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Abstract

Contrastive learning has become a new
paradigm for unsupervised sentence embed-
dings. Previous studies focus on instance-wise
contrastive learning, attempting to construct
positive pairs with textual data augmentation.
In this paper, we propose a novel Contrastive
learning method with Prompt-derived Virtual
semantic Prototypes (ConPVP). Specifically,
with the help of prompts, we construct vir-
tual semantic prototypes to each instance, and
derive negative prototypes by using the nega-
tive form of the prompts. Using a prototyp-
ical contrastive loss, we enforce the anchor
sentence embedding to be close to its corre-
sponding semantic prototypes, and far apart
from the negative prototypes as well as the
prototypes of other sentences. Extensive ex-
perimental results on semantic textual similar-
ity, transfer, and clustering tasks demonstrate
the effectiveness of our proposed model com-
pared to strong baselines. Code is available at
https://github.com/lemon0830/promptCSE.

1 Introduction

High-quality sentence embeddings can boost
the performance of pre-trained language models
(PLMs) on many downstream tasks (Kiros et al.,
2015; Logeswaran and Lee, 2018; Reimers and
Gurevych, 2019a). Recent research focuses on
learning sentence embeddings in an unsupervised
manner due to lack of large scale labeled data (Hill
et al., 2016; Pagliardini et al., 2018; Wang et al.,
2021b). Among these methods, contrastive learn-
ing has been extensively explored and achieved
remarkable success (Gao et al., 2021b; Wu et al.,
2021; Yan et al., 2021; Giorgi et al., 2021). Specifi-
cally, most of them construct a positive pair by op-
erating various textual data augmentation methods,
while regard two independent sentences sampled
uniformly from the training data as a negative pair.
In spite of effectiveness in easing the anisotropy
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Figure 1: Paradigm of prompt learning.

problem, such instance-wise optimization leads to
a locally smooth embedding space, and ignores se-
mantic relevance to some extent (Li et al., 2020b).
Moreover, due to the discrete nature of language,
data augmentation can change sentence semantics
significantly, and thus a positive sample are possi-
bly turned into a negative one (Wang et al., 2021a).

To alleviate the issues, we introduce the idea of
prototypical contrastive learning to unsupervised
sentence embeddings learning, which is proven ef-
fective to learn structural visual embedding space
(Li et al., 2020b; Caron et al., 2020). The moti-
vation lies in that when encoding sentences into
the embedding space, the sentences with similar se-
mantics cluster together around the corresponding
prototype. Nevertheless, the acquisition of proto-
types is inefficient if we directly apply the clus-
tering algorithms used in (Li et al., 2020b; Caron
et al., 2020), due to the requirement of extra for-
ward pass over the training set or weak correlation
with semantics (Caron et al., 2020). This makes us
wonder whether there exists a dedicated method
of mining the semantic prototypes for sentence
embeddings especially based on PLMs?

To answer this question, we attempt to think
from the perspective of prompt learning (Brown
et al., 2020). Intuitively, on sentence-level NLP
tasks such as classification, the neural models en-
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Figure 2: Illustration of contrastive learning with
prompt-derived virtual semantic prototypes.

code and map each input to a corresponding seman-
tic prototype in the embedding space. For exam-
ple, the sentiment analysis models divide instances
into semantic prototypes related to sentiment po-
larity. In addition, the sentence-level tasks can be
solved by providing task-specific prompts to PLMs
as a condition even without any fine-tuning (Brown
et al., 2020; Sanh et al., 2021; Wei et al., 2021). As
illustrated in Figure 1, PLMs can directly generate
reasonable label words (e.g., “positive”) for a sen-
tence <S> by answering the query of the “[MASK]”
token, when fed a prompt-wrapped sequence (e.g.,
“<S> is this review positive ? [MASK]”). Thus,
we argue that the representations of the “[MASK]”
token derived by task-specific templates can be
viewed as virtual semantic prototypes, which can
be obtained without using label information (Lan
et al., 2021) and clustering algorithms (Li et al.,
2020b; Caron et al., 2020). Besides the commonly-
used templates, we manually convert each template
to its negation, and use them to induce negative
prototypes. Back to Figure 1, with the template
“<S> is not a [MASK] one”, the word “bad” can be
derived from PLMs.

