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Abstract

As an effective approach to adapting pre-
trained language models (PLMs) for specific
tasks, prompt-learning has recently attracted
much attention from researchers. By using
cloze-style language prompts to stimulate the
versatile knowledge of PLMs, prompt-learning
can achieve promising results on a series of
NLP tasks, such as natural language inference,
sentiment classification, and knowledge prob-
ing. In this work, we investigate the appli-
cation of prompt-learning on fine-grained en-
tity typing in fully supervised, few-shot and
zero-shot scenarios. We first develop a simple
and effective prompt-learning pipeline by con-
structing entity-oriented verbalizers and tem-
plates and conducting masked language model-
ing. Further, to tackle the zero-shot regime, we
propose a self-supervised strategy that carries
out distribution-level optimization in prompt-
learning to automatically summarize the infor-
mation of entity types. Extensive experiments
on four fine-grained entity typing benchmarks
under fully supervised, few-shot, and zero-shot
settings show the effectiveness of the prompt-
learning paradigm and further make a powerful
alternative to vanilla fine-tuning.

1 Introduction

In recent years, pre-trained language models
(PLMs) have been widely explored and become
a key instrument for natural language understand-
ing (Devlin et al., 2019a; Liu et al., 2019) and gen-
eration (Radford et al., 2018; Raffel et al., 2020).
By applying self-supervised learning on large-scale
unlabeled corpora, PLMs can capture rich lexi-
cal (Jawahar et al., 2019), syntactic (Hewitt and
Manning, 2019; Wang et al., 2021a), and factual
knowledge (Petroni et al., 2019) that well benefits
downstream NLP tasks. Considering the versatile
knowledge contained in PLMs, many efforts of
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Figure 1: Examples of prompt-learning to stimulate the
knowledge of PLMs by formalizing specific tasks as
equivalent cloze-style tasks.

researchers have been devoted to stimulating task-
specific knowledge in PLMs and adapting such
knowledge to downstream NLP tasks. And fine-
tuning with extra classifiers has been one typical
solution for adapting PLMs to specific tasks in NLP
tasks (Qiu et al., 2020; Han et al., 2021a).

Some recent efforts on probing knowledge of
PLMs show that, by writing some natural language
prompts, we can induce PLMs to complete factual
knowledge (Petroni et al., 2019). GPT-3 further uti-
lizes the information provided by prompts to con-
duct few-shot learning and achieves awesome re-
sults (Brown et al., 2020). Inspired by this, prompt-
learning has been introduced. As shown in Fig-
ure 1, in prompt-learning, downstream tasks are for-
malized as equivalent cloze-style tasks, and PLMs
are asked to handle these tasks instead of original
downstream tasks. Compared with vanilla fine-
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tuning methods, prompt-learning does not require
extra neural layers and intuitively bridges the objec-
tive form gap between pre-training and fine-tuning.
Sufficient empirical analysis shows that, either for
manually picking hand-crafted prompts (Liu et al.,
2021; Han et al., 2021b) or automatically building
auto-generated prompts (Gao et al., 2020; Lester
et al., 2021), taking prompts for tuning models is
surprisingly effective for the knowledge stimula-
tion and model adaptation of PLMs.

Intuitively, prompt-learning is applicable to fine-
grained entity typing, which aims at classifying
marked entities from input sequences into specific
types in a pre-defined label set. We discuss this
topic with a motivating example, “He is from New
York”. By adding a prompt with a masking token
[MASK], the sentence becomes “He is from New
York. In this sentence, New York is [MASK]”. Due
to the wealth of knowledge acquired during pre-
training, PLMs can compute a probability distri-
bution over the vocabulary at the masked position,
and a relatively higher probability with the word
“city” than the word “person”. In other words, with
simple prompts, the abstract entity attributes con-
tained in PLMs can be efficiently exploited, which
is meaningful for downstream entity-related tasks.

We comprehensively explore the application of
prompt-learning to fine-grained entity typing in
fully supervised, few-shot and zero-shot settings.
Particularly, we first introduce a naive pipeline,
where we construct entity-oriented prompts and
formalize fine-grained entity typing as a cloze-style
task. This simple pipeline yields promising re-
sults in our experiments, especially when supervi-
sion is insufficient. It is worth noting that few-
shot and zero-shot fine-grained entity typing is
Then, to tackle the zero-shot scenario where no
explicit supervision exists in training, we develop a
self-supervised strategy under our prompt-learning
pipeline. Our self-supervised strategy attempts to
automatically summarize entity types by optimiz-
ing the similarity of the predicted probability dis-
tributions of paired examples in prompt-learning.

