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Abstract

Sentence representations are essential in many
NLP tasks operating at the sentence level. Re-
cently, research attention has shifted towards
learning how to represent sentences without any
annotations, i.e., unsupervised representation
learning. Despite the benefit of training with-
out supervised data, there is still a performance
penalty compared to supervised methods. Fur-
thermore, the supervised-unsupervised perfor-
mance gap widens as we reduce the model
size. In this paper, we propose an unsuper-
vised sentence representation method to reduce
the supervised-unsupervised performance gap,
especially for smaller models. Utilizing the
concept for knowledge distillation, we derive
a distillation framework comprising two train-
ing objectives, control and generalize, called
ConGen. Experiments on semantic textual sim-
ilarity (STS), text classification (transfer), and
natural language inference (NLI) tasks show
that ConGen is on par with supervised train-
ing even on smaller models. Furthermore, our
method consistently outperformed competitors
on multilingual STS.

1 Introduction

In recent years, sentence representation has played
a crucial role in various NLP tasks operating at
the sentence level (Reimers and Gurevych, 2019;
Yang et al., 2020; Zhang et al., 2021; Yang et al.,
2021). Many researchers use a transformer lan-
guage model (LM) (Devlin et al., 2019; Liu et al.,
2019), as a backbone of sentence representation
by finetuning LM on natural language inference
(NLI) and semantic textual similarity (STS) labeled
data, which yields promising results (Reimers and
Gurevych, 2019; Li et al., 2020). However, these
techniques require labeled data during the finetun-
ing process, which can be a limiting factor in low-
resource settings.

In order to incorporate unlabeled data into the
training process, unsupervised learning paradigms
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Figure 1: Comparison between finetuning LMs (Sim-
CSE) vs. knowledge distillation (ConGen) on the aver-
age of 7 semantic textual similarity (STS) benchmark
datasets and ∆ is the improvement of ConGen from
SimCSE.

have gained popularity. The contrastive learning
paradigm has recently led to significant advance-
ment in unsupervised learning. The main idea of
contrastive learning in sentence representation is
learning a meaningful representation by maximiz-
ing the similarity between differently augmented
views (Kim et al., 2021; Yan et al., 2021; Gao et al.,
2021; Carlsson et al., 2021; Kim et al., 2021; Giorgi
et al., 2021; Liu et al., 2021a; Fang et al., 2020).
For example, Gao et al. (2021) proposed a state-of-
the-art contrastive framework called SimCSE, the
learning framework that benefits from the dropout
normalization to produce differently augmented
views and works well with unsupervised and su-
pervised learning. In particular, SimCSE is SOTA
on the STS benchmark, and the performance gap
between unsupervised and supervised settings in
SimCSE on large networks (e.g., BERT-base) is
only five points when evaluated on the STS bench-
mark.

However, the performance of SimCSE rapidly
degrades as we decrease the model size, which is
undesirable when the computational resource is
limited, e.g., edge computing (Jiao et al., 2020;
Sun et al., 2020b). For instance, when we use the
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MiniLM-L3 (#parameters: 17M) instead of the
BERT-base model (#parameters: 109M), the Spear-
man rank correlation of SimCSE-unsupervised
drops from 76.25 to 55.10 (averaged across 7 STS
corpora). The gap between compressed and base
LMs is 21.15, as shown in Figure 1. In addition, the
gap between unsupervised and supervised learning
in MiniLM-L3 is 21.56, while the gap of larger
models like BERT-base is only 5.32 points. Main-
taining a high performance for supervised and un-
supervised learning is challenging for smaller LMs.

In this paper, we aim to retain the advantage
of unsupervised learning while mitigating the per-
formance penalty from model compression at the
same time. We propose an unsupervised control
and generalization distillation, ConGen, a distil-
lation framework that transfers knowledge from a
large model to any model regardless of its architec-
ture and size. Not only does ConGen outperform
state-of-the-art unsupervised sentence representa-
tion, its performance is also similar to supervised
learning (Figure 1).

The crux of ConGen lies in the distillation mech-
anism, which handles two different data augmenta-
tion views. In particular, we employ inputs derived
from two data augmentation operations, which we
refer to as control and generalization. The student
observes both control and generalization inputs,
whereas the teacher observes only control input,
which we refer to as a reference input. We de-
rive a similarity distribution between the student
inputs (control and generalization) and the instance
queue (He et al., 2020; Fang et al., 2021), and we
also do the same to the teacher input (reference). To
compare similarity distributions from the teacher
to student models, we minimize the discrepancy
between the student and teacher distributions in the
two following control & generalization learning
objectives. First, we control the similarity distri-
bution of the control distribution and the reference
distribution to be the same. Second, to increase the
model’s generalizability, we enforce the similarity
distribution of the generalization distribution to be
the same as the reference distribution.

To demonstrate our method’s effectiveness, we
compare it to other distillation methods in three
tasks: semantic textual similarity (STS), text clas-
sification (transfer), and natural language inference
(NLI). The experimental results from STS demon-
strate that our method significantly improves the
performance of compression models and consis-

tently outperforms competitors. In addition, when
the model parameters are less than 33 Million, Con-
Gen outperforms or matches the supervised base-
line (Figure 1). Moreover, in transfer and NLI,
ConGen outperforms unsupervised learning, i.e.,
SimCSE, and other distillation methods in 11 of
12 cases. Additionally, we extend our method to
multilingual sentence representation; experimen-
tal results from multilingual STS demonstrate that
ConGen outperforms competitors in all cases.

