R-AT: Regularized Adversarial Training for Natural Language
Understanding

Shiwen Ni, Jiawen Li, and Hung-Yu Kao*
Intelligent Knowledge Management Lab
Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan
{P78083033, P78073012}@gs.ncku.edu.tw; hykao@mail.ncku.edu.tw

Abstract

Currently, adversarial training has become a
popular and powerful regularization method in
the natural language domain. In this paper, we
Regularized Adversarial Training (R-AT) via
dropout, which forces the output probability
distributions of different sub-models generated
by dropout to be consistent under the same
adversarial samples. Specifically, we gener-
ate adversarial samples by perturbing the word
embeddings. For each adversarial sample fed
to the model, R-AT minimizes both the adver-
sarial risk and the bidirectional KL-divergence
between the adversarial output distributions of
two sub-models sampled by dropout. Through
extensive experiments on 13 public natural lan-
guage understanding datasets, we found that R-
AT has improvements for many models (e.g.,
rnn-based, cnn-based, and transformer-based
models). For the GLUE benchmark, when R-
AT is only applied to the fine-tuning stage, it
is able to improve the overall test score of the
BERT-base model from 78.3 to 79.6 and the
RoBERTa-large model from 88.1 to 88.6. The-
oretical analysis reveals that R-AT has poten-
tial gradient regularization during the training
process. Furthermore, R-AT can reduce the
inconsistency between training and testing of
models with dropout’.

1 Introduction

With the development of computing hardware, deep
learning (LeCun et al., 2015) has achieved surpris-
ing performance in many artificial intelligence do-
mains, such as, image recognition, speech recog-
nition, natural language understanding, etc. How-
ever, “overfitting” is one of the biggest concerns in
a deep learning community (Ng et al., 1997; Caru-
ana et al., 2000; Belkin et al., 2018; Werpachowski
et al., 2019). At present, in the actual training of
deep neural networks, various regularization tech-
niques (Srivastava et al., 2014; Erhan et al., 2009;

*Corresponding author
"https://github.com/IKMLab/R-AT

Miyato et al., 2017) are indispensable to prevent
overfitting and improve the generalization ability
of deep neural networks.

Among them, dropout is currently one of the
most widely used regularization methods, which
randomly drops some neural units and all their in-
put and output connections during the training pro-
cess. The most significant advantage of dropout is
that it can easily generate exponential parameter-
sharing sub-models during the training process.
Gao et al. (2021) and Liang et al. (2021) put data
to pass through the model with dropout twice to
generate different representations or output distri-
butions, and then use varying representations for
contrastive learning or regularization of distinct
output distributions, which enhances the model’s
effect to a certain extent. Furthermore, adversar-
ial training is used to minimize the maximal risk
for label-preserving input perturbations, which has
been demonstrated to be a powerful regularization
method for improving model generalization. Some
of the latest adversarial training methods (Zhu et al.,
2020; Ni et al., 2021) have accomplished impres-
sive performance, particularly in natural language
processing tasks. However, when adversarial train-
ing is executed in combination with dropout, the
model inputting the same adversarial example will
generate a relatively different output distribution.
This phenomenon will affect the model’s inference
performance and stability.

Inspired by SimCSE (Gao et al., 2021) and R-
Drop (Liang et al., 2021), we proposed a simple
regularization technique upon adversarial training
and dropout, called R-AT, which regularizes ad-
versarial training by “twice adversarial dropout”.
Specifically, the proposed method R-AT minimizes
bidirectional KL-divergence between output distri-
butions of the two sub-models sampled via dropout
for each adversarial sample generated by adding
gradient-based perturbation to clean examples. In
this process, the constrained model predicts the

6427

Findings of the Association for Computational Linguistics: EMNLP 2022, pages 6427-6440
December 7-11, 2022 ©2022 Association for Computational Linguistics


https://github.com/IKMLab/R-AT

distribution of adversarial examples, acquires infor-
mation about the distribution of non-target classes,
and enhances generalization in inference. It is also
worth noting that compared with standard adver-
sarial training, most previous works on improving
adversarial training have added multiple forward
and back propagations, whereas our R-AT only
increased the forward propagation once, without
increasing the number of back propagations. The
main contributions of this paper can be summarized
as follows:

* We propose a simple but effective regulariza-
tion strategy based on adversarial training and
dropout, namely R-AT, whose output probabil-
ity distributions of different sub-models gen-
erated by dropout are forced to be consistent
with each other under the same adversarial
sample input.

* We theoretically prove that R-AT has poten-
tial gradient regularization during the training
process, demonstrating that the model tends
to be optimized to a flatter minimum risk to
improve generalization. In addition, R-AT can
alleviate inconsistency of dropout in training
and testing phases.

* Extensive experiments on 13 public natu-
ral language understanding datasets and four
widely used baseline models demonstrate that
our proposed R-AT achieves solid perfor-
mances and outperforms other powerful regu-
larization methods.

2 Related Work

It is well known that overfitting has always been a
significant issue for deep learning models. Empiri-
cally, people find that the best-fitting model is typi-
cally a large model with appropriate regularization
(Goodfellow et al., 2016). To mitigate overfitting
and improve the generalization of deep learning
models, numerous regularization techniques have
been proposed, including weight decay (Kang et al.,
2016; Krizhevsky et al., 2012; Krogh and Hertz,
1992; Wen et al., 2016), dropout (Wan et al., 2013;
Hinton et al., 2012; Ba and Frey, 2013; Srivastava
et al., 2014), normalization (Ba et al., 2016; Ioffe
and Szegedy, 2015; Salimans and Kingma, 2016;
Huang et al., 2018; Wu and He, 2018), adding
noise (Hochreiter and Schmidhuber, 1995; Moradi
et al., 2020; Poole et al., 2014), layer-wise pre-
training and initialization (Erhan et al., 2009; He

et al., 2015), label-smoothing (Miiller et al., 2019;
Zhang et al., 2021; Li et al., 2020), adversarial train-
ing (Goodfellow et al., 2015; Miyato et al., 2017;
Zhu et al., 2020; Ni et al., 2021, 2022), and so
on. Among them, dropout and its variants are very
widely used due to their effectiveness and excellent
compatibility with other regularization methods.
The most significant advantage of dropout is that it
can easily generate exponential parameter-sharing
sub-models throughout the training process. Gao
et al. (2021) regard dropout as a data enhancement
method, which permits data to pass through the
model with dropout twice to generate distinct em-
bedding vectors. Liang et al. (2021) further regular-
ize the neural networks on dropout success, which
is done at the model output level. In this way, they
encourage any two sub-models sampled from the
dropout to generate consistent model predictions
for the same input sample.