In this paper, we propose ConPVP (Contrastive
learning with Prompt-derived Virtual Semantic
Prototypes) (ConPVP) for unsupervised sentence
representation learning. Specifically, given an in-
put sentence, we generate the positive and negative
prototypical embeddings by using a task-specific
template and its negative counterpart, respectively.
We use the contrastive loss to enforce the sentence
embedding to be close to its positive prototype, and
far apart from the negative prototype as well as

the prototypes of other sentences. As illustrated
in Figure 2, the issue of local smoothness can be
alleviated by exploiting the semantic regularization
induced by task-specific prompts, and the sentences
with similar semantics are closer. We empirically
evaluate our proposed ConPVP on a range of se-
mantic textual similarity tasks, and the experimen-
tal results show the substantial improvements com-
pared with strong baselines. Further,the extensive
analysis and applications to transfer and clustering
tasks confirm the effectiveness and robustness of
our ConPVP.

2 Related Work

2.1 Prototypical Contrastive Learning

Recently, prototypical contrastive learning has
shown its power in computer vision (Li et al.,
2020b; Caron et al., 2020; Sharma et al., 2020)
and NLP tasks (Wei et al., 2022; Ding et al., 2021),
which discover the underlying semantic structure
by clustering the learned embeddings. Compared
with them, we propose a more efficient and dedi-
cated method to find prototypes for sentence em-
beddings, without using clustering algorithms or
label information. To the best of our knowledge, we
are the first to explore the prototypical contrastive
learning in unsupervised sentence representation
learning.

2.2 Prompt-based Learning

Prompt-based Learning has become a new
paradigm in NLP, bridging the gap between pre-
training tasks and downstream tasks (Brown et al.,
2020; Schick and Schütze, 2021a; Sanh et al.,
2021). It reformulates various NLP tasks as cloze-
style questions, and by doing so, the knowledge
stored in PLMs can be fully exploited, making
PLMs achieve impressive performance in few-shot
and zero-shot settings. Along this research line,
various types of prompts are explored including
discrete and continuous prompts (Gao et al., 2021a;
Shin et al., 2020; Hu et al., 2021; Liu et al., 2021;
Cui et al., 2021; Si et al., 2021; Li and Liang, 2021;
Schick and Schütze, 2021b). In this work, we ex-
ploit prompts of different downstream tasks to as-
sign various virtual semantic prototypes to each
instance.

2.3 Unsupervised Sentence Embedding

Unsupervised learning has been used to improve
the sentence embedding learning (Reimers and
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Gurevych, 2019b; Li et al., 2020a; Su et al., 2021;
Zhang et al., 2020), and contrastive learning has
attracted extensive attention due to the promising
performance (Gao et al., 2021b; Giorgi et al., 2021;
Wu et al., 2020; Yan et al., 2021; Meng et al., 2021;
Carlsson et al., 2021). Wu et al. (2021) augment
positive pairs with word repetition and introduce
a momentum encoder for negative pairs. Wang
et al. (2022) use soft negative samples which have
highly similar textual but opposite meaning to the
input sentence. Jiang et al. (2022) use a discrete
template to obtain sentence embeddings. Unlike
these studies, we introduce prototypical contrastive
learning and implicitly encode semantic structure
induced by task-specific prompts into the embed-
ding space, enhancing PLMs’ ability of modeling
semantic similarity. Furthermore, our prototypical
contrastive loss is orthogonal to the instance-wise
one, and the performance can be further improved
by combining ConPVP with the above studies.

3 Method

In this section, we elaborate the proposed ConPVP,
a novel contrastive learning approach implicitly
encoding semantic structure into the embedding
space. As illustrated in Figure 3, ConPVP is based
on the popular SimCSE framework (Gao et al.,
2021b) and further leverages the concept of seman-
tic prototypes.

