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Abstract

Variational Auto-Encoder (VAE) has been
widely adopted in text generation. Among
many variants, recurrent VAE learns token-
wise latent variables with each conditioned on
the preceding ones, which captures sequential
variability better in the era of RNN. However, it
is unclear how to incorporate such recurrent dy-
namics into the recently dominant Transformer
due to its parallelism. In this work, we pro-
pose TRACE, a Transformer-based recurrent
VAE structure. TRACE imposes recurrence
on segment-wise latent variables with arbitrar-
ily separated text segments and constructs the
posterior distribution with residual parameter-
ization. Besides, we design an acceleration
method by approximating idempotent matrices,
which allows parallelism while maintaining the
conditional dependence of latent variables. We
demonstrate that TRACE could enhance the
entanglement of each segment and preceding
latent variables and deduce a non-zero lower
bound of the KL term, providing a theoretical
guarantee of generation diversity. Experiments
on two unconditional and one conditional gen-
eration tasks show that TRACE achieves signif-
icantly improved diversity while maintaining
satisfactory generation quality.

1 Introduction

Variational Auto-Encoder (VAE) (Kingma and
Welling, 2014; Rezende et al., 2014) has thrived
in various text generation tasks due to its ability
to learn flexible representations, such as machine
translation (Shah and Barber, 2018) and the gen-
eration of dialogue (Zhao et al., 2017), story (Yu
et al., 2020) and poetry (Yi et al., 2020). To further
improve expressive power, diverse VAE variants
have been proposed. For example, IWAE (Burda
et al., 2016) optimizes a tighter lower bound; Lad-
der VAE (Sgnderby et al., 2016) learns hierarchical
latent representations and vMF-VAE (Xu and Dur-
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rett, 2018) replaces Gaussian distributions with von
Mises-Fisher distributions.

Among all variants, temporal VAE (Fabius et al.,
2015; Chung et al., 2015) was prevalent in the era
of RNN, which captures temporal variability by in-
troducing the dependency of a series of latent vari-
ables with each associated with one time step. Such
a VAE variant has succeeded in kinds of sequence
modeling tasks, e.g., dialog generation (Kim et al.,
2020), audio generation (Franceschi et al., 2020),
and time series prediction (Li et al., 2019).

Temporal VAE can be categorized into three
paradigms according to the dependency of prior
distributions at each time step: a) independent nor-
mal distributions (abbr. IND) (Li et al., 2020c), b)
context-conditioned Gaussian distributions (abbr.
CGD) (Du et al., 2018) which are conditioned on
preceding text, and c) recurrent Gaussian distribu-
tions (abbr. RGD), i.e., Recurrent VAE (Chung
et al., 2015), which are conditioned on preceding
both text and latent variables'. Both IND and CGD
ignore the interaction of latent variables, limiting
their expressive ability. In comparison, by intro-
ducing the dependency of latent variables, RGD
could better model the sequential variability and
thus greatly improve generation diversity while
maintaining satisfactory quality. We provide the
theoretical proof of such an advantage in Sec. 4.3.

These paradigms can be easily implemented
with RNN benefiting from RNN’s natural recur-
rent structure. Stepping into the age of Trans-
former (Vaswani et al., 2017), it is promising to
adapt temporal VAE to this popular architecture.
IND and CGD paradigms are naturally compati-
ble with Transformer because their latent variables
at each time step are independent which could be
simply combined with the parallel computation
of Transformer self-attention via causal and non-
causal masks (Lin et al., 2020). However, there are
no off-the-shelf solutions to incorporate RGD into

'See Sec. 3.2 for mathematical details of these paradigms.

6306

Findings of the Association for Computational Linguistics: EMNLP 2022, pages 63066320
December 7-11, 2022 ©2022 Association for Computational Linguistics



Transformer-based VAEs, since recurrence would
be a natural obstacle to parallelism (recurrent latent
variables need to be sequentially sampled), which
limits the capacity of this potential VAE paradigm.

