553 0.842
+ / + 0.854 0.543 0.830

Sentiment classification

Amazon-Books / Kitchen

- / - 0.695 0.922 0.954
+ / - 0.719 0.903 0.950
- / + 0.732 0.931 0.953
+ / + 0.739 0.927 0.950

Amazon-Books / Electronics

- / - 0.743 0.895 0.953
+ / - 0.765 0.882 0.950
- / + 0.779 0.858 0.953
+ / + 0.787 0.902 0.950

Amazon-Books / DVDs

- / - 0.549 0.955 0.958
+ / - 0.574 0.929 0.945
- / + 0.599 0.922 0.953
+ / + 0.612 0.899 0.950

SST2 / IMDB

- / - 0.877 0.459 0.960
+ / - 0.899 0.438 0.956
- / + 0.927 0.424 0.947
+ / + 0.949 0.380 0.954

SST2 / Amazon

- / - 0.865 0.487 0.959
+ / - 0.880 0.574 0.956
- / + 0.890 0.464 0.946
+ / + 0.908 0.428 0.946

Amazon / IMDB

- / - 0.568 0.948 0.956
+ / - 0.641 0.918 0.949
- / + 0.621 0.933 0.958
+ / + 0.687 0.831 0.951

Amazon / SST2

- / - 0.925 0.399 0.955
+ / - 0.965 0.243 0.949
- / + 0.977 0.106 0.958
+ / + 0.981 0.083 0.953

Table 11: Full results of applying different contrastive loss components on all eight ID/OOD pairs. The "-" and
"+" denote setting the corresponding parameters to zeros or not respectively. The results are averaged across four
scoring mechanisms.
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