3.1 Prompt-derived Virtual Semantic
Prototypes

Semantic prototype is defined as a representative
embedding for a group of semantically similar in-
stances (Li et al., 2020b). Given the fact that PLMs
are able to perform well on various NLP tasks
when provided with suitable task-specific templates
(Brown et al., 2020; Sanh et al., 2021; Wei et al.,
2021), we can induce the semantic prototypes of
sentences from PLMs with the help of prompts. In
this work, we construct a template set T + using
four NLP tasks (i.e., classification, summarization,
natural language inference, and sentence embed-
ding), and assign each task 2 templates. Please note
that we select the templates without deliberation,
and we leave the other choices as future work. Fur-
thermore, we construct another template set T −,
in which the templates are the negative form of
those in T + and possibly induces semantically op-
posite response from PLMs. All the templates are
illustrated in Table 1.

Basic Templates

Given “<S>” , we assume that “[MASK]”

“ <S> ” , is this review positive ? [MASK] .

“ <S> ” , is [MASK] news

“ <S> ” , is a [MASK] one

“ <S> ” . In summary : “ [MASK] ”

By “ <S> ” they mean [MASK] .

Article “ <S> ” belongs to a [MASK] topic

This sentence : “ <S> ” means [MASK] .

Semantically Opposite Templates

“ <S> ” , is this review negative ? [MASK] .

Without “ <S> ” , they mean [MASK] .

“ <S> ” is inconsistent with “ [MASK] ”

“ <S> ” is totally different from : “ [MASK] ”

“ <S> ” which does not denote [MASK]

“ <S> ” is not a [MASK] one

This sentence : “ <S> ” does not mean [MASK] .

Article “ <S> ” is definitely not about the [MASK] topic

Table 1: Templates for inducing semantic prototypes.

After obtaining the template sets, we convert an
input sentence xi to x̂i=[xi; T +

i ], where T +
i is a

template sampled from T +. We feed x̂i to a PLM
and take the hidden state of the “[MASK]” token
h[MASK] as the positive prototypical embedding c+i .
In this same way, we generate the negative proto-
typical embedding c−i using a sampled template
T −
i ∈ T −. Notably, unlike the conventional proto-

types (Li et al., 2020b; Caron et al., 2020; Sharma
et al., 2020), our method of obtaining prototypes
may not seem intuitive, since there is no explicit
partitioning of the embedding space. In order to
distinguish our method from the previous studies,
we name the prototypes in this work virtual proto-
types.

3.2 Prototypical Contrastive Learning

To obtain the embedding of an anchor sentence xi,
we feed [xi; t1; ...; tl;[MASK]] to a PLM to obtain
its contextualized representations, where t1; ...; tl
is a continuous prompt. The representation vector
of the “[MASK]” token is taken as the sentence
embedding vi. Given the embedding of the anchor
sentence and the corresponding positive and nega-
tive prototype embeddings, we integrate them into
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Figure 3: The overall framework of our proposed ConPVP.

PLM Batch Size Learning Rate

BERT-base 128 3e-5
BERT-large 128 1e-5
RoBERTa-base 128 1e-5
RoBERTa-large 256 1e-5

Table 2: Training Settings for STS.

the InfoNCE based contrastive loss 1:

li = − log
esim(vi,c

+
i )/τ

∑N
k=1(e

sim(vi,c
+
k )/τ + esim(vi,c

−
k )/τ )

(1)
where N is the number of sentences in a mini-batch.
With this loss function, we pull the embedding of
the anchor sentence vi close to its positive prototyp-
ical embedding c+i , and push vi and the irrelevant
prototypical embeddings apart.

4 Experiments

To verify the effectiveness of our proposed method,
we conduct experiments and empirical analysis on
Semantic Textual Similarity (STS) tasks under the
unsupervised setting.