The contributions of our work are as follows:
• We extend the relational learning approach often

used in computer vision to sentence represen-
tation learning by designing a novel training
process for textual learning.

• We propose a knowledge distillation technique
called ConGen that works regardless of architec-
ture or model size. ConGen distills knowledge
from a large model to a small model without
using labeled data.

• We design two learning objectives to minimize
teacher-student discrepancies, namely, control
and generalization.

• We demonstrate the models’ performance and
efficiency using an extensive set of experimental
studies, including three monolingual tasks, one
multilingual task, and eight competitors.

2 Related Work

2.1 Unsupervised Sentence Representation

Transformer-based language models (LM), i.e.,
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), have shown outstanding performance
in many downstream tasks including sentence rep-
resentation. Contrastive learning is often utilized
for training an unsupervised sentence encoder
based on a pretrained LM. The main idea behind
contrastive loss in unsupervised learning is to en-
force similarity between the representations of an-
chor and positive samples. Anchor samples can
be randomly sampled from the training data. In
contrast, the positive samples can be obtained from
various techniques, e.g., generating from another
LM (Carlsson et al., 2021; Kim et al., 2021), sam-
pling sentence from the same document or dia-
logue (Giorgi et al., 2021; Liu et al., 2021a), gener-
ating similar sentences from back-translation oper-
ations (Fang et al., 2020), and randomly dropped
some features of a vector (Yan et al., 2021; Gao
et al., 2021; Liu et al., 2021b), the performance
from these techniques outperformed previous un-
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supervised methods. However, those frameworks
only focus on large models (BERT/RoBERTa-base
and BERT/RoBERTa-large), without any consid-
eration for smaller models. The experimental re-
sults from Wu et al. (2021) have demonstrated that
the current SOTA unsupervised learning technique,
SimCSE (Gao et al., 2021), fails to produce mean-
ingful sentence representation when SimCSE is
trained on compressed LMs.

2.2 Sentence Representational Knowledge
Transfer

Knowledge distillation (KD) is a technique for
transferring knowledge from a source model
(teacher) to a target model (student), where the
learning objective is minimizing the discrepancy
between the two models. In particular, directly
transferring knowledge from a teacher vector to a
student model by using prediction outputs (Turc
et al., 2019; Sanh et al., 2019) or transformer prob-
abilities (Jiao et al., 2020; Sun et al., 2020b; Wang
et al., 2020, 2021c) to create soft labels for com-
pressed student models.
Labeled Sentence-Pair Knowledge Distillation.
Reimers and Gurevych (2020) propose an LM fine-
tuning method that minimizes the discrepancy be-
tween English and other languages vector represen-
tations using the L2 loss. Cheng (2021) propose
a dual-view distillation method called DvBERT,
which minimizes the discrepancy of a student NLI
output with respect to outputs from two teachers
using KL divergence. Notably, a recent concur-
rent work, namely DisCo (Wu et al., 2021) also
points out the importance of developing better
sentence representation for compressed models.
DisCo is based on contrastive distillation (Sun et al.,
2020a), where the positive and negative samples in
contrastive learning are obtained from a memory
bank (Liu and Mukhopadhyay, 2018) produced by
a supervised teacher model.
Unlabeled Sentence-Pair Knowledge Distilla-
tion. Liu et al. (2022) propose a binary
cross-entropy self-distillation called Trans-Encoder.
Trans-Encoder imitates the similarity of pair-wise
datasets from the teacher to student models by us-
ing binary cross-entropy loss. However, the tech-
niques mentioned above require sentence-pair for
training, thereby not entirely unsupervised.
Knowledge Distillation without Sentence-Pair.
Previous KD literature on sentence representation
focuses on weakly-supervised and supervised set-

tings but remains unexplored for unsupervised
knowledge distillation. In contrast to previous liter-
ature, in the computer vision community, Fang et al.
(2021) propose a self-supervised knowledge distil-
lation (SEED) for visual representation learning.
SEED is based on two components: (i) large-scale
negative samples and (ii) similarity distribution to
transfer the knowledge from large to small mod-
els without pair-wise or labeled datasets. This al-
lows us to perform unsupervised distillation. We
apply these components from computer vision to
sentence representation models by designing a new
training process, new generalization technique, loss
function, and data augmentation methods.

3 Proposed Method

In this section, we describe our Control and Gen-
eralization distillation (ConGen) method. Con-
Gen is a knowledge distillation technique compris-
ing two objectives: (i) transferring the knowledge
from large to small models and (ii) improving the
model’s generalizability. As illustrated in Figure 2,
we describe our framework’s training process, in-
cluding how we organize the inputs and outputs,
compare the outputs, and train the model.

3.1 How We Organize the Inputs and Outputs

As shown in Figure 2, given a new batch sample
x, we first obtain two differently augmented sam-
ples x1 = T (x) and x2 = T ′(x), where T and T ′

are back-translation from English-to-German-to-
English and English-to-French-to-English (Zhang
et al., 2021), respectively. Unlike SEED which uses
single-view distillation, we use two augmented
methods (T , T ′) to achieve the control and gen-
eralize objectives.

Let fT
θ and fS

θ denote the teacher and student en-
coders, respectively. Sentence representations are
extracted from the student model (S) for different
augmented views: zScon = fS

θ (x1)/||fS
θ (x1)|| and

zSgen = fS
θ (x2)/||fS

θ (x2)||. On the other hand, the
teacher model (T ) observes only one augmentation
view, zTref = fT

θ (x1)/||fT
θ (x1)||.