Four popular benchmarks are used for our ex-
periments, including FEW-NERD (Ding et al.,
2021c), OntoNotes (Weischedel et al., 2013),
BBN (Weischedel and Brunstein, 2005), and Open
Entity (Choi et al., 2018a). All these datasets have
a complex type hierarchy consisting of rich en-
tity types, requiring models to have good capabili-
ties of entity attribute detection. Empirically, our

method yields significant improvements on these
benchmark datasets, especially under the zero-shot
and few-shot settings. We also make an analysis
and point out both the superiority and bottleneck
of prompt-learning in fine-grained entity typing,
which may advance further efforts to extract entity
attributes using PLMs1.

2 Related Work
After a series of effective PLMs like GPT (Radford
et al., 2018) and BERT (Devlin et al., 2019a), fine-
tuned PLMs have demonstrated their effectiveness
on various important NLP tasks (Baldini Soares
et al., 2019; Peng et al., 2020; Ding et al., 2021b).

Despite the success of fine-tuning PLMs, the
huge objective form gap between pre-training and
fine-tuning still hinders the full use of per-trained
knowledge for downstream tasks (Liu et al., 2021;
Han et al., 2021b; Hu et al., 2021). To this
end, prompt-learning has been proposed. The
seminal work that stimulates the development of
prompt-learning is the birth of GPT-3 (Brown et al.,
2020), which uses hand-crafted prompts for tuning
and achieves impressive performance on various
tasks. A series of hand-crafted prompts have been
widely explored in knowledge probing (Petroni
et al., 2019; Davison et al., 2019), relation clas-
sification (Han et al., 2021b), sentiment classi-
fication and natural language inference (Schick
and Schütze, 2021; Liu et al., 2021). To avoid
labor-intensive prompt design, automatic prompt
search has also been extensively explored Schick
et al. (2020); Schick and Schütze (2021); Shin
et al. (2020); Gao et al. (2020) to generate lan-
guage phrases for prompts. Recently, some con-
tinuous prompts have also been proposed (Li and
Liang, 2021; Lester et al., 2021), which directly
use a series of learnable continuous embeddings as
prompts rather than discrete language phrases.

This paper aims to stimulate PLMs with prompt-
learning to capture the attribute information of en-
tities. We take fine-grained entity typing, a cru-
cial task in knowledge extraction to assign entity
types to entity mentions (Lin et al., 2012), as the
foothold to develop prompt-learning strategies. In
fact, Dai et al. (2021) use hypernym extraction
patterns to enhance the context and apply masked
language modeling to tackle the ultra-fine entity
typing problem (Choi et al., 2018b) with free-form

1Our source code is released at https://github.
com/thunlp/PromptTyping, it is also integrated to the
OpenPrompt repository.
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labels, which shares a similar intuition with prompt-
learning. In our work, we mainly emphasize using
prompt-learning to extract entity types that have
been pre-defined in low-data scenarios.

3 Background

In this section, we first give a problem definition
of the entity typing task (§ 3.1), followed by an
introduction of conventional vanilla fine-tuning and
prompt-based tuning (§ 3.2) with PLMs.

3.1 Problem Definition

The input of entity typing is a dataset D =
{x1, ..., xn} with n sentences, and each sentence
x contains a marked entity mention m. For each
input sentence x, entity typing aims at predicting
the entity type y ∈ Y of its marked mention m,
where Y is a pre-defined set of entity types. En-
tity typing is typically regarded as a context-aware
classification task.

In the vanilla fine-tuning paradigm of en-
tity typing, the input is structured as a con-
catenation of original sequence and the en-
tity mention {x,m,[SEP]}, where x =
{[CLS], t1, . . . ,m, . . . , tT ,[SEP]} is the origi-
nal sequence and m = {ti, . . . , tj} is the marked
entity mention. Empirically, the embedding of the
[CLS] token produced by PLM, h[CLS], is fed
into an output layer to predict the probability distri-
bution over the label space

P (y ∈ Y|s) = softmax(Wh[CLS] + b), (1)

where W and b are learnable parameters. W, b
and all parameters of PLMs are tuned by maximiz-
ing the objective function 1

n

∑n
i=1 log(P (yi|si)),

where yi is the golden type label of si.

3.2 Prompt-based Tuning

Verbalizer and template lie at the heart of prompt-
based tuning. A verbalizer maps each label y ∈ Y
to a subset Vy = {w1, . . . , wm} of the vocabu-
lary V of the PLM M, i.e., Vy ⊆ V . By tak-
ing the union of the dictionary corresponding to
each label, we get an overall dictionary V∗. For
example, in sentiment classification, we could
map the label y = POSITIVE into a set Vy =
{great, good, wonderful...}. A template T (·) mod-
ifies the original input x into a prompt input T (x)
by adding a set of additional tokens. Convention-
ally, a [MASK] token is added for PLMs to predict

the missing label word w ∈ V∗. Thus, in prompt-
learning, a classification problem is transferred into
a masked language modeling problem,

p(y ∈ Y|s)=p([MASK]=w∈Vy|T (s)). (2)

4 Prompt-learning for Entity Typing

After transferred into masked language modeling,
the prompt-learning method is applicable to learn-
ing and aggregating type information of entities.
In this section, we first introduce a simple yet ef-
fective prompt-learning method for entity typing.
Then we propose a self-supervised prompt-learning
method that automatically learns type information
from unlabeled data (§ 5).