On the other hand, adversarial training (Good-
fellow et al., 2015) was first proposed in the field
of image recognition to defend against adversar-
ial attacks. To be specific, adversarial training is
the process of training a model that minimizes the
maximal adversarial risk for label-preserving input
perturbations. For the field of natural language pro-
cessing, adversarial training (Miyato et al., 2017)
has recently been proven to be a powerful regular-
ization method to improve model generalization.
Numerous studies have recently employed multi-
ple iterations to calculate better perturbations to
further enhance adversarial training (Athalye et al.,
2018; Shafahi et al., 2019; Zhu et al., 2020; Ni et al.,
2021). However, this requires the model to perform
forward-backpropagation multiple times in one pa-
rameter update, linearly increasing computational
cost. As known, the main calculations of neural
networks are concentrated in the backpropagation.

The focus of this work is to enhance standard
adversarial (Miyato et al., 2017) training without
increasing the number of back propagations. We
employed the "twice dropout" method to regularize
adversarial training. Specifically, for each adver-
sarial sample generated by adding gradient-based
perturbation to clean samples, the proposed method
R-AT minimizes bidirectional KL-divergence be-
tween output distributions of two sub-models sam-
pled by dropout. In this process, the constrained
model predicts the distribution of adversarial sam-
ples, acquires information about the distributions
of non-target classes, and enhances generalization.

6428



Standard
training

Embedding layer

ﬁadvl

t

Padvl(ylx+ 5) ‘_’Padv20/|x_'_5)

OO0x0O

Embedding layer

Lkr,
} Eadv‘Z
DKL (Padvl | |Padv2) 1

Adversarial
o Softmax
training

Dropout

Embedding layer

+ Perturbation 0

X eg, Ilike this movie.

Input example

X

e.g., I like this movie.

—— > Forward
___________ » Backward

‘O Neural units

X) Dropped neural units ]

Figure 1: The overall framework of our proposed R-AT. The model first obtains gradient-based perturbation using
forward-backward propagation calculation of the standard training and then obtains the adversarial sample by
adding perturbation to the clean input sample. An adversarial sample will go through the model twice and generate
two distributions P, 4,1 and P,g,2, due to two different dropout sub-models.

3 The Proposed Method

In this section, we first briefly describe the stan-
dard fine-tuning procedure for transformer-based
model on natural language understanding tasks. We
then introduce our regularized adversarial training
(R-AT) method that perturb the word embedding
matrix of neural networks to generate adversarial
examples and further regularize the model’s predic-
tion distribution for adversarial samples. Finally,
we introduce in detail the training process of the
regularized adversarial training algorithm. Figure
1 depicts the overall framework of R-AT.

3.1 Preliminaries

In this paper, the dataset is defined as D
(@i, i);—1 9 n» Where N denotes the number of
the traininé éa}nples and (x;, y;) is the labeled sam-
ple data pair. Taking the BERT model as an exam-
ple, the standard text classification task is to feed
a token sequence data z; = [[CLS], ey, €2, ..., ex],
to the model, and the model outputs a sequence of
contextualized token representations , the formula
is as follows:

h sy, hE, ..., hE = BERT(LCLS], e1, ..., ep)
(1)

where L denotes the number of model layers.

The standard practice for fine-tuning BERT is
to add a softmax classifier on top of the model’s
sentence-level representations, such as the final
hidden state h[c s of the [CLS] token in BERT:

P(yc|z) = softmax(W - hrersy) 2)

A basic learning goal of a deep learning model
is to minimize the cross-entropy loss function, as
follows:

['st

LN '
— 2 2 velog(pluelz) ()
i=1 c=1

where N is batch size, ¢ € R%, and C is the
number of classes. L; is the loss of a mini-Batch
under standard training.

3.2 R-AT Regularization

Adversarial training minimizes the maximal adver-
sarial risk associated with label-preserving input
perturbations and has been demonstrated to im-
prove neural network generalization. This paper
is based on the fast gradient method (FGM) pro-
posed by (Miyato et al., 2017), which is a classic
powerful adversarial training method in which the

6429



Algorithm 1 Regularized Adversarial Training
Input: Training samples X, perturbation coeffi-
cient ¢, Loss weight coefficient «, Learning rate 7.

1: for epoch =1... N, do

2. for (z,y) € X do

3: Calculate the standard training gradient

4 Gt < VIL(G,,LL,x,y)

5: Calculate the perturbation value

6: Oadv = € gét/ H st ||2

7: Get two output distributions

8: Plu(y’x + 5adv); P;(yfﬂf + 5adv)

9: Calculate adversarial and K L gradient
10: G g < 1/2Vg[—log P (y|z + dadv)
i © —logPy(yle + duay)

12: g < Vi [DY, (Pl (y|z + Saan)
13 | P (yl + baa)

14: Update parameter:

15: 0« 0— T(gst + Jadv + O gKL)
16:  end for

17: end for

18: Output: 0

perturbation is calculated using one backpropaga-
tion. The objective of standard adversarial training
with dropout is to explore optimal parameters that
minimize the maximum risk of adversarial attacks.
The Min-Max formula is as follows:

mgin E(x’y)ND[tSZI;?é(S L0, pt, T+ Sadvs ¥)]  (4)
where D is the data distribution, 6 is the model
parameter, p is the mask matrix of dropout, y is
the label, and L is loss function. The mask ma-
trix 4 specifies the unit to be reserved. d,4, 1S the
perturbation under maximizing internal risk. S is
the perturbation constraint space. The perturbation
calculation formula is as follows:

v$£(07 ,u‘7 .’E, y)
6 .
HVCU£(07 M, T, y)H2

where € is the perturbation coefficient,
V.L(0,u,x,y) is the model’s gradient to
the input z.