3.2 How We Compare the Outputs

A simple method to assess the discrepancy be-
tween the teacher and student outputs is to directly
compare the two vectors using a function such as
L2 (Reimers and Gurevych, 2020) or cosine simi-
larity (Sun et al., 2020a; Wu et al., 2021). In this
work, however, we adopt a more robust alternative
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Figure 2: Illustration of Control and Generalization Distillation (ConGen) training pipeline. For the teacher model,
we freeze the weights during the distillation. We train student model by minimizing the cross-entropy of teacher &
student similarity distributions computed over an instance queue.

which uses a large set of negative samples (Fang
et al., 2021) to compare the outputs zScon, z

S
gen, and

zTref. In particular, we represent the teacher and stu-
dent outputs as similarity distributions computed
from an instance queue of negative samples used
in the loss calculations.
Instance Queue of Negative Samples. Since we
use negative samples to describe the teacher and
student outputs, we want them to provide suffi-
cient coverage of the entire dataset. However, we
want to keep the number of samples small due to
the computational cost. Consequently, we adopt
the instance queue approach (He et al., 2020) to
achieve these goals. Let D = [d1....dK ] denote the
instance queue where d is a sentence representa-
tion obtained from the teacher, and K is the queue
length. To cover the entire dataset, our framework
progressively updates the instance queue D using
the “first-in-first-out” (FIFO) strategy (He et al.,
2020; Fang et al., 2021). At the beginning of each
minibatch, we dequeue the first m entries where m
is the minibatch size. We then enqueue the repre-
sentation zTref of each batch sample x bringing the
total queue length back to K. The queue contains
reference points for distillation and keeps rotating
representations of the entire dataset for coverage.
This practice reduces the overhead cost of com-
puting negative samples. There are many ways to
initialize D, i.e., random vector (He et al., 2020;
Fang et al., 2021). We found that random initializa-
tion by sampling from the training data produces
acceptable results since we used a pre-trained LM
as the student model.
Similarity Distribution. We use discrepancies
between similarity distributions to help transfer
the knowledge from the teacher to student models.
Equation 1 describes how we compute the similar-
ity distribution from a given representation z and

an instance queue D’s (j = 1, ...,K).

p (z,D, τ) = [p1 . . . pK ] ,

where pj =
esim(z,dj)/τ

∑
d∼D esim(z,d)/τ

,
(1)

where τ denotes the temperature parameter, and
sim(·) denotes the cosine similarity between two
feature vectors. As shown in Figure 2, we cre-
ated three distributions: (i) Student-Control sim-
ilarity distribution: PS

con = p(zScon,D, τS); (ii)
Student-Generalize similarity distribution: PS

gen =

p(zSgen,D, τS); and (iii) Teacher-Reference sim-
ilarity distribution: PT

ref = p(zTref,D, τT ). We
found that using different temperature scaling for
the teacher and student models (τT , τS) yields bet-
ter performance than using the same value for both
models (see Appendix A.2).

Distilling knowledge via the similarity distribu-
tion from the instance queue achieves three objec-
tives: (i) the student learns to match the positive
examples via the reference; (ii) the student learns
to contrast the positive sample against a large num-
ber of negative samples efficiently via the instance
queue; and (iii) the student model learns the differ-
ence between each negative samples within each
distribution.

3.3 How We Train the Model
The training objective of ConGen facilitates the
knowledge transfer from the teacher to student
models (Figure 2). Specifically, we use the ref-
erence distribution to compute the control and gen-
eralization discrepancies.

ConGen transfers the knowledge using our novel
loss function LConGen:

αCE(PT
ref,PS

con)︸ ︷︷ ︸
control

+(1− α)CE(PT
ref,PS

gen)︸ ︷︷ ︸
generalize

,
(2)
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where α represents the control-generalize trade-off
and CE(·) is the cross-entropy function computed
between the teacher and student distributions.

The intuition behind the objectives are:
• Obj 1: Control. The first objective is to mini-

mize the discrepancy between the student dis-
tribution PS

con and the teacher distribution PT
ref

when the inputs are identical, i.e., both are com-
pute from the same augmentation method T (·).

• Obj 2: Generalize. The second objective is
to improve the generalizability by minimizing
the discrepancy between the student distribution
PS

gen and the teacher distribution PT
ref when the

inputs are slightly different, i.e., T (·) and T ′(·).
With the two objectives, we are ensuring that the
student behaves similarly to the teacher with the
added robustness from the multiple views.

4 Experiment Setting

4.1 Pre-training

Teacher Model. By default, we use the current
state-of-the-art unsupervised sentence representa-
tion, SimCSE-RoBERTa-large (Gao et al., 2021)
(#parameters: 356M), as the teacher model. Note
that our distillation framework is compatible with
any teacher method and model. We also compare
SimCSE to other recent unsupervised finetuning
methods, i.e., BSL (Zhang et al., 2021) and Con-
SERT (Yan et al., 2021). For the teacher model,
we also consider BERT-large and BERT-base. See
Table 4.
Student Model. We experiment with multi-
ple pretrained language models from small com-
pressed models to large state-of-the-art models:
BERT-Tiny, -Mini, and -Small (Turc et al., 2019),
MiniLM (Wang et al., 2020), TinyBERT (Jiao
et al., 2020), BERT (Devlin et al., 2019), and
RoBERTa (Liu et al., 2019). To produce sentence
representations from these LMs, we use mean pool-
ing (Reimers and Gurevych, 2019). In addition, we
add one additional linear layer with the TanH acti-
vation function, where the number of hidden dimen-
sions of the linear layer is equal to the teacher’s.
Training Setup. For the training data, we use unla-
beled texts from two NLI datasets, SNLI (Bowman
et al., 2015) and MultiNLI (Williams et al., 2018)
datasets, to make it comparable with the previous
works (Li et al., 2020; Zhang et al., 2020, 2021).
We train the student model with the AdamW op-
timizer, a linear learning rate warm-up over 10%
of the training data, and a batch size of 128 for