4.1 A Naive Prompt-based Pipeline
Verbalizers. For fine-grained entity typing,
datasets usually use hierarchical label space such
as PERSON/ARTIST (FEW-NERD) and ORGANI-
ZATION/PARTY (OntoNotes). In this case, we use
all the words as the label words set V∗ for this en-
tity type. For example, y = LOCATION/CITY →
v = {location, city}. In MLM, we use confidence
scores of all the words in Vy to construct the final
score of the particular type y. That is, for an input
x (which is mapped to T (x)) and its entity type
y (which is mapped to Vy = {w1, ..., wm}), the
conditional probability becomes

P (y|x)= 1

m

m∑

j

P ([MASK]=wj |T (x)), (3)

Templates. We choose hard-encoding templates
with natural language and soft-encoding templates
with additional special tokens in our work. In the
template of hard encoding setting, we first copy
the marked entity mention in x, then we add a few
linking verbs and articles followed by the [MASK]
token. The complete experimented templates are
presented in A.2. The main experimental results
are obtained with the following template

T3(x) = x. In this sentence, [Ent] is a [MASK],

For the soft-encoding strategy, some additional
special tokens [P1], ..., [Pl] are introduced as the
template, where l is a pre-defined hyper-parameter.
The template begins with a delimiter [P] and a copy
of the entity mention [M]:

T4(x) = x [P] [Ent] [P1],..., [Pl] [MASK],
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Figure 2: The illustration of prompt-learning for fine-grained entity typing with supervision. We take hard-encoding
prompt strategy as an example in this figure.

where each embedding of prompts is randomly ini-
tialized and optimized during training. Intuitively,
these special tokens can represent a cluster of words
with similar semantics in the vocabulary.

4.2 Training and Inference
The strategies of hard or soft encoding provide dif-
ferent initialization of templates, and they both can
be parameterized by ϕ and optimized along with
M during training. We train the pre-trained model
M (parameterized by θ) along with the additional
prompt embeddings by the cross-entropy loss:

L = −
∑

logP (y|x; θ, ϕ). (4)

For inference, we can directly use Eq. 3 to predict
the label of the current input instance based on the
predicted words of the [MASK] position.

This pipeline could be applied to entity typing
with explicit supervision, and it is more effective
when the training data are insufficient, i.e., the few-
shot scenario (§ 6.4). Naturally, we take further
step and consider a more extreme situation, that
is, a scenario without any training data (zero-shot
scenario). In this setting, if we directly use an ad-
ditional classifier to predict the label, the result is
equivalent to random guessing since the parameters
of the classifier are randomly initialized. If we use
prompts to infer the label based on the predicted
words, although its performance is significantly bet-
ter than guessing, there will also be a catastrophic
decline (§ 6.5). To this end, a question emerges: “Is
it possible for PLMs to predict entity types without
any explicit supervision? ”

5 Self-supervised Prompt-learning

With prompt-learning, the answer is yes, be-
cause in the pre-training stage, the contexts of
entities have already implied the corresponding

type information, which provides an advanta-
geous initialization point for the prompt-learning
paradigm. For example, in the input sentence
with the T3(·) template: “Steve Jobs found Ap-
ple. In this sentence, Steve Jobs is a [MASK] ”.
In our observations, the probability of PLMs pre-
dicting person at the masked position will be sig-
nificantly higher than the probability of location.
And if we make reasonable use of this superior
initialization point, it is possible for PLMs to au-
tomatically summarize the type information, and
finally extract the correct entity type.

5.1 Overview
In order to create conditions for PLMs to sum-
marize entity types, we consider a self-supervised
paradigm that optimizes the similarity of the prob-
ability distribution predicted by similar examples
over a projected vocabulary V∗. To achieve that
in prompt-learning, we need to (1) impose a limit
on the prediction range of the model, so that only
those words that we need, that is, words that ex-
press entity types, participate in the optimization
of the gradient; (2) provide an unlabeled dataset,
where entity mentions are marked without any
types to allow the model to learn the process of
inducing type information in a self-supervised man-
ner. The inputs contain a pre-trained model M, a
pre-defined label schema Y , and a dataset with-
out labels D = {x1, ..., xn} (entity mentions are
marked without any types). our goal is to make M
capable to automatically carry out zero-shot entity
typing after trained on D and Y . Using prompt-
learning as the training strategy, we first construct a
label words set V∗ from Y , and for each sentence x
in D, we wrap it with hard-encoding template with
a [MASK] symbol. The key idea is to make the
prediction distributions of the same type of entities
on V∗ as similar as possible. In this way, we can
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Figure 3: The illustration of self-supervised prompt-learning for fine-grained entity typing with unlabeled data and a
pre-defined label set. V∗ denotes the label words projected from the input label set.

perform contrastive learning by sampling positive
and negative examples, while ignoring the impact
of other words that are not in V∗ on optimization
during the MLM process.