4.1 Settings

Following Gao et al. (2021b), we conduct experi-
ments on 7 semantic textual similarity (STS) tasks,
including STS 2012-2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016), STS Benchmark (Cer
et al., 2017), and SICK-R (Marelli et al., 2014).
The similarity scores of sentence pairs in these
datasets are labeled from 0 to 5. Our implementa-

1In practice, in order to reduce the influence of the tem-
plate, we follow (Jiang et al., 2022) to use debiased sentence
embeddings during training. Please ref (Jiang et al., 2022) for
more detailed.

tion is based on SimCSE 2 (Gao et al., 2021b), and
we take BERT-base (Devlin et al., 2019), BERT-
large (Devlin et al., 2019), RoBERTa-base (Liu
et al., 2019), and RoBERTa-large (Liu et al., 2019)
as our backbones3. All our experiments are con-
ducted on a NVIDIA V100 GPU. We set the length
of the continuous prompt as 4. Following previous
studies (Gao et al., 2021b; Wu et al., 2021), we use
1 million sentences randomly sampled from En-
glish Wikipedia as training sentences. We train 1
epoch, and evaluate every 125 steps and choose
model parameters with highest performance on
STS-B development set. The batch size and learn-
ing rate are listed in Table 2.

4.2 Main Results

We compare our ConPVP to the recent related meth-
ods which are based on instance-wise contrastive
learning, including 1) ConSERT (Yan et al., 2021)
which exploits four data augmentation strategies
to construct positive samples; 2) SimCSE (Gao
et al., 2021b) which directly uses Dropout to gen-
erate positive pairs; 3) ESimCSE (Wu et al., 2021)
which introduces word repetition augmented posi-
tive pairs and momentum negative pairs; 4) Prompt-
BERT (Jiang et al., 2022) which reformulates the
sentence embeddings task as a prompt-based learn-
ing paradigm.

For fair comparison, we report the best perfor-
mance from 4 runs in Table 3. Compared with
SimCSE, ConPVP brings significant improvements
across the board. Specifically, ConPVP achieves
average improvements of 2.60, 1.60, 2.61, and 1.28
points over BERT-base, BERT-large, RoBERTa-
base and RoBERTa-large, respectively, showing the
superiority of our prototypical contrastive method.

2https://github.com/princeton-nlp/SimCSE
3https://github.com/huggingface/transformers
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

BERT-base
ConSERT † 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
SimCSE † 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
ESimCSE † 73.40 83.27 77.25 82.66 78.81 80.17 72.30 78.27
PromptBERT † 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
ConPVP 71.72 84.95 77.68 83.64 79.76 80.82 73.38 78.85

BERT-large
ConSERT † 70.69 82.96 74.13 82.78 76.66 77.53 70.37 76.45
SimCSE † 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
ESimCSE † 73.21 85.37 77.73 84.30 78.92 80.73 74.89 79.31
PromptBERT 71.55 86.83 78.63 85.10 79.79 82.20 72.19 79.47
ConPVP 72.63 86.68 78.14 85.50 80.13 82.18 74.79 80.01

RoBERTa-base
SimCSE † 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
ESimCSE † 69.90 82.50 74.68 83.19 80.30 80.99 70.54 77.44
PromptBERT † 73.94 84.74 77.28 84.99 81.74 81.88 69.50 79.15
ConPVP 73.20 83.22 76.24 83.37 81.49 82.18 74.59 79.18

RoBERTa-large
SimCSE † 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
EsimCSE † 73.20 84.93 76.88 84.86 81.21 82.79 72.27 79.45
PromptBERT 72.89 86.44 78.10 85.09 79.37 81.52 70.85 79.18
ConPVP 74.75 84.09 77.88 83.13 83.44 83.64 74.31 80.18

Table 3: Experimental results on unsupervised STS tasks. Methods with † denote that we directly report the
scores from corresponding paper, and others are from our implementation. We run 4 times with different random
seeds and report the best Avg. for fair comparison.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

RoBERTa-large
SimCSE 69.36±1.16 82.39±0.70 74.33±1.06 83.03±1.34 81.19±0.45 81.10±0.77 70.17±0.91 77.37±0.88

PromptBERT 72.00±1.16 83.54±1.85 77.05±1.02 83.32±1.15 80.82±0.98 82.54±0.79 70.31±0.82 78.51±0.77