20 epochs. For hyperparameter settings, we use
grid search to find the best parameter settings for
the learning rate, teacher temperature (τT ), stu-
dent temperature (τS), and instance queue size
(K). The full hyper-parameter configurations are
given in Appendix A.1. Lastly, we randomly pick
sentences from the training data to initialize the
instance queue, which is more efficient than the
random vector.

4.2 Competitive Methods
To show the effectiveness of our method, we com-
pare our work to six competitors as follows.
Finetune-based. We use the state-of-the-art sen-
tence representation, SimCSE (Gao et al., 2021),
with unsupervised settings as the baseline results
and supervised settings as an supervised baseline.
Unsupervised settings are trained with contrastive
loss and dropout as the data augmentation method,
while supervised settings are trained with con-
trastive loss and NLI labeled datasets.
Distillation-based. We also compare our work
with other distillation techniques:
• L2: A L2 minimization between the teacher

and student representations (zTref, z
S
con) (Romero

et al., 2015).
• Dual-L2: Two terms L2 minimization where the

first term is L2(zTref, z
S
con) and the second term

is L2(zTref, z
S
gen) (Reimers and Gurevych, 2020).

• SKD: A self-knowledge distillation method
that uses the same two terms L2 mini-
mization as Dual-L2, with additional term
L2(zScon, z

S
gen) (Limkonchotiwat et al., 2022).

• CKD: An adaptation of contrastive knowledge
distillation, where the positive and negative sam-
ples obtained from the teacher model (Wu et al.,
2021). In this paper, however, we change from
a supervised teacher to an unsupervised teacher.

We retrained all models with our training data.

4.3 Evaluation Setup
Semantic Textual Similarity (STS). Following
previous works (Zhang et al., 2020, 2021; Yan
et al., 2021; Gao et al., 2021), we report the average
Spearman rank correlation on seven STS datasets
include STS 2012-2016 (Agirre et al., 2012, 2013,
2014, 2015, 2016), STS-B (Cer et al., 2017), and
SICK-R (Marelli et al., 2014).
Transfer and NLI. For transfer tasks, we re-
port average scores across seven classification
datasets such as MR (Pang and Lee, 2005), CR (Hu
and Liu, 2004), SUBJ (Pang and Lee, 2004),
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Methods Semantic Textual Similarity (STS) average scores
BERT
Tiny

BERT
Mini

Tiny
BERT-L4

MiniLM
L3

MiniLM
L6

BERT
Small

MiniLM
L12

Tiny
BERT-L6

BERT
Base

RoBERTa
Base

#Param (M) 4 11 14 17 22 29 33 67 109 125
Finetune-based
Teacher Unsup-SimCSE-RoBERTa-large: 78.90✝ (#parameters: 356M)
Sup-SimCSE♣ 72.35 76.52 78.19 76.49 78.86 78.59 80.48 81.23 81.57 82.52
Unsup-SimCSE 64.47 65.94 67.91 55.10 59.15 69.13 67.90 73.67 76.25 77.10
Distillation-based
L2 73.32 76.07 77.03 76.66 77.51 77.30 78.79 78.95 78.97 79.00
Dual-L2 70.76 74.42 76.39 75.34 74.74 76.92 76.91 78.67 78.07 79.06
SKD 68.83 72.02 73.05 72.66 73.59 75.06 74.58 77.62 78.05 77.44
CKD 76.19 76.59 77.48 77.14 77.90 76.97 77.92 78.29 78.54 78.34
Our propose method
ConGen 76.85 78.09 78.54 78.22 79.10 78.91 79.68 79.73 80.06 79.78

Table 1: Sentence embedding performance on STS tasks (Spearman rank correlation). The results of BERT-based,
RoBERTa-base, and RoBERTa-large (the teacher model) are from SimCSE (Gao et al., 2021), ✝ is the teacher
performance without using any of the task data, and ♣ is the performance of supervised learning.

MPQA (Wiebe et al., 2005), SST (Socher et al.,
2013), TREC (Voorhees and Tice, 2000), and
MRPC (Dolan and Brockett, 2005) following Gao
et al. (2021)’s experimental settings. For NLI tasks,
we use two standard NLI datasets, such as SNLI
and SICK-E datasets, and we use the same setting
as the transfer benchmark.
Multilingual STS. We demonstrate the versatil-
ity of our approach on eight multilingual STS-
2017 datasets (Cer et al., 2017) including EN-EN,
AR-AR, ES-ES, EN-AR, EN-ES, EN-TR, EN-DE,
and EN-FR following previous works (Reimers
and Gurevych, 2020; Zhang et al., 2021). To
extend our work to a multilingual setting, we
changed one of the data augmentation operations
(T ′) from back-translation to machine transla-
tion (Google NMT) from English to languages
in multilingual STS-2017 following Zhang et al.
(2021). For simplicity, we changed the student
LMs from monolingual to Multilingual-DistilBert-
cased (Sanh et al., 2019) and Multilingual-MiniLM-
L12 (Wang et al., 2020), and we use the same
teacher model (Unsupervised-SimCSE-RoBERTa-
large). For competitors, we compare different un-
supervised and multilingual settings with finetune-
based, i.e., BSL, and distillation-based, i.e., Dual-
L2 and L2. We show the average score from three
random seeds for all experimental results.