5.2 Self-supervised Learning
Although there are no labels in D, we can still
develop a sampling strategy based on a simple
hypothesis, that is, same entities in different sen-
tences have similar types. For instance, we will
sample two sentences contain “Steve Jobs” as a pos-
itive pair. Moreover, considering entity typing is
context-aware, “Steve Jobs” could be entrepreneur,
designer, philanthropist in different contexts, we
choose to optimize the similarity between distribu-
tions of the words over V∗. This strategy not only
softens the supervision, but also eliminates the im-
pact of other words in self-supervised learning.

Particularly, we randomly sample c positive
pairs, i.e., sentence pairs that share one same en-
tity mention, denoted as ˆDpos, and c negative pairs,
i.e., two sentences with different entity mentions
marked, denoted as ˆDneg from a large-scale entity-
linked corpus D. To avoid generating false negative
samples, the negative samples are further restricted
by a large dictionary that contains common entities
and their type information. Only sentence pairs
with entities of different types in the dictionary are
selected as negative samples. Then we wrap them
with hard-encoding T3(·). To avoid overfitting of
the entity names, we randomly hide the entity men-
tion (in the original input and the template) with
a special symbol [Hide] with a probability of α.
Empirically, α is set to 0.4.

Since the impact of a pair of examples on train-
ing should be measured at the distribution level, we

choose Jensen-Shannon divergence as a metric to
assess the similarity of two distributions. Thus, in
a sentence pair (x, x′), the similarity score of two
representations of the the predictions h and h′ of
the [MASK] position is computed by:

s(h,h′) = JS(PV∗(w|x), PV∗(w|x′)), (5)

where JS is Jensen-Shannon divergence, PV∗(w|x)
and PV∗(w|x′) are probability distributions of the
predicting token w over V∗ obtained by h and h′.

As we attempt to make the predictions of the
positive pairs similar, the objective is computed by:

L= − 1

| ˆDpos|2
∑

x∈D̂pos

∑

x′∈D̂pos

log(1−s(h,h′))

− 1

| ˆDneg|2
∑

x∈ ˆDneg

∑

x′∈ ˆDneg

log(s(h,h′)),
(6)

We use entity-linked Wikipedia corpus as the raw
data and generate about 1 million pairs of data each
as ˆDpos and ˆDneg.

6 Experiments

We comprehensively assess the effectiveness of
our methods, we use FT and PLET to denote the
standard fine-tuning method and method in § 4 and
use PLET (S) to denote the self-supervised method
in § 5. PLET(T·) denotes the prompt-based method
with corresponding template.

We evaluate our methods on four widely used
entity typing datasets, including Few-NERD (Ding
et al., 2021c), OntoNotes (Weischedel et al., 2013),
BBN (Weischedel and Brunstein, 2005), and Ope-
nEntity (Choi et al., 2018a). Our experimental set-
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tings contain fully supervised, few-shot, and zero-
shot scenarios. The backbone PLMs used in our
experiments include BERT (Devlin et al., 2019b),
T5 (Raffel et al., 2020) and GPT-2 (Radford et al.).

6.1 Datasets

We use the following four fine-grained entity typing
datasets in our experiments.
FEW-NERD We use FEW-NERD (Ding et al.,
2021c) as the main dataset, which has the follow-
ing advantages: (1) FEW-NERD is large-scale and
fine-grained, which contains 8 coarse-grained and
66 fine-grained entity types. (2) FEW-NERD is
manually annotated, thereby we can precisely as-
sess the capability of entity typing models. We use
the supervised setting of the dataset, FEW-NERD
(SUP), and the official split in our experiments.
OntoNotes We also use the OntoNotes 5.0
dataset (Weischedel et al., 2013). Following previ-
ous works for fine-grained entity typing, we adopt
86-classes version of OntoNotes, while each class
has at most 3 levels of the type hierarchy. And the
data split is identical to (Shimaoka et al., 2017).
BBN BBN dataset is selected from Penn Tree-
bank corpus of Wall Street Journal texts and labeled
by (Weischedel and Brunstein, 2005). We follow
the version processed by (Ren et al., 2016a), and
the data split by (Ren et al., 2016b). The dataset
contains 46 types and each type has a maximum
type hierarchy level of 2.
OpenEntity OpenEntity (Choi et al., 2018b) is
a multi-label ultra-fine-grained dataset with 10331
entity types, including 9 general types. We only
use the crowd-sourced part of the released data.