Could we equip Transformer with such recur-
rent dynamics for better diversity while keeping
the training parallelism? To answer this ques-
tion, we propose TRACE?, a novel Transformer-
based recurrent VAE structure. TRACE imposes
recurrence on segment-wise (instead of token-wise)
latent variables with arbitrary segmentation, e.g.,
sentences or segments with specified length. Be-
sides, we construct the posterior distribution using
residual parameterization and layer normalization,
which could deduce a non-zero lower bound of the
KL loss to alleviate KL vanishing (Bowman et al.,
2016). Moreover, to accelerate training, we design
a method to recover the parallelism in Transformer
by approximating idempotent parameter matrices
for the latent space, leading to improved diversity,
satisfactory quality, and faster training.

In summary, our contributions are as follows:
We are the first to (¢) incorporate recurrent VAE
into Transformer with recurrence on segment-wise
latent variables which allows a flexible trade-off of
diversity and quality; (¢7) propose a method to re-
cover parallelism and accelerate training with com-
parable performance; (#¢7) mathematically demon-
strate that our model has a deducted non-zero lower
bound to mitigate KL vanishing, and a theoretical
interpretation of diversity improvement. (iv) We
validate the effectiveness of our model on two un-
conditional and one conditional generation tasks.

2 Related Work

VAE has shown great effectiveness in a wide range
of NLG tasks, such as storytelling (Yu et al., 2020;
Fang et al., 2021), dialogue generation (Serban
et al., 2017; Bao et al., 2020) and poetry composi-
tion (Yiet al., 2021). To further improve the expres-
sive ability of VAE, researchers propose various
variants, e.g., VMIF-VAE (Xu and Durrett, 2018)
that replaces the latent distribution with von Mises-
Fisher distribution, ml-VAE (Bouchacourt et al.,
2018) that learns multi-level latent variables, and
BN-VAE (Zhu et al., 2020) that utilizes batch nor-
malization to get a non-zero KL lower bound.
Among all variants, temporal VAE is the most
prevalent one in the era of RNN, which introduces
latent variables at each timestep and could natu-

2 TRACE: Transformer Recurrent AutoenCodEr

rally fit with the recurrent structure of RNN. Ex-
isting temporal VAE fall into three paradigms ac-
cording to the parameterization and dependence
of the latent variables’ prior distributions, namely
IND, CGD, and RGD, as mentioned in Sec. 1. For
example, TWR-VAE (Li et al., 2020c) utilizes a
timestep-wise regularisation through independent
latent variables with IND. VAD (Du et al., 2018)
incorporates CGD into latent variables and aug-
ments the posterior distribution with a backward
RNN. Recurrent VAE (Chung et al., 2015) learns
token-wise latent variables with each sequentially
conditioned on preceding ones as well as the con-
text (i.e., RGD). By modeling the trajectory of both
observed text sequences and latent space, recurrent
VAE could capture the sequential variability bet-
ter (Goyal et al., 2017; Hajiramezanali et al., 2020).
Besides, we will show that such recurrent dynam-
ics could theoretically reinforce the dependence on
the stochastic and generalized latent space, thus
boosting generation diversity by a large margin.
Recently, with the flourishing of the powerful
Transformer architecture, researchers have devoted
to combining it with VAE for text modeling and
generation (Wang and Wan, 2019; Li et al., 2020a;
Fang et al., 2021; Hu et al., 2022). VAEs could
promote generation diversity with satisfactory qual-
ity, benefiting from the intrinsic randomness in
latent space. Therefore, VAE-based Transformers
are essential for various tasks demanding creativ-
ity, such as advertising text generation (Shao et al.,
2019). Two of the temporal VAE paradigms, IND
and CGD, can be easily adapted into Transformer.
For instance, SVT (Lin et al., 2020) applies CGD-
based VAE to dialogue generation. Nonetheless,
the integration of recurrent VAE is still an open
challenge due to the conflict in the parallelism in
Transformer and recurrent dependence of recurrent
VAE. To fully exploit the expressive power of re-
currence, we revisit recurrent VAE in Transformer
and propose TRACE which possesses advantages of
both generation diversity and training parallelism.