5 Experimental Results

5.1 Semantic Textual Similarity

Table 1 shows the performance of our distilled mod-
els produced by our method compared to those of
competitors on STS tasks. As mentioned in Sec-

tion 1, finetuned-based methods do not perform
well for small models. The experimental results
demonstrate that distillation from a large model im-
proves the performance of compressed models. For
instance, using Unsupervised-SimCSE-RoBERTa-
large as the teacher model of MiniLM-L3, the
Spearman rank correction of ConGen-MiniLM-L3
can be improved from 55.10 to 78.22. Moreover,
when the number of parameters is greater than 22
million, our models perform on par with the teacher
model. In addition, when the number of parame-
ters is less than 33 million, our models perform
on par with Supervised-SimCSE. ConGen outper-
forms unsupervised methods in every compression
model. For the full results of each dataset, see
Appendix A.4.

5.2 Transfer and NLI

This study shows how our proposed models per-
formed on transfer and NLI benchmarks. We con-
tinue to use the same baseline as the previous ex-
periment without any modification. The setting of
these tasks is described in Section 4.3.

As shown in Table 2, in the transfer learning
task, our distillation models improved compres-
sion models’ performance and were comparable
to supervised-SimCSE. Compared to other distil-
lation models, ConGen outperforms competitive
models in five out of six models, except the CKD-
BERT-base result. Furthermore, in the NLI task,
the performance of unsupervised-BERT-Tiny is im-
proved from 68.52 to 78.01 with our distillation
method, which is slightly better than supervised-
SimCSE and other distillation models. We hypoth-
esize that using the similarity distribution is crucial
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Methods Transfer Learning (TL) average scores Natural Language Inference (NLI) average scores
BERT
Tiny

Tiny
BERT-L4

MiniLM
L12

Tiny
BERT-L6

BERT
Base

RoBERTa
Base

BERT
Tiny

Tiny
BERT-L4

MiniLM
L12

Tiny
BERT-L6

BERT
Base

RoBERTa
Base

Finetune-based
Teacher Unsup-SimCSE-RoBERTa-large: 86.81✝ Unsup-SimCSE-RoBERTa-large: 77.01✝

Sup-SimCSE♣ 75.30 83.01 83.86 85.55 86.98 88.85 75.91 78.64 78.86 80.63 81.84 82.00
Unsup-SimCSE 77.00 82.14 83.38 85.49 85.17 85.10 68.52 74.30 74.25 75.87 76.17 76.51
Distillation-based
L2 75.69 81.17 81.17 84.96 84.47 86.22 76.85 78.65 78.62 78.85 78.39 76.86
Dual-L2 75.21 80.98 80.98 83.36 83.27 84.46 74.59 77.61 77.65 77.98 78.38 77.84
SKD 75.14 76.98 76.98 82.82 83.21 83.51 75.69 77.25 77.81 79.39 79.14 79.27
CKD 78.62 83.11 83.11 84.87 85.79 86.30 77.72 78.56 79.06 79.44 78.95 79.20
Our propose method
ConGen 78.87 83.45 85.08 85.57 85.64 86.37 78.01 79.38 79.36 79.78 79.74 79.93

Table 2: Sentence embedding performance on transfer and NLI tasks (accuracy score). Where all settings from
SimCSE (Gao et al., 2021), ✝ is the teacher performance, and ♣ is the performance of supervised learning.

for smaller models. For the full results of each
dataset, see Table 10 and 11.

5.3 Multilingual STS
This study shows how well our method can be
extended for multilingual sentence representation.
To extend from monolingual to multilingual set-
tings, we use multilingual compression models,
i.e., Multilingual-MiniLM-L12 and Multilingual-
DistilBERT-cased, as the student model. For the
full setting’s detail, see Section 4.3.

The results are illustrated in Table 3. The per-
formance of our distillation method greatly outper-
forms the finetune-base results, BSL. In compari-
son to other distillation techniques, L2 has a critical
issue in terms of performance, e.g., the Spearman
rank correlation of L2-Multilingual-DistilBERT-
based on EN-TR is only 10.73. Meanwhile, our
method outperforms other distillation methods in
all settings.

Model AR-AR EN-AR EN-DE ES-ES EN-ES EN-EN EN-FR EN-TR
Multilingual-MiniLM-L12 (#parameters: 117M)

BSL 41.66 43.18 45.96 58.23 41.99 52.99 50.87 50.45
L2 60.25 39.50 59.92 74.74 52.14 83.61 57.08 33.27
Dual-L2 77.00 81.90 82.37 86.27 82.56 85.51 83.76 80.77
ConGen 78.02 83.38 84.23 88.67 84.06 87.36 86.74 83.31

Multilingual-DistilBERT-cased (#parameters: 134M)
BSL 67.05 69.72 68.23 76.45 63.56 73.31 72.84 70.27
L2 56.41 27.16 53.59 77.10 41.51 83.76 46.48 10.73
Dual-L2 77.21 81.10 82.09 87.21 81.54 86.24 84.97 80.76
ConGen 80.17 83.17 83.36 89.31 83.41 87.10 86.72 83.56

Table 3: Sentence embedding performance on mul-
tilingual STS datasets. Where the teacher model for
distillation methods, e.g., L2, Dual-L2, and ConGen is
Unsup-SimCSE-RoBERTa-large.