ConPVP 74.57±0.54 83.62±0.59 77.77±0.29 83.18±0.85 82.85±0.37 82.85±0.46 74.47±0.44 79.90±0.32

w/ manual 72.61±1.26 82.31±0.72 77.19±0.55 84.85±1.00 81.48±0.44 82.31±0.48 73.50±0.54 79.18±0.49

w/o c− 73.80±0.93 82.38±0.58 76.72±0.50 82.53±0.77 81.94±0.54 82.32±0.31 69.75±0.58 78.49±0.33

w/o c+ & c− 72.81±0.75 81.51±0.63 74.94±0.77 79.83±0.81 80.50±0.55 81.06±0.40 70.30±0.43 77.28±0.25

Table 4: Ablation Study. We run each experiment 4 times with different random seeds and report mean and
standard deviation.

Besides, ConPVP surpasses ConSERT and ESim-
CSE, which carefully design positive samples with
various textual data augmentation. This demon-
strates that although the textual data augmentation
can provide different views of the anchor, these
methods based on it still suffers the local smooth
problem. In contrast, our model shows that textual
data augmentation is possibly unnecessary, and the
improvement can be achieved by encoding more
structural information into the embedding space,
e.g., finding semantic prototypes. Finally, our Con-

PVP achieves consistently better performance than
PromptBERT, demonstrating the effectiveness of
the proposed prototypical contrastive loss.

4.3 Ablation Study

To analyze the impact of different components of
ConPVP, we investigate the following three vari-
ants: 1) ConPVP w/ manual, where we obtain the
anchor sentence embeddings with the searched dis-
crete templates from Jiang et al. (2022); 2) ConPVP
w/o c−, where we remove the negative prototypes
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RoBERTa-large ([CLS]) RoBERTa-large + SimCSE ([CLS]) RoBERTa-large + ConPVP ([MASK])

Figure 4: Distribution of predicted cosine similarity. The correlation diagram between the gold similarity scores
(x-axis) and model predicted cosine similarity scores (y-axis) on the STS-B dataset. We scale the predicted scores
to 0 to 1.

in the prototypical contrastive loss; 3) ConPVP w/o
c+ & c−, which is equivalent to SimCSE but uses
continuous prompts for sentence embeddings. No-
tably, ConPVP w/o c+ & c− is also a variant of
PromptBERT (Jiang et al., 2022), where the dis-
crete templates are replaced by the continuous ones.
We take RoBERTa-large as the backbone.

BERT-base [CLS]
BERT-base + SimCSE [CLS]
BERT-base + ConPVP [MASK]

Figure 5: Analysis of embedding space. The average
spearman correlation on STS tasks w.r.t the number of
removed top-k frequent tokens. The frequency of each
token is calculated through the test split of the STS
Benchmark dataset.

The results on STS tasks are listed in Table 4 and
the conclusions are as follows: 1) ConPVP obtains
better results against ConPVP w/ manual. This
may be because one manually-designed prompt
cannot fit different PLMs and training strategies at
the same time, and continuous prompts are more
flexible and effective in comparison. Besides, the
improvement of ConPVP w/ manual over Prompt-
BERT validates the advantage of the prototypical
contrastive loss. 2) Removing the negative proto-
types (i.e., ConPVP w/o c−) leads to a performance
degradation of 1.41 point against ConPVP. The un-
derlying reason is that the negative prototypes here

serve as a type of hard negatives—the semantics
of the negative prototypes are essentially different
from the positive prototypes but the prompts used
to induce them are similar in text. 3) We find that
ConPVP w/o c+ & c− does not give an improve-
ment against SimCSE. These observations show
that the gain of our method entirely comes from
the cooperation between the prompt-derived virtual
prototypes and the prototypical contrastive loss,
rather than the usage of the prompt-based sentence
embeddings.

4.4 Distribution of Cosine Similarity

In this section, we investigate the similarity distri-
butions learned by different methods. As shown
in Figure 4, the native sentence representations
of RoBERTa-large suffer from the collapse issue
(Chen and He, 2021), and therefore we get high
similarity scores for all sentence pairs. By contrast,
both ConPVP and SimCSE alleviate the collapse
issue, and the predicted cosine similarity scores for
positive pairs of ConPVP are more certain. For
example, for the positive pairs whose similarity
scores range from 4 to 5, the scores predicted by
ConPVP (0.6 to 1.0) is more concentrated than the
scores predicted by SimCSE (0.4 to 1.0).