6.2 Experimental Settings

The experiments are performed under three differ-
ent settings to evaluate the effect of the prompt-
learning method and semi-supervised training. In
table 1, we show the statistics of all the settings on
the four datasets.
Supervised Setting. In a fully supervised setting,
all training data are used in the training phase. FT
and PLET are used to train the model. We run the
experiments on all four datasets with BERT-base-
cased backbone. Both hard and soft encodings are
used for PLET.
Few-shot Setting. In a few-shot setting, we ran-
domly sample 1, 2, 4, 8, 16 instances for each en-
tity type for training. We apply both FT and PLET

methods with hard encoding on all four datasets.

Zero-shot Setting. In zero-shot setting, no train-
ing data with labels are available. The model is
required to infer the entity type without any super-
vised training. Since fine-tuning is not applicable
in this setting, we only conduct experiments on
PLET and PLET (S).
Metrics. In terms of evaluation metrics, we fol-
low the widely used setting of Ling and Weld
(2012), which includes strict accuracy (Acc), loose
macro F1-score (MaF), and loose micro F1-score
(MiF) to evaluate the performances of models. The
loose F1-score calculation concerns type labels by
different granularities.

6.3 Fully Supervised Entity Typing

Overall Results. The results on all four datasets
across different models are reported in Table 2.
Overall, the prompt-based methods have shown cer-
tain improvements compared to directly fine-tuned
models. It shows that the prompt-based method
does help with capturing entity-type information
from a given context. It is also observed that the
magnitude of the improvement and the preference
of prompt encoding strategy may vary with differ-
ent datasets. The prompt-based method seems less
effective on FEW-NERD dataset than the others.
It could be attributed to the fact that FEW-NERD
is manually annotated and less noisy, leveraging
the performance of the standard FT method. More-
over, the effect of soft and hard templates show
dataset-related dynamics. For the OntoNotes and
OpenEntity datasets, soft encoding outperforms
hard encoding, while for the other two datasets
the effect seems reversed. Evidence indicates that
the effect of the prompt-based method partially de-
pends on the characteristics of the dataset and that
different prompt designs may suit different data.
Effectiveness on Ultra-fine Entities. It is worth
noting that for OpenEntity, a dataset with over
10000 fine-grained types, the improvement of
prompt-learning over FT is striking. This points
to the advantage of the prompt-based method in
ultra-fine-grained entity typing. Meanwhile, Ope-
nEntity has a typing schema in the form of freely
defined text instead of strict hierarchical seman-
tics, and some of the types in the test set do not
appear in the training set. This poses a fatal chal-
lenge to the FT method and could be a contributing
factor to the overwhelming performance of prompt-
learning, as such type expressions may be more
similar to the common corpora that pre-trained lan-
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Dataset #Type Supervised Few-shot Zero-shot

|Dtrain| |Ddev| |Dtest| |Dtrain| |Ddev| |Dtest| |Dtrain| |Ddev| |Dtest|
Few-NERD 66 340,382 48,758 96,901 66~1,056 = |Dtrain| 96,901 0 0 96,901
OntoNotes 86 253,239 2,200 8,962 86~1,376 = |Dtrain| 8,962 0 0 8,962
BBN 46 86,077 12,824 12,824 46~736 = |Dtrain| 12,824 0 0 12,824
OpenEntity 10,331 1,998 1,998 1,998 - - - 0 0 1,998

Table 1: Statistics of FEW-NERD, OntoNotes, BBN and OpenEntity from three experimental settings. For all three
settings, the test sets are identical. For the training set of the few-shot setting, we report the summation from 1-shot
to 16-shot.

Dataset Metric Method

FT PLET(T3) PLET(T4)

Few-NERD
Acc 79.75 79.90 79.86
MiF 85.74 85.84 85.76
MaF 85.74 85.84 85.76

OntoNotes
Acc 59.71 60.37 65.68
MiF 70.47 70.78 74.53
MaF 76.57 76.42 79.77

BBN
Acc 62.39 65.92 63.11
MiF 68.88 71.55 68.68
MaF 67.37 70.82 67.81

OpenEntity MiF 27.14 42.39 43.15
MaF 31.06 45.22 46.11

Table 2: Fully supervised entity typing results. FT de-
notes the vanilla fine-tuning method, T· denotes the
template used. Note that the result is reported on all
10331 ultra-fine labels for OpenEntity, instead of only 9
general types as most previous works do (Zhang et al.,
2019; Wang et al., 2021b). The accuracy metric is gen-
erally not reported for OpenEntity.

guage models are pre-trained with. It further illu-
minates the ability of pre-trained language models
to extract information from weakly structured data.
We also compare our methods to previous baselines
in appendix B, results demonstrate that our method
could largely outperform baselines with only 1,998
training examples in the training set.