5.4 Ablation Studies
This subsection explores the effect of various de-
sign decisions, such as teacher architectures, learn-
ing methods, loss functions, data augmentation

techniques, anisotropy study, qualitative analysis,
and instance queue.
Different Teacher Pretraining. This study shows
the performance of our distillation in other teacher
models and techniques. For the diversity of teacher
models, we use BERT base and large versions
trained on BSL (Zhang et al., 2021) and Con-
SERT (Yan et al., 2021), respectively. As shown in
Table 4, our method works well regardless of the
teacher model.

Models STS average scores
ConSERT

BERT-large
BSL

BERT-base
SimCSE

RoBERTa-large
Teacher 76.45 73.85 78.90

ConGen models
BERT-Tiny 74.88 70.61 76.85
TinyBERT-L4 76.28 71.63 78.54
MiniLM-L12 76.93 72.45 79.68
TinyBERT-L6 76.87 73.44 79.73
BERT-base 77.03 72.87 80.06

Table 4: Sentence embedding performance on STS
average scores. Where we changed from SimCSE to
other finetuning algorithms such as ConSERT and BSL.

Loss function Study. In this study, we show the
effectiveness of each objective in ConGen. Since
our work is inspired by SEED (Fang et al., 2021)
with an additional generalization loss term and data
augmentation process designed for NLP tasks, we
study how much gain the generalization term gives.
In table 5, we show the Spearman rank correlation
on average 7 STS corpus. We found that the per-
formance of the original SEED (control only) is
similar to our method ConGen when the number
of the parameter is less than 14 million, i.e., BERT-
Tiny and TinyBERT-L4. Nonetheless, when the
number of parameters increases, the gap between
SEED and ConGen widens, e.g., the gap between
SEED and ConGen on TinyBERT-L4 is only 0.44;
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in BERT-base, the gap increased to 0.77. In addi-
tion, using only the generalize term (0%) performs
slightly better than the original SEED (100%); still,
combining the two learning objectives (50%, Con-
Gen) yields the best performance. We investigated
more about control and generalization objectives
in error analysis.

Model alpha’s weight (α)
100%

(Control
only)

75% 50%
(ConGen) 25%

0%
(Generalize

only)
BERT-Tiny 76.25 76.72 76.85 76.62 76.26
TinyBERT-L4 78.10 78.45 78.54 78.43 78.30
MiniLM-L12 79.36 79.56 79.68 79.52 79.37
BERT-base 79.29 80.03 80.06 80.02 79.72

Table 5: Sentence embedding performance on STS
average scores. Where we change the portion of α into
0%, 25%, 50% (baseline), 75%, and 100%.

Effect of Data Augmentation Choice. We evalu-
ate the effectiveness of different data augmentation
methods for the generalization objective. For sim-
plicity, we use data augmentation methods from
Gao et al. (2021). The experimental results show
in Table 6. The results showed that using Google
NMT for data augmentation yields the best results
conforming to previous works (Zhang et al., 2021;
Fang et al., 2020). On the other hand, we can
also use word deletion and delete one word when
Google NMT is unavailable, which is not much
different in the larger model.

Model STS average scores
BERT-Tiny BERT-base

Baseline
EN→DE→EN (Google NMT) 76.85 80.06

Other augmentation methods
EN→DE→EN (MBart) 71.35 75.37

MLM 15% 74.99 78.44
Synonym replacement 76.01 80.01

Crop 10% 76.14 79.95
Word deletion 10% 76.15 80.06

Delete one word 76.14 80.02

Table 6: Comparison between data augmentation oper-
ations for the generalize objective.

Anisotropy Study and Qualitative Analysis The
anisotropic property of contextualized representa-
tions derived from pre-trained BERT is studied in
several works (Ethayarajh, 2019; Li et al., 2020).
This phenomenon consequently leads to degrada-
tion in semantic retrieval performance (Wang and
Isola, 2020). Figure 3 shows the correlation be-
tween ground-truth similarity scores and model-
derived cosine similarity. ConGen shows a better

correlation between the gold standard and cosine
similarities from sentence pair representations on
STS-B than unsupervised-SimCSE and similar to
supervised-SimCSE. This result confirms that our
work can significantly decrease the unsupervised
and supervised learning gap.
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Figure 3: Scatter plot of the groundtruth similarity
scores (x-axis) and the cosine similarities (y-axis) be-
tween sentence pairs in the STS-B (dev set).

We also performed qualitative comparisons fol-
lowing Gao et al. (2021). Using the 150,000
Flickr30k captions dataset, we randomly selected
sentences from the dataset to retrieve similar sen-
tences using embeddings from SimCSE, ConGen
(only Obj 1), and ConGen (both objectives). Un-
supervised simCSE failed to yield good top-5 re-
trieval results, while ConGen (only Obj 1) started
to do badly at the top-10. However, ConGen (two
objectives) yielded the most robust results. Exam-
ple retrievals are available in Table 12.
Instance Queue Study. This study shows the ef-
fect of instance queue size on LMs. For simplic-
ity, we select two popular models, BERT-base and
RoBERTa-base. For the instance queue sizes, we
set the size as follows: 128, 1024, 16384, and
65536. As shown in Figure 4, the instance queue
size has affected the performance of LMs. Unlike
previous works that also used instance queue (Fang
et al., 2021; Wang et al., 2021b), we found that
the best instance queue is not always 65536 sen-
tences. The best size for RoBERTa-base is only
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1024 sentences. These results show the importance
to finetune the instance queue size for distillation
since each model has a different instance queue
size. However, the difference is relatively small.
For the best queue size of each model, see Ap-
pendix A.1.
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Figure 4: Effect of queue size in BERT-base and
RoBERTa-base.