3 Preliminaries

3.1 VAE

As one of the representative generative models,
VAE has proven to be an effective paradigm for
estimating the data distribution by introducing a
latent variable z and modeling the joint distribution:

p(z, z) = p(x|2)p(2). ()
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The prior distribution p(z) is commonly a stan-
dard Gaussian distribution. The conditional dis-
tribution p(x|z) is generally parameterized by a
neural network, known as the generative network
(decoder) to recover the observed data from latent
variables. Directly estimating p(x|z) brings the
intractable posterior distribution p(z|x). Instead,
VAE introduces a variational approximation ¢(z|x)
and derives the Evidence Lower BOund (ELBO):

logp(x) > LeLpo(x) =

Eq(zla)[log p(®|2)] —KL(q(z[2)[p(2)),
where KL means the Kullback-Leibler divergence.

In practice, the approximated posterior
q(z|x) is parameterized as Gaussian distribution
N (u, diag(o?)), where p and o are estimated by
a neural network, known as the inference network
(encoder). The generative network p(x|z) and
inference network ¢(z|x) are jointly optimized by
maximizing the lower bound in Eq.(2).

2

3.2 Temporal VAE

Unlike standard VAE, which only involves one la-
tent variable z, temporal VAE learns one latent
variable at each time step. Denote z; € R! and
x; € R" as the latent variables and the observed
data at ¢-th step, respectively. Next, we will present
the mathematical details of three paradigms of tem-
poral VAE, namely IND, CGD, and RGD.

IND: The prior distribution p(z;) follows the
standard Gaussian distribution N'(0, I), and the
posterior one conditions on the preceding context
as ¢(z¢|x<¢). Then, we obtain the ELBO of IND:

T
Z Eq(zt|m§t) logp(mt|zt’m<t)) 3)
t=1
— KL(q(z¢|@<t)|Ip(21))-
CGD: CGD constructs the prior distribution
considering the observed text p(z;|x<;) and the
posterior one based on the complete text x =
{x1,--- ,xr}. The lower bound of CGD is:
T

Z Eq(Ztlm) log p(x¢|ze, T<t))
=1 )

— KL(q(zt|z)|Ip(z¢|x<2))-
RGD: RGD parameterizes the generative process
by the following factorization:
T

plx<r,T<T) = Hp(wt\zgt, To)p(ze|2<t, ®t).

t=1

&)

The latent variables z; follows the prior distribu-
tion p(z¢|z<¢, €<;) and the posterior one follows
q(zt|z<t, x<¢). Then, we obtain the ELBO:

T
EQ(Z§T|13§T) [Z logp(il?t\zgzh $<t)
=1 (6)

- KL(Q(Zt\Zq,ngt)||P(Zt\Z<t,iL'<t)) ,

where g(z<r|x<7) can be factorized as:

T

q(z<rle<r) = [[azilz<n, x<). ()
t=1

We present the detailed deduction of Eq.(6) in Ap-
pendix B.1.

In an RNN-like backbone, we can construct the
representation of & <; with the hidden states at ¢-th
step and compute the distribution parameters of z;.

4 Method

To incorporate recurrent VAE (RGD) into Trans-
former, we propose TRACE that learns recurrent
segment-wise latent variables and design an accel-
eration method to make full use of the advantage
of parallelism in Transformer. We present the adap-
tion of recurrent VAE to Transformer and residual
parameterization in Sec. 4.1, demonstrate the par-
allel training method in Sec. 4.2, and provide a
theoretical interpretation of TRACE’s effectiveness
for boosting diversity in Sec. 4.3.

4.1 Transformer-based Recurrent VAE

Different from the token-wise latent variables im-
plemented in RNN-based VAEs, TRACE learns
segment-wise z; based on the representation of
t-th segment, x;. We can devise different princi-
ples to separate the segments, such as the inherent
separation like sentence or utterance, or specifying
a fixed segment length. We add a special token
[SEP] to the end of each segment.