Notably, in the natural language processing
model, adversarial training perturbs the embedding
vector rather than directly perturbing the original
text. In this work, we perturb the word embed-
ding matrix of neural networks to generate adver-
sarial examples. Specifically, after each forward-
backward pass with clean examples, we calculate
the gradient of the loss function in (2) and (5) with

(&)

5adv =

respect to the word embedding matrix to calculate
the perturbation. The adversarial sample x + 0,4,
is then obtained by adding the perturbation to the
clean input sample. At each training step, we feed
the adversarial sample z; + d44,, at each training
step, we feed it to go through the forward pass
of the network twice. Therefore, we can obtain
two distributions of the perturbed model, denoted
as Pl'(yilzi + daav;) and Py (yi|xi + Oadn; ). As
illustrated in Figure 1, since the dropout opera-
tor randomly drops neural units in a model, the
two forward passes are indeed based on two sub-
models of different structures. When the dropout
technique is enabled, the model produces two dif-
ferent output distributions P! (y;|x; + dqay,) and
Pl (yi|lzi + daaw,;) for the same adversarial sam-
ple x; 4 dq4v,. For these two output distributions,
cross-entropy is used to calculate two correspond-
ing adversarial losses:

fzdm = _logplu(yi’xi + 5advi)

; (6)
fzdvz = _lOgPéu(yikU’i + 5advi)

Empirically, we hope that a deep learning model
can maintain stable and consistent predictions for
the same adversarial sample. Therefore, during the
training process, the proposed method R-AT tries to
regularize on the model predictions by minimizing
the bidirectional KL-divergence between these two
output distributions of the same adversarial sample
as follows:

k= (DR (P (yilzi + Gadv,)
| Py’ (yilzi + dadu;)] /2
According to formula (3), the loss of the clean in-

put sample x; under standard training is calculated
as follows:

(7

Ll = —logP" (y;|z;) (8)

Under the R-AT technique, the final total loss for
the input sample x; is calculated as follows:

1
ﬁtotal = Est + §(£adv1 + Eadvg) + OCEKL (9)

where « is the coefficient weight to control Uk I
The training goal is to minimize the formula loss
function Li otal- Under this method, we not only
learn the knowledge in clean and adversarial sam-
ples but also further regularize the model’s predic-
tion distribution for adversarial samples. Therefore,
the model trained using R-AT technique is more

6430



Model CoLA|SST-2| MRPC STS-B QQP MNLI  |QNLI|RTE [WNLI Ave.
(Mcc)|(Ace) |(F1/Acc)|(Pe/Sp Corr)|(F1/Acc) (M/MM Acc)|(Acc)|(Acc)| (Acc)
BERT-base? 60.1 | 93.1 [89.7/85.3| 88.6/88.5 [87.5/90.7| 83.9/84.1 |90.7 |65.0| 56.3 |81.0
BERT + R-ATS 61.8 | 93.7 190.5/86.1| 88.8/88.6 [89.3/91.2| 85.1/85.3 |91.6 |68.3| 56.9 [82.9
RoBERTa-base” 59.1 | 94.8 192.0/89.0| 90.0/89.9 |88.8/91.6| 87.5/87.3 |92.8|77.9| 56.3 |84.4
RoBERTa + R-ATS| 60.8 | 95.1 [92.5/89.4| 90.5/90.3 [89.7/91.6| 89.2/89.3 |93.3|78.2| 56.5 |85.1
ALBERT-base“ 52.6 | 89.1 |88.0/83.6| 88.9/88.3 [87.0/90.3] 81.8/81.5 |90.3 |71.1]| 53.5(80.5
ALBERT + R-AT?% | 53.1 | 90.3 |88.7/84.3| 89.3/88.9 [88.3/91.1| 82.5/82.3 |91.2|72.3|55.4 814

Table 1: Results on the dev sets of GLUE based on the BERT-base, ROBERTa-base and ALBERT-base models, from 5 runs
with the same hyperparameter but different random seeds. ¥ The BERT-base, RoOBERTa-base and ALBERT-base models are
trained with R-AT (Single-task finetuning). References: *: (Devlin et al., 2019); ®: (Liu et al., 2019b); ©: (Lan et al., 2020).

Model Score CoLA|SST-2| MRPC | STS-B | QQP | MNLI |QNLIRTE{WNLI

8.5k | 67k | 3.7k 7k 364k 393k |108k|2.5k| 634
BERT-base” 78.3 1 52.1 | 93.5 (88.9/84.8|87.1/85.8|71.2/89.2|84.6/83.4| 90.5 |66.4| 65.1
BERT}, e + FreeLB 79.4| 54.5 | 93.6 |88.1/83.5/87.7/86.7|72.7/89.6|85.7/84.6| 91.8 |70.1| 65.1
BERT),. + R-AT® 79.6 | 54.3 | 93.8 (89.7/85.2|87.5/85.9|72.4/89.5|85.8/84.7 91.4 |69.5| 65.4
MT-DNN? 87.6| 68.4 | 96.5 (92.7/90.3191.1/90.7|73.7/89.9|87.9/87.4| 96.0 |86.3| 89.0
XLNet-large®© — | 67.8 | 96.8 93.0/90.7(91.6/91.1|74.2/90.3|190.2/89.8| - [86.3] 90.4
RoBERTa-large? 88.1| 67.8 | 96.7 [92.3/89.8/92.2/91.9(74.3/90.2|190.8/90.2| 95.4 |88.2| 89.0
RoBERTalm,ge+FreeLBi 88.4| 68.0 | 96.8 {93.1/90.8|92.3/92.1|74.8/90.3|191.1/90.7| 95.6 |88.7| 89.0
RoBERTalarg€+R—AT§ 88.6 | 69.0 | 96.7 (92.6/90.1|92.1/91.8|75.0/90.5/91.1/90.9| 95.3 |89.9| 89.7

GLUE Human |87.1] 66.4 | 97.8 [86.3/80.8]92.7/92.6|59.5/80.4/92.0/92.8] 91.2 [93.6] 95.9

Table 2: GLUE Test results, scored by the official evaluation server (https://gluebenchmark.com/leaderboard). ! The
SOTA method, which is ensemble of 7 RoBERTa-Large + FreeLB models for each task (Initialized from MNLI weights for
STS-B, MRPC, RTE). ¥ The BERT-base is trained with R-AT (Single-task finetuning); The RoBERTa-Large model is trained
with R-AT (Initialized from MNLI weights for CoLA, MRPC, RTE). All compared results are taken from (Zhu et al., 2020).
References: ¢: (Devlin et al., 2019); ®: (Liu et al., 2019a); ©: (Yang et al., 2019); 4. (Liu et al., 2019b); /: (Zhu et al., 2020).

robust and exhibits better generalization. Notably,
our method is independent of the model structure,
implying that R-AT can almost easily be applied
to deep neural network models with different struc-
tures (e.g., rnn-based models, cnn-based models,
and transformer-based models).

3.3 Training Process

The regularized adversarial training algorithm pro-
cess is shown in Algorithm 1. As illustrated above,
for each training stage, lines 3-5 indicate forward
and backward propagation to calculate the gradient
of standard training, and then lines 5-6 calculate
the perturbation according to the standard gradient,
yielding adversarial sample of z + d,4,. Lines 7-8
indicate that adversarial sample input model with
dropout twice produces two output distributions
Pl'(y|x + badv) and Py (y|x + d44v). Lines 9-11
indicate that the final backpropagation is performed
to calculate adversarial and KL-loss gradients.