6 Conclusion

In this paper, we propose a novel unsupervised
Control and Generalization Distillation (ConGen).
ConGen is a distillation framework that transfers
knowledge from a large model to any model re-
gardless of its architecture and size by exploiting
the concept of control and generalization mecha-
nism. Our method outperforms competitive meth-
ods in all cases in monolingual and multilingual
STS and five out of six text classification bench-
marks. Furthermore, we demonstrate that our dis-
tillation framework can reduce the gap between
compressed and base LMs. Using ConGen, the
performance differences between supervised and
unsupervised methods are slim for smaller models.

7 Limitation

Out-of-domain data might pose certain difficulties
to our method. We strongly advise against using
our model with out-of-domain data i.e., health or
legal texts, directly. For example, we measure the
cosine similarity between "The risks and benefits
of the procedure were discussed, and the patient
consented to this procedure" and "The content of
this note has been reproduced, signed by an au-
thorized physician in the space above, and mailed
to the patient’s parents, the patient’s home care
company.", the result from ConGen-BERT-Base is
0.3 (indicate that the two sentences are not equiv-
alent, but share some details or are on the same
topic) while the answer similarity is 0 (the two

sentences are completely dissimilar). Both texts
are from the MedSTS corpus (Peng et al., 2019),
which is considered out-of-domain. To tackle this
problem, we advise detecting out-of-domain sam-
ples or incorporating techniques that can help han-
dle out-of-domain samples (Limkonchotiwat et al.,
2020, 2021; Trijakwanich et al., 2021; Wang et al.,
2021a). In addition, we did not try our method on
non-MLM families such as GPT, BART, or CLIP.
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A Appendix

A.1 Parameter Settings
To align between the teacher and student similarity
distribution, we use grid search on teacher’s tem-
perature (τT ), student’s temperature (τS), queue
size (K), and learning rate (LR). In addition, we
evaluate the Spearman rank correlation of STS-B
development set in every 512 training step to save
the best model. The best parameter is shown in
Table 7. We obtained the best parameter of each
model by evaluating on STS-dev set.

Model τT τS K LR
BERT-Tiny 0.05 0.05 16384 5e−4

BERT-Mini 0.05 0.07 16384 3e−4

Tiny-BERT-L4 0.05 0.05 65536 1e−4

MiniLM-L3 0.05 0.07 16384 5e−4

MiniLM-L6 0.05 0.07 65536 3e−4

BERT-Small 0.05 0.07 65536 3e−4

MiniLM-L12 0.05 0.07 16384 5e−5

Tiny-BERT-L6 0.05 0.07 65536 5e−5

BERT-base 0.05 0.07 65536 5e−5

RoBERTa-base 0.1 0.1 1024 5e−5

Multilingual-DistilBERT 0.05 0.07 65536 3e−4

Multilingual-MiniLM-L12 0.05 0.07 65536 3e−4

Table 7: The best parameter of each model in this paper.

A.2 Temperature Scaling
In this study, we show the effect of different tem-
perature settings. As shown in Table 8, the best
temperatures for the teacher and student models
are different. The results show that, in BERT-Tiny,
the best scaling value is 0.05, while the best scaling
of BERT-base is 0.07. However, setting both to
0.05 does not have a large effect on performance.

A.3 Effect of Lexical Change on Sentence Pair
Similarity.

We compute edit distance at word-level on sentence
pairs from STS-B (dev set), Similar to a study
of lexical and semantic similarity conducted by
(Li et al., 2020). The correlation between model-
derived similarity scores and edit distance shows
in Figure 5. The results show that the correlation
between edit distance and cosine similarity for Con-
Gen (ρ = −34.73) is weaker than unsupervised-
SimCSE (ρ = −46.73) and is similar to that of
supervised-SimCSE (ρ = −35.43).

A.4 Full results
We show the full results of our work on STS, trans-
fer, and NLI in Table 9, 10, and 11, respectively.

τT τS
STS-B dev set

BERT-Tiny BERT-base

0.1

0.1 83.69 86.02
0.09 83.71 85.37
0.07 82.15 83.85
0.05 79.75 83.58

0.05

0.1 84.02 86.17
0.09 84.14 86.25
0.07 84.18 86.31
0.05 84.83 85.96

0.01

0.1 84.08 86.22
0.09 84.18 86.23
0.07 84.16 86.09
0.05 83.79 85.19

Table 8: Effect of temperature for the distillation on
BERT-Tiny and BERT-base. We evaluated Spearman
rank correlation on STS-B dev set.
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Model STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.
BERT-Tiny 72.18 81.12 75.45 83.22 77.89 79.03 69.05 76.85
BERT-Mini 74.17 82.69 76.58 84.30 78.23 80.84 69.82 78.09
Tiny-BERT-L4 74.3 83.07 77.37 84.70 79.06 80.99 70.26 78.54
MiniLM-L3 74.00 82.93 76.58 84.35 78.57 81.00 70.09 78.22
MiniLM-L6 75.06 83.86 77.29 85.01 79.67 81.92 70.89 79.10
BERT-Small 74.50 83.58 77.29 84.83 79.72 81.93 70.55 78.91
MiniLM-L12 75.25 84.61 78.27 85.51 80.52 82.32 71.32 79.68
Tiny-BERT-L6 75.53 84.76 78.33 85.72 80.42 82.25 71.12 79.73
BERT-base 75.58 85.13 78.54 85.75 81.12 82.81 71.47 80.06
RoBERTa-base 75.32 84.56 77.26 85.33 81.34 82.67 72.00 79.78

Table 9: The full results of our work on STS tasks (Spearman rank correlation).