6.4 Results of Few-shot Entity Typing

Table 3 shows the results on few-shot entity typ-
ing. Since OpenEntity has scarce training data
compared with its enormous entity type numbers,
which makes it a "few-shot" dataset already, we
exclude it here. It is shown that the prompt-based
model outperforms fine-tuning by a large margin
under the few-shot setting, especially when only
1 ∼ 2 training instances per type are available.
It should be noted that for OntoNotes and BBN
datasets, sampling 16 instances for each entity type
already amounts to over 0.5% of the total training

data. Meanwhile, some of the data in BBN are
distantly supervised and potentially erroneous. It
brings more randomness to few-shot training. The
results support the idea that a well-designed prompt
has much potential in mining the learned knowl-
edge in pre-trained models and thus yields better
performance in few-shot settings.

6.5 Results of Zero-shot Entity Typing
Table 4 shows the results on zero-shot entity typ-
ing task on FEW-NERD dataset. We did not re-
port the performance of the vanilla fine-tuning ap-
proach because it cannot produce reasonable results
with a randomly initialized classifier. And it also
should be noted that the prompt method without
fine-tuning already outperforms random guessing.
It indicates that adding a prompt is informative for
a model pre-trained on masked-language-model
task (e.g. BERT) and can induce reasonable pre-
dictions in entity typing tasks. Second, the perfor-
mance of the model improves by a large margin if
trained on unlabeled data. It shows the effective-
ness of the proposed self-supervised training ap-
proach and points to the potential of a pre-trained
prompt-based model under the zero-shot setting
when no labeled data are available. To explore the
more subtle changes in performance, we carry out
case study for the zero-shot entity typing, please
refer to Appendix C for details.

6.6 Analysis
Effect of Templates. As stated in previous stud-
ies (Zhao et al., 2021), the choice of templates has
considerable impact on the performance in prompt-
learning, We carry out experiments under the 8-
shot setting on FEW-NERD dataset to investigate
such influence. We use 3 different hard templates
and 4 soft templates (by changing the number of
prompt tokens l). Table 5 shows that the choice of
templates exerts a considerable influence on the per-
formance of prompt-based few-shot learning. For
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Shot Metric Few-NERD OntoNotes BBN

FT PLET(T3) FT PLET(T3) FT PLET(T3)

1
Acc 8.94 43.87 (+34.93) 3.70 38.97 (+35.27) 0.80 40.70 (+39.90)
MiF 19.85 60.60 (+45.75) 18.98 59.91 (+40.93) 5.79 49.25 (+43.46)
MaF 19.85 60.60 (+40.75) 19.43 61.42 (+41.99) 4.42 48.48 (+43.06)

2
Acc 20.83 47.78 (+26.95) 7.27 39.19 (+31.92) 6.68 41.33 (+34.65)
MiF 32.67 62.09 (+29.42) 24.89 61.09 (+36.20) 13.70 54.00 (+40.30)
MaF 32.67 62.09 (+29.42) 25.64 62.68 (+37.04) 13.23 51.97 (+38.74)

4
Acc 33.09 57.00 (+23.91) 11.15 38.39 (+27.24) 19.34 52.21 (+32.87)
MiF 44.14 68.61 (+24.47) 27.69 59.81 (+32.12) 27.03 61.13 (+34.10)
MaF 44.14 68.61 (+24.47) 28.26 60.89 (+32.63) 24.69 58.91 (+34.22)

8
Acc 46.44 55.75 (+9.31) 18.37 39.37 (+21.00) 27.01 44.30 (+17.29)
MiF 57.76 68.74 (+10.98) 38.16 57.97 (+19.81) 40.19 56.21 (+16.02)
MaF 57.76 68.74 (+10.98) 37.77 58.32 (+20.55) 39.50 55.15 (+15.65)

16
Acc 60.98 61.58 (+0.60) 32.26 42.29 (+10.03) 39.67 55.00 (+15.33)
MiF 71.59 72.39 (+0.80) 51.40 60.79 (+9.39) 49.01 62.84 (+13.83)
MaF 71.59 72.39 (+0.80) 51.45 61.80 (+10.35) 47.09 62.38 (+15.29)

Table 3: Results of few-shot entity typing on FEW-NERD, OntoNotes and BBN, all the methods use BERTbase with
same initialization weights as the backbone encoder. The training set and dev set have the same size.

Dataset Metric Method

PLET PLET (S)

Few-NERD
Acc 17.55 23.99 (+6.44)
MiF 28.39 47.98 (+19.59)
MaF 28.39 47.98 (+19.59)

OntoNotes‡
Acc 25.10 28.27 (+3.17)
MiF 33.61 49.79 (+16.18)
MaF 37.91 49.95 (+12.04)

BBN
Acc 55.82 57.79 (+1.97)
MiF 60.64 63.24 (+2.60)
MaF 59.99 64.00 (+4.01)

OpenEntity Acc 11.37 18.78(+7.41)

Table 4: Results of zero-shot entity typing on FEW-
NERD, OntoNotes, and BBN. ‡ means that we remove
the “Other” class during testing.

the hard templates, the phrase that describes the
location “in this sentence” contributes a remark-
able improvement in performance. For the soft
templates, surprisingly, the prompt-learning model
yields the best result with the fewest special tokens.