4 Experiments

4.1 Datasets

We provide comprehensive evaluation on R-AT
through extensive experiments on 13 natural lan-
guage understanding datasets: GLUE bench-
mark (Wang et al., 2019), IMDB (Maas et al.,
2011), AGNEWS (Zhang et al., 2015), TNEWS
(Xu et al., 2020) and IFLYTEK (Xu et al., 2020).
Additional details are provided in the appendix A.

4.2 Experiment Settings

The GLUE benchmark is used to evaluate the pre-
trained models (e.g., BERT, RoBERTa, ALBERT)
with R-AT. We compare the R-AT with a state-of-
the-art adversarial training method (FreeLLB (Zhu
et al., 2020)). IMDB, AGNEWS, TNEWS and
IFLYTEK are used to evaluate the commonly used
non-pre-trained models (e.g., BILSTM, TextCNN,
TextHAN) with R-AT.

For the pre-trained models BERT-base (110M),

6431


https://gluebenchmark.com/leaderboard

Models ‘ IMDB AGNEWS TNEWS IFLYTEK | AVG.
BiLSTM (w/o Dropout) 89.21 £0.64 | 90.98 £ 0.11 | 52.01 £ 0.83 | 50.36 = 0.62 | 70.64
BiLSTM + Dropout 89.60 £ 0.57 | 90.94 £ 0.90 | 51.79 £ 0.31 | 50.38 = 0.83 | 70.68
BiLSTM + AT 90.49 £0.16 | 92.05 £0.32 | 52.21 £0.21 | 50.62 £ 0.15 | 71.31
BiLSTM + R-Drop 89.64 £0.35 | 92.04 £0.14 | 51.47 £ 0.46 | 51.64 £0.34 | 71.20
BiLSTM + R-AT (w/o Lx1) | 90.01 £0.32 | 92.72 £ 0.15 | 52.34 £ 0.27 | 51.31 £ 0.27 | 71.60
BiLSTM + R-AT 90.54 £+ 0.29 | 93.05 £ 0.03 | 53.80 + 0.18 | 54.40 £+ 0.37 | 72.95
TextCNN (w/o Dropout) 88.61 £0.17 | 91.52 £ 0.38 | 54.65 £ 0.32 | 53.07 £ 0.77 | 71.96
TextCNN + Dropout 88.68 +0.23 | 91.56 + 0.22 | 55.36 £ 0.10 | 53.01 £0.68 | 72.15
TextCNN + AT 89.31 £0.25 | 91.83 £0.69 | 55.48 £0.28 | 53.12 +£0.14 | 72.44
TextCNN + R-Drop 88.74 £ 0.12 | 91.70 £ 0.10 | 55.78 £ 0.21 | 53.32 £ 0.24 | 72.39
TextCNN + R-AT (w/o Lk1) | 89.70 £ 0.39 | 92.24 +0.23 | 55.76 £ 0.29 | 53.56 = 0.19 | 72.82
TextCNN + R-AT 90.03 = 0.18 | 92.41 £ 0.12 | 55.93 + 0.13 | 54.19 + 0.25 | 73.14
TextHAN (w/o Dropout) 90.21 £0.31 | 9233 £0.17 | 55.58 £0.24 | 54.49 £ 0.13 | 73.15
TextHAN + Dropout 90.19 £0.11 | 92.34 £ 0.15 | 5552+ 0.28 | 55.54 £ 0.14 | 73.40
TextHAN + AT 91.25+032 | 92.66 £0.18 | 55.73 £0.17 | 55.45 £0.21 | 73.68
TextHAN + R-Drop 90.36 £0.14 | 92.33 £0.28 | 56.18 £ 0.22 | 54.52 £ 0.23 | 73.35
TextHAN + R-AT (w/o Lx1) | 91.12 £ 0.19 | 92.68 £ 0.23 | 56.09 £ 0.29 | 55.96 + 0.27 | 73.96
TextHAN + R-AT 91.71 £ 0.15 | 93.06 £ 0.10 | 56.27 + 0.21 | 57.04 = 0.19 | 74.52

Table 3: Results of non-pre-trained models. We report their mean = standard deviation of 5 runs.

RoBERTa-base (110M) , ALBERT-base (12M) and
RoBERTa-large (355M), we use the huggingface’
Pytorch? implementation. Moreover, we use single-
task finetuning for all dev set and test set results.
The hyperparameters of our models are provided
in the appendix A. For the non-pre-trained models,
we utilized three well-known neural network mod-
els as the baseline, namely BiLSTM, TextCNN,
TextHAN (BiGRU+Attention). To further explore
the role of each part of R-AT we performed an ab-
lation study. We compared baseline + regularized
adversarial training (R-AT) with baseline, baseline
+ dropout, baseline + standard adversarial train-
ing and baseline + R-Drop and baseline + AT (no
KL-Loss) methods. To ensure the experiment’s
fairness, the model structure and hyper-parameters
of all baselines are kept consistent.

4.3 Experimental Results

Pre-trained models on GLUE. We chose BERT,
RoBERTa and ALBERT as the baseline models.
The experimental results of the dev set on the
GLUE benchmark are shown in Table 1. From
the experimental results, BERT-base, RoBERTa-
base and ALBERT-base use R-AT in the fine-tuning
stage to have a significant performance improve-
ment. Moreover, we also submit the experimental

2https ://github.com/huggingface/transformers

results to the GLUE evaluation server to obtain
the test set results. As shown in Table 2, the main
experimental results have been published on the
official leaderboard of GLUE. For the overall score
of test sets, R-AT increased the performance of
the BERT-base model from 78.3 to 79.6, and the
RoBERTa-large (355M) model from 88.1 to 88.6.
For adversarial training on natural language un-
derstanding tasks, RoOBERTa;,;.4. + FreeLB has
a state-of-the-art score of 88.4. On GLUEbench-
mark, our model RoOBERTa; ;.4 + R-AT (without
ensemble) achieved a score of 88.6, surpassing the
88.4 score of ROBERTay;.¢. + FreeLB (ensemble).