Model MR CR MPQA SUBJ SST2 TREC MRPC avg
BERT-Tiny 72.81 78.76 87.22 87.77 77.30 74.67 73.60 78.87
BERT-Mini 75.70 83.62 88.27 90.06 81.51 83.73 74.11 82.43
Tiny-BERT-L4 76.82 85.18 88.43 90.82 81.82 86.60 74.51 83.45
MiniLM-L3 76.18 83.60 88.47 90.82 82.32 86.13 73.24 82.97
MiniLM-L6 77.99 85.42 88.97 91.66 83.87 86.67 74.90 84.21
BERT-Small 78.09 84.88 89.01 91.89 83.87 87.20 74.55 84.21
MiniLM-L12 79.24 85.84 89.16 92.40 85.52 87.80 75.57 85.08
Tiny-BERT-L6 79.87 86.48 89.28 93.32 85.41 89.13 75.40 85.57
BERT-base 80.44 86.76 89.36 93.46 85.36 88.40 75.67 85.64
RoBERTa-base 81.83 87.74 88.43 93.47 87.11 90.40 75.63 86.37

Table 10: The full results of our work on transfer tasks (Accuracy).

Model SICKEntailment SNLI avg
BERT-Tiny 82.92 73.1 78.01
BERT-Mini 82.57 74.87 78.72
Tiny-BERT-L4 83.73 75.11 79.42
MiniLM-L3 83.19 74.99 79.09
MiniLM-L6 83.18 75.52 79.35
BERT-Small 83.23 75.53 79.38
MiniLM-L12 83.29 75.43 79.36
Tiny-BERT-L6 83.22 76.34 79.78
BERT-base 83.26 76.23 79.74
RoBERTa-base 83.7 76.17 79.93

Table 11: The full results of our work on NLI tasks (Accuracy).
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Figure 5: Scatter plot of edit distance and sentence similarity. The vertical axis represents the edit distance between
sentence pairs in the STS-B (dev set). The horizontal axis represents the groundtruth similarity for (a), and model-
derived cosine similarities for (b – d). Red dots indicate sentence pairs with edit distance ≤ 5.

.
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Retrieve
@K Unsupervised SimCSE-BERT-Tiny ConGen-BERT-Tiny

(Only Obj 1) ConGen-BERT-Tiny

Query: A group of men playing music for people walking down the street .

K = 1
Many people are watching two men
performing in a busy street .

a group of musicians playing music
in the street .

a group of musicians playing music
in the street .

K = 5
Two women are walking together
on a public street .

A group of men walk down
a city street .

A man walking on the street
listening to music .

K = 10
Two teenage boys are walking
together down the sidewalk in a city .

A man walking on the street
listening to music .

This men are marching band
playing instruments on streets .

Query: Two guys - one with a basketball in his hand - are jumping .

K = 1
Four guys look up at something
underneath a basketball hoop .

two men jump for the basketball . two men jump for the basketball .

K = 5
Two men are playing basketball ,
and one man is making a shot .

There are two boys on a basketball court
and one is holding a basketball .

A man jumps with a basketball
to make a hoop .

K = 10
There are several dogs in the field where
the girl with the ponytail is sitting down .

Professional basketball players
watching as one man jumps in the air
with the basketball in one hand .

Two men jump up for the ball
near the hoop in a basketball game .

Query: A brown dog and a gray dog are playing in the snow .

K = 1
A black dog and a white dog
are standing on snow .

A brown dog and a gray dog
play in the grass .

A brown dog and a gray dog
play in the grass .

K = 5
The boy and a brown dog
are standing in the snow .

Two brown dogs playing in snow A grayish dog running in the snow .

K = 10
A man in a winter hat plays
with a small black dog in the snow .

A grayish dog running in the snow . A black and gray dog

Query: Two young men in uniform involved in a basketball game .

K = 1
Three men in basketball uniforms
looking at something .

Two young males playing basketball
on a basketball court .

Young men playing basketball
in a competition .

K = 5
Two black men playing basketball
in a gym .

Two young men compete in
an informal basketball game .

Some young men are
playing basketball .

K = 10
Two men in the military are
playing baseball .

Two young men in basketball clothes
walking together .

Two women in basketball uniforms
playing basketball on a court .

Query: A man is using a pro-saw to fix the street .

K = 1
An older man with a can is
standing next to a counter .

Men working on street repair . Men working on street repair .

K = 5
A young person in a hat is coming
through an entrance labeled
" no fumar " ( no smoking ) .

A man helping a biker
fix his bike on a road .

A man helping a biker
fix his bike on a road .

K = 10 A man in a tie on a street .
A man performing a bicycle repair
on the side of the road .

Workman are completing
repairs on a city street .

Table 12: Qualitative study on the Flick30kr dataset (150k sentences), we randomly selected one caption as the
query and retrieved top-1,5, and 10 highest similarities.
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