4.5 Analysis of Embedding Space

Previous studies indicated that the collapse issue is
mainly due to anisotropy of the learned embedding
space, which is sensitive to token frequency (Yan
et al., 2021; Jiang et al., 2022). We follow Yan
et al. (2021) to remove the embeddings of K most
frequent tokens and explore the relation between
the number of removed tokens and the average

7047



RoBERTa-large ([CLS]) RoBERTa-large + SimCSE ([CLS]) RoBERTa-large + ConPVP ([MASK])

Figure 6: Visualization of learned embeddings. We visualize 10 sentence pairs whose similarity scores are 0 in
orange (ids from 0 to 9), 10 pairs whose similarity scores are 3 in blue (ids from 10 to 19), and 10 pairs whose
similarity scores are 5 in green (ids from 20 to 29). The sentences are sampled from the STS-B test set.

Model MR CR SUBJ MPQA SST TREC MRPC Avg.

GloVe † 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Skip-thought ♡ 76.50 80.10 93.60 87.10 82.00 92.20 73.00 83.50
IS-BERT ♡ 81.09 87.18 94.96 88.75 85.96 88.64 74.24 85.83

RoBERTa-base
SimCSE † 81.04 87.74 93.28 86.94 86.60 84.60 73.68 84.84
SimCSE 81.75±0.19 87.23±0.08 93.18±0.13 87.13±0.06 86.98±0.39 85.40±0.71 73.78±0.11 85.06±0.13

Ours 82.44±0.17 88.30±0.16 93.20±0.11 88.74±0.06 87.70±0.07 87.33±0.25 76.15±0.19 86.27±0.11

RoBERTa-large
SimCSE † 82.74 87.87 93.66 88.22 88.58 92.00 69.68 86.11
SimCSE 83.17±0.41 88.46±0.43 93.73±0.10 88.33±0.10 88.52±0.29 91.40±0.71 71.34±1.17 86.42±0.23

ConPVP 85.65±0.28 90.73±0.32 94.13±0.13 90.03±0.23 89.81±0.29 93.40±0.16 76.47±0.29 88.60±0.14

Table 5: Experimental results on Transfer tasks with RoBERTa-base and RoBERTa-large backbones. †: results
from Gao et al. (2021b). ♡: results from Zhang et al. (2020). We run 4 times with different random seeds and report
the average accuracy and standard deviation.

spearman correlation on STS tasks.
From Figure 5, we can observe that the per-

formance of native BERT-base and SimCSE im-
proves when removing the most frequent tokens.
By contrast, ConPVP achieves its best performance
without removing any tokens, showing that our ap-
proach reshapes the BERT’s original embedding
space, reducing the influence of common tokens
on sentence representations. In addition, the per-
formance of both SimCSE and ConPVP drops as
the number of removed tokens increases but Con-
PVP performs significantly better, demonstrating
the robustness of ConPVP to incomplete input.

4.6 Visualization of Learned Embeddings
We visualize a few variants of RoBERTa-large sen-
tence embeddings to grasp an intuition on the ef-
fectiveness of our method. Specifically, we sample
3 groups of samples from the STS-B test set, and
the similarity score of each group is 0 (orange), 3

(blue), and 5 (green), respectively. Each group has
10 sentence pairs. We visualize their embeddings
generated by different models using t-SNE (van der
Maaten and Hinton, 2008) in Figure 6.

Due to the collapse issue, the sentence embed-
dings obtained from RoBERTa-large [CLS] cluster
together whether they are similar or not. For Sim-
CSE, the sentence embeddings of the positive pairs
are well-clustered. However, the sentences pairs
with similarity scores of 3 or 5 are very close in
the embedding space. In contrast, the embeddings
learned by our ConPVP are more discriminative,
forming more separated clusters (e.g., the sentence
pairs in green are more clustered than those in blue,
while the pairs in orange are more dispersed).