Non-pre-trained models. As indicated in Table
2, models with R-AT generally outperform baseline
models and other regularization strategies across
all datasets. This demonstrates that R-AT method
is universal and can be applied to a variety of tasks
and languages. Compared to baseline models, our
R-AT base models achieve an accuracy improve-
ment of between 0.69% and 4.04%. R-AT-based
BiLSTM model achieved the most improvement,
increasing accuracy by 4.04% in IFLYTEK dataset.
This experimental result also presents that the ef-
fects of R-AT method vary among different original
deep learning models. As shown in Table 3, R-AT
improves the average performance of the three base-
line models on the four datasets by 2.31%, 1.18%,
and 1.37%, respectively. Using R-AT strategy may

6432


https://github.com/huggingface/transformers

Drop —
ne + R-AT

rop
R-AT

50100 250 500 1000 2500 5000 10000 50 100 250 500 1000 2500 5000 10000

Number of training samples

(a) Baseline model: BILSTM

Number of training samples

(b) Baseline model: TextCNN

50100 250 500 1000 2500 5000 10000 50 100 250 500 1000 2500 5000 10000

Number of training samples

(c) Baseline model: TextHAN

Number of training samples

(d) Baseline model: BERT-base

Figure 2: Comparison of performance on training sets of different sizes.

o - 90.34 90.32 90.33 90.29 90.28
= 90.50

90.29
90.45

90.32
-90.40

90.34
-90.35
90.33 -90.30

I I 1
0.1 0.3 0.5 0.7 0.9

Figure 3: R-AT with two dropout rate combinations.

result in a significant performance improvement.

For ablation studies, we observe that the AT and
R-Drop base models outperform the original model.
In contrast, R-AT base models perform the best.
This is because R-AT strategy combines the ben-
efits of adversarial training and R-Drop, making
models easy to learn a set of bilaterally friendly
representations relevant to both two regularization
strategies to facilitate model’s robustness and gen-
eralization via a mutual learning process. We also
found that after removing KL-loss, the effect of
R-AT generally decreased and the variance became
larger, which indicated that KL-loss played an im-
portant regularizing role. In addition, we find the
standard deviation of R-AT is small, which shows
that the regularization of R-AT is stable.

5 Study and Analysis on R-AT

In this section, we conduct detailed research and
analysis on R-AT from multiple aspects.

5.1 R-AT with Different Sized Training Sets

It is well known that the model is more likely to
overfit on a smaller training dataset. We study
the performance of R-AT on training datasets of
various sizes and proceed to compare it against

AT and R-Drop regular methods. This experiment
is based on the IMDB dataset. As illustrated in
Figure 2, our method R-AT not only achieves ex-
cellent performance on large training datasets but
also significantly improves on small datasets. We
can observe that other regularization methods such
as AT and R-Drop do not perform well on small
training datasets. On the BiLSTM, TextCNN, and
TextHAN, and Bert-base baseline models, our R-
AT has achieved the greatest improvement. This
shows that R-AT has excellent regularization ef-
fects on datasets of different sizes and models with
different structures.

5.2 R-AT with Two Different Dropout Rates

R-AT is propagated forward twice in each adver-
sarial training step. Additionally, two sub-models
are generated through dropout. In the previous ex-
periment, the dropout rate was the same twice (e.g.,
0.5 for BiLSTM, TextCNN, and TextHAN, and 0.1
for Bert-base). In this work, we also studied the
influence of R-AT using two different dropout rates
during training. We selected the two dropout rates
from {0.1,0.3,0.5,0.7,0.9} with total 25 combi-
nations. Figure 3 depicts the experimental out-
comes. We discovered that the same dropout rates
are the best choice (e.g., 0.3 and 0.3; 0.5 and 0.5).
The experimental results indicate that when R-AT
employs two different dropout rates, it can also
maintain a good stable effect, but the dropout rate
should not be too large (such as 0.9), implying
that randomness is too high and the optimization
difficulty is increased.

5.3 K-times R-AT: An Adversarial Sample
Passes the Model K Times

Given that R-AT is based on “twice dropout” to
regularize adversarial training, it is interesting to
examine the effect of “K-times dropout” based
on R-AT. In addition to previous research, we in-

6433



Baselines K=2 K=3 Gap

BiLSTM  90.54 4+ 0.29 90.61 £ 0.27 +0.07
TextCNN  90.03 £ 0.18 90.05 £ 0.19 +0.02
TextHAN 91.71 £ 0.15 91.66 £ 0.23 -0.05
BERT-base 89.58 + 0.21 89.61 +£0.23 +0.03

Table 4: Comparison of 2-times and 3-times R-AT. We
report their mean =+ standard deviation of 5 runs.

creased the forward propagation from two to three
times, implying that an adversarial example runs
the model three times. As stated in Section 3, when
K = 2, the total loss of a data x; is Formula (9).
When K = 3, the total loss of z; is:

Lhor = Lo+ 5 (Lo + Lo + Li) + Lt
where Licp = Dy (P{' || PY) + D (P
I P}) + Dy (Py' || PY)
(10)
The new weight coefficient 8 of KL loss is 1/3 of
weight coefficient a.

The experimental results on IMDB are shown
in Table 3. We can see that the improvement of
3-times R-AT compared to 2-times R-AT is not
obvious. For example, when K = 2, the accu-
racy for IMDB test set is 90.54%; when K = 3,
the accuracy for IMDB test set is 90.61%. The
two results are similar. More times means more
consumption. Therefore, we believe that the two
times R-AT provides sufficient regularization to the
model training.

6 Theoretical Analysis of R-AT

We provide a theoretical perspective to explain why
R-AT can be used as a regularization method to im-
prove model generalization. According to Section
3, the following constrained optimization formula
can be used to express regularized adversarial train-
ing in detail:

meln]E(w,y),\,DEu [L(ea Mstv J"? y)

+ max L(6, ugld)y,a: + Gadv, Y)

wdv€S (11)
2
+ 6?;??5 ‘C(e? .LL((ld)Ua T+ 5adva y)]
bl u(l)adv
st.E ()~ pEu[Dr (P (y]x + dadu (12)

o
I P (gl + Gaaw))] = O

where p is expressed as a random mask matrix
of dropout, each dimension of which is inde-
pendently sampled from a Bernoulli distribution.

Lhsts ul(lld)v, u((fd)v are different random mask matrices

generated by three forward propagations through
dropout.

According to our optimization goal, we can an-
alyze R-AT from two aspects. The first is the
effect of generated two adversarial Loss. For
formula (11), we Taylor expand functions f(z +

Sadn) = L(0, 1) 2+ Saoy y) and f (2 + Saan) =
L(6, u(z) T + Oqdy, y) at points z:

adv’

. (1)
min B )~ pEy [ 5maé<s[ﬁ(9, Lgds T Y)+

adv

< [,(9, ,ugld)v, x, y)’ 5adv >} + maXS{‘C(Q’ N’((il)v
adv

)+ < L0, 1 7, Y), Gaaw >]]
(13)
Although the probability of e, ) i) is
different in the dropout sampling process, if we
weaken the dropout difference, fiq, ugld)v, ufd)v are
all approximately represented as . After substi-
tuting the values 049, = € - Vi L(0, 1, z,y)/ ||
VL0, p,x,y) |2 that maximizes antagonistic

loss, the following formula (15) is obtained:
min E () ~DELLO, 2, y)+ < L(O, 1, 2, y),

€ VxE(H,M,m,y)/ || vmﬁ(eaﬂ7$>y) ||2> +£
(evluvx’y)_F < [’(eaﬂ’xvy)? € vx‘c(gmuaxa y)
/N VaL(0, p, 2,y) [l2>]
(14)
=> m@in E(w,y)NDEu [2(£(9> u,, y)

+ € H vacﬁ(enu’ax?y) HQ)]

(15)

We can observe the final optimization func-
tion formula (16), which actually adds a "gradient
penalty" e || VL(0, u, z,y) ||2 to input x (embed-
ding vector). Gradient penalty pushes the gradient
of some parameters and inputs to approach zero,
indicating that the model is likely to be optimized
to the extreme point.