Behavior of Different PLMs. We also investigate
the behavior of different PLMs. Specifically, we
experiment with masked language model (BERT-
base), sequence-to-sequence (T5-base), and autore-
gressive (GPT-2) model. The results on zero-shot
and fully supervised settings are shown in Table 6.
Overall, GPT-2 achieves best result in zero-shot

Type Template Acc MiF MaF

Hard
T1(x) 54.45 67.34 67.34
T2(x) 53.93 66.44 66.44
T3(x) 55.75 68.74 68.74

Soft

l = 2 59.25 69.58 69.58
l = 3 53.66 66.06 66.06
l = 4 52.96 66.01 66.01
l = 5 55.44 68.39 68.39

Table 5: Effect of templates. The results are produced
under 8-shot setting on FEW-NERD dataset by PLET. l
is the number of soft tokens.

setting and T5 performs the worst. However, with
enough training, the gap disappears. This find-
ing indicates that entity typing task in the form
of prompt-learning more closely resembles auto-
regressive generation task, and the least similar
to sequence-to-sequence task, which fits our intu-
ition. While the results after supervised training
also show that given appropriate training method,
the inherent ability of language models may not
differ as much as we suppose.
Random Verbalizer To explore the effect of ver-
balizer, we experiment with a random verbalizer
that casts random projection from entity label to
overall label words set V∗. We conduct experi-
ments on 1∼128 shots setting with template T3. As
shown in Figure 4, it could be observed that when
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Dataset Metric PLET(T3) ZeroShot PLET(T3) Supervised

BERT-BASE T5-BASE GPT-2 BERT-BASE T5-BASE GPT-2

Few-NERD
Acc 17.55 8.98 26.91 79.90 79.13 77.71
MiF 28.39 14.30 41.83 85.84 85.30 84.02
MaF 28.39 14.30 41.83 85.84 85.30 84.02

OntoNotes‡
Acc 25.10 26.52 23.80 60.37 57.09 53.65
MiF 33.61 37.58 34.84 70.78 72.24 69.31
MaF 37.91 41.65 39.85 76.42 73.40 70.69

BBN
Acc 55.82 14.69 55.34 65.92 64.90 63.35
MiF 60.64 16.63 62.66 71.55 70.76 69.60
MaF 59.99 15.87 61.35 70.82 69.87 68.44

Table 6: Results of zero-shot and fully supervised entity typing on FEW-NERD, OntoNotes, and BBN with different
PLMs. ‡ means that we remove the “Other” class during testing.
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Figure 4: Effects of random verbalizer compared with
standard verbalizer on FEW-NERD.

training samples are very scarce, the random verbal-
izer performs significantly worse than the standard
one, indicating the importance of a reasonable la-
bel word selection and the power of PLM to learn
contextual information with prompts. However,
as training samples increase, the gap between the
verbalizers become smaller and almost vanishes
when the number of shots reaches 128, meaning
the PLLM can be adapted to an arbitrary label word
setting given adequate training samples. This fur-
ther sheds light on the comparative easiness and
high cost-effectiveness of the down-stream model
adaptation to pre-training stage.

7 Conclusion

This work investigates the application of prompt-
learning on fine-grained entity typing in in fully
supervised, few-shot and zero-shot scenarios. We
first investigate a simple and effective prompt-
learning pipeline that could be used to extract entity
types with both sufficient and insufficient supervi-
sion. Furthermore, to handle the zero-shot setting,

we propose a self-supervised prompt-learning ap-
proach that automatically learns and summarizes
entity types based on unlabeled corpora and a pre-
defined label schema, which utilizes prompts to
take advantage of prior knowledge distributed in
PLMs, and could learn pre-defined type informa-
tion without overfitting by performing distribution-
level optimization. The experimental results ver-
ify that prompt-learning is a strong alternative to
fine-tuning for fine-grained entity typing, we com-
prehensively explore and analyze various attributes
under this scenario.
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A Experimental Settings and Details

A.1 Experimental Details

We use BERT-base (Devlin et al., 2019a) as
the backbone structures of our model and ini-
tialized with the corresponding pre-trained cased
weights2. The hidden sizes are 768, and the num-
ber of layers is 12. Our experiments are developed
by OpenPrompt (Ding et al., 2021a) and models
are implemented by Pytorch framework3 (Paszke
et al., 2019) and Huggingface transformers4 (Wolf
et al., 2020). BERT models are optimized by
AdamW (Loshchilov and Hutter, 2019) with the
learning rate of 5e-5. The training batch size used
is 16 for all models. In the supervised setting, each
model is trained for 10 epochs and evaluated on the
dev set every 2000 steps. In the few-shot setting,
each model is trained for 30 epochs and evaluated
every 10∼50 steps, each time the evaluation is run
for 200 steps. For the methods with hard-encoding,
we report the experimental results of T3(·). For
the soft-encoding method, we report the results of
m = 2. Experiments are conducted with CUDA
on NVIDIA Tesla V100 GPUs.