5 Application to Transfer Learning Tasks

We evaluate the quality of the sentence embeddings
learned by ConPVP on transfer learning tasks, in-
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MR CR SUBJ MPQA

SST TREC MRPC Avg.

Figure 7: Few-shot learning evaluation on Transfer tasks with RoBERTa-base and RoBERTa-large as the
backbones. For each task, we randomly sample 16 labeled instances per class and draw violin plots of the
performance of 10 runs with different random seeds.

Model AG Bio Go-S G-T G-TS SS SO Tweet Avg.

BERT-base
BERT 79.56 32.46 54.35 47.12 61.61 64.04 21.87 45.35 50.80
SimCSE ♣ 74.36 35.89 58.90 57.28 65.03 64.32 50.57 54.28 57.58
ConPVP 77.21 41.84 61.98 59.87 67.56 73.28 73.06 56.06 63.86

BERT-large
BERT 83.13 30.52 56.34 46.11 61.51 66.54 26.10 44.20 51.81
SimCSE ♣ 80.23 43.47 61.87 61.05 65.78 68.97 68.03 55.08 63.06
ConPVP 82.50 41.26 63.82 58.87 68.34 74.39 66.59 57.34 64.14

Table 6: Clustering accuracy reported on short text clustering datasets with BERT-base and BERT-large as
the backbones. ♣: results evaluated on the checkpoints provided by (Gao et al., 2021b). We report the clustering
accuracy averaged over 10 independent runs.

cluding MR (Pang and Lee, 2005), CR (Hu and Liu,
2004), SUBJ (Pang and Lee, 2004), MPQA (Wiebe
et al., 2005), SST-2 (Socher et al., 2013), TREC (Li
and Roth, 2002) and MRPC (Dolan et al., 2004). A
logistic regression classifier is trained using frozen
sentence embeddings produced by different meth-
ods. We follow default configurations from SentE-
val (Conneau and Kiela, 2018). In addition, based
on the principle that good representations can be
transferred well with limited supervision and fine-
tuning, we extend the evaluation to few-shot setting
and follow (Zhang et al., 2021) to uniformly sample
16 labeled instances per class for each task.

Table 5 presents the results under the full data set-
ting. As we can see, the performance gap between
ConPVP and SimCSE is significant and consistent.
Furthermore, we can observe more obvious gap
under the few-shot setting (Figure 7). The results
reveal the robustness and effectiveness of our ap-

proach under the data scarcity scenarios, which is
important in real-world applications.

6 Application to Clustering Tasks

We follow Zhang et al. (2021) to consider 8 bench-
mark datasets for short text clustering, including
SearchSnippets (SS) (Phan et al., 2008), StackOver-
flow (SO) (Xu et al., 2017), Biomedical (Bio) (Xu
et al., 2017), AgNews (AG) (Zhang and LeCun,
2015), Tweet (Yin and Wang, 2016) and Google-
News (G-T, G-S, G-TS) (Yin and Wang, 2016).
We follow default settings of (Zhang et al., 2021)
and use BERT-base and BERT-large as the back-
bones. We run K-Means (Pedregosa et al., 2011) on
the sentence embeddings and report the clustering
accuracy averaged over 10 independent runs. As
illustrated in Table 6, in comparison with SimCSE,
ConPVP obtains an averaged improvement of 1.21
and 2.18, respectively, which validates our motiva-
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tion in leveraging the implicit grouping effect of
the prompt-derived semantic prototypes to encode
more semantic structure into representations.

7 Conclusion

In this work, we take the first step to explore the
prototypical contrastive learning on unsupervised
sentence embedding learning, and consider more
semantic views for each instance than the recent
instance-wise contrastive methods. In particular,
we make use of the prompting in PLMs to generate
the positive and negative prototypical embeddings
with task-specific templates. The experiments and
extensive analysis validate the effectiveness and
robustness of our ConPVP.

8 Limitations

We only tried 16 task specific prompts in this paper,
which is possibly sub-optimal to induce semantic
prototypes. Besides, the usage of prompts reduces
the maximum effective lengths that the pretrained
language models can process.
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