Following that, we analyzed the effect of con-
straint formula (12). As known, while utilizing
dropout training and keeping the training and test-
ing consistent, the prediction result § of model
should be obtained by the following formula:

§=">_ P(u)P(ylx,p) (16)
n

Here, the probability distribution P(y|z, 1) of each
sub-model is defined by the mask matrix p, and

6434



(bl) Drop the A, unit.

(b2) Drop the h, unit.

(b3) Drop the h; unit.

Figure 4: Weights average and sub-models’ average.

P(p) is the probability distribution of sampling
during training. Because this summation formula
(16) contains exponential terms, it is not calculable
in the actual process. Empirically, in actual testing,
we employ a single neural network without dropout.
During testing, if a unit is reserved with probability
p during training, the unit’s output weight is multi-
plied by p. Obviously, the result calculated by the
above method is an approximate value (this value
is accurate in a linear model), and the sub-models
average of (16) is replaced by the weights average.

As depicted in Figure 4, we consider a neural
network with four neural units (including a nonlin-
ear activation function). Except for the output unit,
the other three neural units have a 1/3 probability
of being dropped. Regardless of small probabil-
ity events, the model generates three sub-models,
which drop hp unit, hy unit, and A3 unit, respec-
tively. As illustrated in Figure 4 (bl), (b2), and
(b3), the average of sub-models is used to calculate
model output ¢y, :

gm =Y _ P(u)P(ylz, p)
I

XU(wQ'h2+w3'h3)

A7)

+ = xo(wi - hi +ws - h3)

— Wl W -

+§xa(w1-h1—|—w2-h2)

As indicated in Figure 4 (a), weights average
method is used to calculate model output ¢,,:

ywza(§~w1'h1+§-w2-h2+§'w3'h3)
(18)
We assume that under constraint formula 14, the
output of each sub-model sampled by dropout is the
same. Therefore, we obtain the constraint formula

(19) as follows, and then formula (19) derives the
following formula (20).

(w2 - ho + w3 - ha) = (w1 - hq + w3 - h3)
(wy - hy +w3z - hg) = (w1 - hy +wz - hg) (19)
(w1-h1+w2-h2):(w2'h2+’w3'h3)

=>wj-hy =wsy-ho =ws - hs. (20)

From formula (20), we use w; - hy to replace
ws - ho and ws - hg in formulas (17) and (18). The
formula is as follows:

Im = Gw = 02wy - hy). 21

According to equation (21), under the constraint
of equation (12), the weights average can be ap-
proximately equivalent to the sub-model’s average.
In summary, the above theoretical analysis reveals
that R-AT has implicit gradient regularization dur-
ing the training process and reduces inconsistency
between training and testing of dropout models.

7 Conclusion

In this paper, we propose a simple yet powerful
regularization method based on adversarial train-
ing and dropout, namely R-AT. Particularly, R-AT
dynamically perturbs the input embedding vector
to generate adversarial examples, and then an ad-
versarial example is passed through two dropout
sub-models to generate two probability distribu-
tions. Ultimately, R-AT minimizes bidirectional
KL-divergence of two output distributions to regu-
larize model predictions. We evaluate the efficiency
of R-AT on 13 popular public datasets. The experi-
mental results indicate that applying R-AT to neural
network models with various structures (e.g., rnn-
based, cnn-based, and transformer-based models)
all significantly improves performance. Moreover,
theoretical analysis reveals that R-AT has potential
gradient regularization during the training process,
implying that the model tends to be optimized to
a flatter minimum risk to improve generalization.
Furthermore, R-AT can reduce inconsistency be-
tween the training and testing of dropout models.

Limitations

The main limitation is that although the number of
backpropagations for R-AT remains the same com-
pared to standard adversarial training, the forward
propagation requires two times, which makes the
training time longer.

6435



Acknowledgements

This work was funded in part by Qualcomm
through a Taiwan University Research Collabora-
tion Project NAT-487842 and in part by the Min-
istry of Science and Technology, Taiwan, under
grant MOST 111-2221-E-006-001.

References

Eneko Agirre, Llu’is M‘arquez, and Richard Wicen-
towski, editors. 2007. Proceedings of the Fourth
International Workshop on Semantic Evaluations
(SemEval-2007).  Association for Computational
Linguistics.

Anish Athalye, Nicholas Carlini, and David Wagner.
2018. Obfuscated gradients give a false sense of se-
curity: Circumventing defenses to adversarial exam-
ples. In International conference on machine learn-
ing, pages 274-283. PMLR.

Jimmy Ba and Brendan Frey. 2013. Adaptive dropout
for training deep neural networks. Advances in neu-
ral information processing systems, 26:3084-3092.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second PASCAL recognising
textual entailment challenge.

Mikhail Belkin, Daniel J Hsu, and Partha Mitra. 2018.
Overfitting or perfect fitting? risk bounds for clas-
sification and regression rules that interpolate. Ad-
vances in Neural Information Processing Systems,

31:2300-2311.

Luisa Bentivogli, I[do Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fifth PASCAL recognizing textual entailment chal-
lenge.

Rich Caruana, Steve Lawrence, and Lee Giles. 2000.
Overfitting in neural nets: Backpropagation. In Con-
jugate Gradient, and Early Stopping, Neurallnfor-
mation Processing Systems Conference, NIPS, Den-
ver, volume 408.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evalu-
ating predictive uncertainty, visual object classifica-
tion, and recognising tectual entailment. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the International Workshop on
Paraphrasing.

Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua
Bengio, Samy Bengio, and Pascal Vincent. 2009.
The difficulty of training deep architectures and the
effect of unsupervised pre-training. In Artificial In-
telligence and Statistics, pages 153—-160. PMLR.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recog-
nizing textual entailment challenge. In Proceedings
of the ACL-PASCAL workshop on textual entailment
and paraphrasing.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio. 2016. Deep learning, volume 1.
MIT Press.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. ICLR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEE international conference
on computer vision, pages 1026-1034.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Sepp Hochreiter and Jiirgen Schmidhuber. 1995. Sim-
plifying neural nets by discovering flat minima. In
Advances in neural information processing systems,
pages 529-536.

Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu,
Yongliang Wang, and Bo Li. 2018. Orthogonal
weight normalization: Solution to optimization over
multiple dependent stiefel manifolds in deep neural
networks. In Thirty-Second AAAI Conference on Ar-
tificial Intelligence.

Sergey loffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In International
conference on machine learning, pages 448-456.
PMLR.

Shankar Iyer, Nikhil Dandekar, and Kornl Csernai.
2017. First quora dataset release: Question pairs.

Guoliang Kang, Jun Li, and Dacheng Tao. 2016.
Shakeout: A new regularized deep neural network
training scheme. In Thirtieth AAAI Conference on
Artificial Intelligence.

6436


https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. Advances in neural infor-
mation processing systems, 25:1097-1105.

Anders Krogh and John A Hertz. 1992. A simple
weight decay can improve generalization. In Ad-
vances in neural information processing systems,

pages 950-957.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learn-
ing of language representations. /CLR.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. nature, 521(7553):436—-444.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2011. The Winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning.

Weizhi Li, Gautam Dasarathy, and Visar Berisha. 2020.
Regularization via structural label smoothing. In In-
ternational Conference on Artificial Intelligence and
Statistics, pages 1453—1463. PMLR.

Xiaobo Liang, Lijun Wu, Juntao Li, Yue Wang,
Qi Meng, Tao Qin, Wei Chen, Min Zhang, and Tie-
Yan Liu. 2021. R-drop: regularized dropout for neu-
ral networks. arXiv preprint arXiv:2106.14448.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019a. Multi-task deep neural networks
for natural language understanding. In ACL.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies, pages 142—150.

Takeru Miyato, Andrew M Dai, and Ian Goodfel-
low. 2017. Adversarial training methods for semi-
supervised text classification. In ICLR.

Reza Moradi, Reza Berangi, and Behrouz Minaei.
2020. A survey of regularization strategies for deep
models. Artificial Intelligence Review, 53(6):3947—
3986.

Rafael Miiller, Simon Kornblith, and Geoffrey Hinton.
2019. When does label smoothing help?  arXiv
preprint arXiv:1906.02629.

Andrew Y Ng et al. 1997. Preventing" overfitting" of
cross-validation data. In ICML, volume 97, pages
245-253. Citeseer.

Shiwen Ni, Jiawen Li, and Hung-Yu Kao. 2021.
Dropattack: A masked weight adversarial training
method to improve generalization of neural net-
works. arXiv preprint arXiv:2108.12805.

Shiwen Ni, Jiawen Li, and Hung-Yu Kao. 2022.
Hat4rd: Hierarchical adversarial training for rumor
detection in social media. Sensors, 22(17):6652.

Ben Poole, Jascha Sohl-Dickstein, and Surya Ganguli.
2014. Analyzing noise in autoencoders and deep net-
works. arXiv preprint arXiv:1406.1831.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In EMNLP.

Tim Salimans and Durk P Kingma. 2016. Weight nor-
malization: A simple reparameterization to acceler-
ate training of deep neural networks. Advances in
neural information processing systems, 29:901-909.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu,
John Dickerson, Christoph Studer, Larry S Davis,
Gavin Taylor, and Tom Goldstein. 2019. Adversar-
ial training for free! In Proceedings of the 33rd In-
ternational Conference on Neural Information Pro-
cessing Systems, pages 3358-3369.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In EMNLP.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929-1958.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun,
and Rob Fergus. 2013. Regularization of neu-
ral networks using dropconnect. In International
conference on machine learning, pages 1058—1066.
PMLR.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In ICLR.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint 1805.12471.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen,
and Hai Li. 2016. Learning structured sparsity in
deep neural networks. Advances in neural informa-
tion processing systems, 29:2074-2082.

Roman Werpachowski, Andrds Gyorgy, and Csaba
Szepesvari. 2019. Detecting overfitting via adversar-
ial examples. Advances in Neural Information Pro-
cessing Systems, 32:7858-7868.

6437



Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL.

Yuxin Wu and Kaiming He. 2018. Group normaliza-
tion. In Proceedings of the European conference on
computer vision (ECCV), pages 3—-19.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie
Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,
Cong Yu, et al. 2020. Clue: A chinese language un-
derstanding evaluation benchmark. In Proceedings
of the 28th International Conference on Computa-
tional Linguistics, pages 4762—-4772.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In NeurIPS.

Chang-Bin Zhang, Peng-Tao Jiang, Qibin Hou, Yun-
chao Wei, Qi Han, Zhen Li, and Ming-Ming Cheng.
2021. Delving deep into label smoothing. IEEE
Transactions on Image Processing, 30:5984-5996.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. Advances in neural information process-
ing systems, 28:649-657.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2020. Freelb: Enhanced ad-
versarial training for natural language understanding.
In ICLR.

A Datasets and Hyperparameters

In order to comprehensively evaluate R-AT, we
used the well-known 13 natural language under-
standing datasets to conduct experiments. GLUE
Benchmark? (Wang et al., 2019) is centered on
9 English natural language understanding tasks,
which cover a broad range of domains, data quan-
tities, and difficulties. These tasks are evaluated
on accuracy and are balanced across classes. The
description of these datasets is shown in Table 5.

1) Corpus of Linguistic Acceptability (CoLA;
(Warstadt et al., 2018)). This task is to check
whether the grammar of the sentence is correct.

2) Stanford Sentiment Treebank (SST-2;
(Socher et al., 2013)). The task is to predict the
sentiment (positive/negative) of a given sentence.

3) Microsoft Research Paraphrase Corpus
(MRPC; (Dolan and Brockett, 2005)). This task is
to determine whether the sentences in the sentence
pair are semantically equivalent

4) Semantic Textual Similarity Benchmark
(STS-B; (Agirre et al., 2007)). Each pair of sen-
tences is manually annotated, with similarity scores
ranging from 1 to 5; This is a regression task to
predict these scores.

5) Quora Question Pairs (QQP; (Lyer et al.,
2017)). The task is to determine whether a pair of
questions are semantically equivalent.

6) Multi-Genre NLI (MNLI; (Williams et al.,
2018)). Given a premise sentence and a hypothesis
sentence, the task is to predict whether the premise
entails the hypothesis, contradicts the hypothesis,
or neither (two test set).