A.2 Templates

For hard template, with the marked entity mention
[Ent], we use the following templates:

T1(x) = x. [Ent] is [MASK],

T2(x) = x. [Ent] is a [MASK],

T3(x) = x. In this sentence, [Ent] is a [MASK],

where [Ent] is the entity mention in x. In § 6, we
report the the results of T3(·).

B Comparisons with Previous Methods

In this section, we make comparisons with other
baselines under the ultra-fine setting of the Ope-
nEntity (Choi et al., 2018a) dataset. We compare
our methods to the following approaches:

• UFET (Choi et al., 2018a) is the baseline ap-
proach proposed in the original paper of Ope-
nEntity, including a bi-LSTM and a character-
level CNN encoder.

2https://github.com/google-research/
bert

3https://pytorch.org
4https://github.com/huggingface/

transformers

Method
OpenEntity

Precision Recall MaF

UFET 47.1 24.2 32.0
LabelGCN 50.3 29.2 36.9
LDET+ElMo 50.7 33.1 40.1
LDET+BERT 51.6 32.8 40.1
Box Embedding 52.8 38.8 44.8

PLET(T3) 59.2 36.6 45.2
PLET(T4) 61.4 36.9 46.1

Table 7: Fully supervised entity typing results of the
coarse-grained entity types on Open Entity. The data
splits and settings follow.

• LabelGCN (Xiong et al., 2019) is a graph-
based approach for ultra-fine grained entity
typing. A GCN layer is used to encode the
global label co-occurrence and statistics and
word-level similarities.

• LDET (Onoe and Durrett, 2019) is a denoising
approach that firstly uses the filtering function
to denoise the weakly supervised data, and
then a relabeling function is applied to repair
the retained examples.

• Box Embedding (Onoe et al., 2021) use box
embeddings to represent the type information
of named entities and capture the latent type
hierarchies. The backbone encoder is BERT-
base.

Note that the test data and the evaluation is iden-
tical to our method, but some methods use the
weakly supervised data provided by OpenEntity
and ours does not use any other data rather than
the 1,998 examples in the training set. The results
are shown in Table 7, from which we can observe
that our PLET consistently outperforms the previ-
ous baselines with only the limited examples in the
training set. Notably, the improvements are mainly
contributed by precision.

C Case Study under the Zero-shot Setting

In Figure 5, we illustrate the zero-shot prediction
distribution (the correct prediction and other top-5
predictions) for four entity types in FEW-NERD.
We could observe that with self-supervised prompt-
learning, PLET (S) could summarize entity type
information and infer the related words to a certain
extent. In Figure 5 (a) and Figure 5 (b), the PLET

model suffers from a severe bias and almost predict
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no correct labels in the zero-shot setting since such
words are low-frequency. And although there is
no explicit supervision in the pre-training stage of
UNPLET, the model could still find the correspond-
ing words that express the ORG-SPORTSLEAGUE

and the EVENT-ATTACK types. In Figure 5 (c),
self-supervised learning increases the performance
of the original encoder. Further, in Figure 5 (d),
PLET has been able to make satisfying predictions
for this type LOC-MOUNTAIN. In this case, the use
of self-supervised learning has hardly weakened
the performance, which means that the process of
automatically summarizing type information has
a little negative impact on high-confidence entity
types.

D Discussion

We comprehensively explore the practical appli-
cation of prompt-learning for fine-trained entity
typing. From the bright sight, the prompt-based
paradigm could be significantly effective across
different numbers of types, and the self-supervised
method could produce non-trivial results without
seeing any of the training data. However, the
prompt-based entity typing has limitations. Al-
though very effective under the few-shot setting,
its gap with fine-tuning decreases as the amount
of data increases, and it does not significantly ex-
ceed the upper bound of the model itself when
supervision is sufficient. Another limitation is
that although PLET (S) could significantly outper-
form the baselines under the zero-shot setting (fine-
tuning cannot work), the results is still a long way
from being able to be used fully automatically to
predict entity types in real-world. The misuse of
the proposed methods may produce false informa-
tion and has potential risks.
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(a) Zero-shot prediction distribution on ORG-
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(b) Zero-shot prediction distribution on EVENT-ATTACK.
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(c) Zero-shot prediction distribution on MISC-CURRENCY.
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(d) Zero-shot prediction distribution on LOC-MOUNTAIN.

Figure 5: Zero-shot prediction distribution on 4 types in FEW-NERD. In each subgraph, the left part illustrates the
results of PLET and the right part are PLET (S). denotes the correct predictions, denotes the wrong predictions
with correct coarse-grained types, and denotes the wrong predictions with wrong coarse-grained types.
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