7) Stanford Question Answering Dataset
(QNLI; (Rajpurkar et al., 2016)). The task is to
determine whether the context sentence contains
the answer to the question.

8) Recognizing Textual Entailment (RTE;
(Dagan et al., 2006); (Bar Haim et al., 2006); (Gi-
ampiccolo et al., 2007); (Bentivogli et al., 2009)).
A NLI task that integrates a series of annual textual
content challenge datasets.

9) Winograd NLI (WNLI; (Levesque et al.,
2011)). A reading comprehension task in which
the system must read a sentence with pronouns and
find the referent of the pronoun from the list.

10-13) The IMDB (Maas et al., 2011) dataset is
a standard benchmark for sentiment analysis. The
AGnews topic classification dataset is constructed
by Zhang et al. (2015) from the original AG news

3https://gluebenchmark.com

6438



sources. The TNEWS is a short news classifica-
tion dataset in ChineseGLUE (Xu et al., 2020)
benchmark. The IFLYTEK is a long text topic
classification in ChineseGLUE (Xu et al., 2020)
benchmark. The statistical introduction of IMDB,
AGNEWS, TNEWS (chinese) and IFLYTEK (chi-
nese) is shown in Table 6. For RoBERTa;,,.4c +
R-AT in Table 2, its hyperparameters are provided
in Table 7. We use the dev score to select the best
model to predict the test set. The experimental
hardware is a RTX 3090.

B Different Perturbation Coefficient

In the previous experiment, the two perturbation
coefficient are the same. The perturbation coeffi-
cient determines the magnitude of the perturbation
value, and we study the impact of different pertur-
bations. We choose the two dropout rates from
{1,3,5,7,9} with 25 combinations. The experi-
mental results are shown in Figure 5. We found
that the same perturbation coefficient is the best
choice (e.g., 5 and 5). The results indicate that
R-AT can also maintain a good effect stably when
it uses two different perturbation coefficients. The
perturbation coefficient is better in the range of
3 ~ 9. However, different datasets may have dif-
ferent optimal perturbation coefficient values.

90.54

9| 90.27
90.50
90.46
7| 9023 - 90.42
< 90.38
5| 90.22 L 90.34
I+ 90.30
3 90.16 I 90.26
F  90.22
1| 9014 9018 = 9027 9025  90.26 9018
F  90.14

1 3 5 7 9

Figure 5: R-AT with two different perturbation coeffi-
cient combinations. The abscissa is the first dropout
rate, and the ordinate is the second dropout rate.

C Comparison of different loss functions

R-AT forces the output probability distributions of
different sub-models generated by dropout to be
consistent with each other under the same adver-
sarial sample input. Therefore, the loss function
between the two probability distributions needs to

be minimized during model optimization. For the
choice of loss function, we compared the following
common loss functions:

* CE: Cross entropy loss

e MAE: Mean absolute error loss

MSE: Mean squared error loss

KL: Kullback-Leibler divergence loss
* JS: Jensen-Shannon divergence loss
» Bi-KL: Bidirectional KL-divergence loss

We take BiLSTM as the baseline model, and use
R-AT with the above 6 different loss functions to
optimize the model. The experimental results are
shown in Table 8. From the experimental results,
Jensen-Shannon divergence loss and Bidirectional
KL-divergence loss have the best results. Both
of these Loss have symmetry and are suitable for
reflecting the difference between the two distri-
butions. In this paper, we use bidirectional KL-
divergence loss for experiments. For the STS-B
regression task, we use mean squared error loss
instead of bidirectional KL-divergence loss.

6439



Corpus |Train| |Test| Task Metrics Domain
Single-Sentence Tasks
CoLA 8.5k 1k acceptability Matthews corr. misc.
SST-2 67k 1.8k sentiment acc. movie reviews
Similarity and Paraphrase Tasks
MRPC 3.7k 1.7k paraphrase acc./F1 news
STS-B 7k 1.4k sentence similarity Pearson/Spearman corr. misc.
QQP 364k 391k paraphrase acc./F1 social QA questions
Inference Tasks
MNLI 393k 20k NLI matched acc./mismatched acc. misc.
QNLI 105k 5.4k QA/NLI acc. Wikipedia
RTE 2.5k 3k NLI acc. news, Wikipedia
WNLI 634 146 coreference/NLI acc. fiction books

Table 5: Task descriptions and statistics (Wang et al., 2019). All tasks are single sentence or sentence pair classi-
fication, except STS-B, which is a regression task. MNLI has three classes; all other classification tasks have two.
Test sets shown in bold use labels that have never been made public in any form.

.. Dataset splitting
Dataset Task description Language | Classes Train Validation  Test
IMDB Movie reviews sentiment analysis English 2 40,000 5,000 | 5,000
AGNEWS | AG’News topic classification English 4 110,000 10,000 | 7,600
TNEWS Short Text Classificaiton for News | Chinese 15 53,360 10,000 | 10,000
IFLYTEK | Long Text topic classification Chinese 119 12,133 2,599 | 2,600

Table 6: The statistical introduction of IMDB, AGNEWS, TNEWS, and IFLYTEK datasets.

Hyper-parameters | CoLA | SST-2 | MRPC | STS-B | QQP | MNLI | QNLI | RTE | WNLI

« 0.5 0.5 0.8 0.5 0.5 0.8 0.8 0.5 0.5

€ 1E-1 1E-1 | 1.5E-1 1E-1 1E-1 | 1E-1 | 1.5E-1 | 1E-1 | 1.5E-1

T 2E-5 1E-5 1E-5 1E-5 | 2E-5 | 2E-5 1E-5 | 2E-5 1E-5
Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Batch size 24 32 32 32 32 32 32 24 16

Table 7: Hyper-parameters when fine-tuning our models on GLUE benchmark.

Loss function IMDB AGNEWS TNEWS IFLYTEK AVG.
CE Loss 90.13 £ 0.45 93.01 £ 0.31 52.89 £ 0.16 53.57 £0.23 72.40
MAE Loss 90.03 £0.17 92.72 £0.23 52.87 £0.27 53.52 £0.31 72.29
MSE Loss 89.97 + 0.32 92.29 £ 0.19 53.47 £ 0.33 53.48 £0.37 72.30
KL Loss 90.24 £0.33 92.19£0.13 5243 £0.22 54.12 £0.38 72.25
JS Loss 90.44 £ 0.31 93.08 = 0.11 53.77 £0.17 54.42 £+ 0.35 72.93
Bi-KL Loss 90.54 + 0.29 93.05 £0.03 53.80 + 0.18 54.40 £ 0.37 72.95

Table 8: Comparison of different loss functions. We report their mean =+ standard deviation of 5 runs.

6440