Fig. 1 depicts the architecture of TRACE. At the
encoder, we design two kinds of attention mask
matrices. First, we introduce an extra mask matrix,
a partitioned lower triangular matrix (the left of
Fig. 1), which allows each token to attend to all
tokens in the same segment and previous segments.
Second, we design an intra mask matrix, a strict
partitioned matrix to make each token attend to
only the tokens within the same segment. We input
the separated text sequence into the Transformer
encoder twice, with the extra and intra mask matrix,
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W; W, [SEP]|| W3 w, I[SEP]
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Figure 1: Architecture of TRACE. We add a special token at the end of each segment and obtain the representation
of x; and « .4 from the Transformer encoder (inference network) with two kinds of modified attention mask matrix.
The solid and dotted lines are the posterior and prior paths, respectively. The sampled latent variables are added to
the token embedding in the Transformer decoder (generator network).

respectively. Then, the output of ¢-th [SEP] from
the final encoder layer can be used as the repre-
sentation of ¢ and x;. Now, we can obtain the
parameters of the prior distribution of z; by:

p(zilz<t, <) = N (py, diag(a?)),  (8)
[:u‘tvlog U?] = f(zt—la .'I?<t), (9)

where f is the prior network, parameterized as lin-
ear layers W,J:, W{; e RUAMXL The prior distri-
bution of z; is the standard Gaussian distribution.

For the posterior distribution, we utilize residual
parameterization (Vahdat and Kautz, 2020) that pa-
rameterizes the relative difference between prior
and posterior distributions. In this case, the dif-
ference lies in x;. Therefore, we can compute the
posterior distribution as:

(10)

1D

Q(Zt\z<t, wgt)

[Ap,,log Ac?] = LayerNorm(g(x)),

where g is the posterior network, parameterized as
Wi, Wi € R"*! We regulate the output of g
by layer normalization (Ba et al., 2016). To reveal
the benefits of residual parameterization and layer
normalization, we give the following theorem:

Theorem 1 The expectation of the KL term
KL(q (zt]z<t,m<t)Hp(zt\z<t, T<t)) has a lower
bound (7 +6 ) , where l is the latent dimension, ~y
and B are the parameters of layer normalization.
We leave the proof in Appendix B.3. Theorem 1
indicates that we can easily control the lower bound

of the KL term by setting a fixed « and hence miti-
gate KL vanishing. We choose layer normalization

here since it is superior to batch normalization in
Transformer based models (Shen et al., 2020) (See
Table 5). Besides, Theorem 1 is compatible with
both unconditional and conditional generation com-
pared to the BN VAE model (Zhu et al., 2020).

After deriving the prior and posterior distribu-
tions, we can compute the KL loss and sample the
latent variables with the reparameterization trick
(Kingma and Welling, 2014). The sampled latent
variables z; are injected into the Transformer de-
coder by adding with the input embedding.

4.2 Parallel Training for Recurrent VAE

The method above requires sequentially sampling
each latent variable, which hinders the parallelism
training in Transformer. For acceleration, we fur-
ther design a parallel training method.

With the reparameterization trick, when sam-
pling z; ~ N (p, o?), we actually first sample a
white noise € ~ N (0, I), then get z=p + € o o,
where o is element-wise multiplication. We omit
LayerNorm for simplicity. For each ¢, we have:

t—1
2Ry ui (12)
=1
vy Z(W{qu + Wixz) + e+ 13
<W£.2$<t + Wf,xt> O€y,
w =W+ Wlvog, (14

where €; and &; are independent white noises
sampled from standard Gaussian distribution.
[Wul,Wf ], Wi Waz] are the split of param-

eter matrices of function f with W7, W/ >1 €

ol

pl
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R and W{LQ, W£2 € R"*!. We leave the com-
plete derivation in Appendix B.2.

In this way, we can parallelly train the model
while keeping the advantage of RGD. We can par-
allelly compute v, for all time steps first, and then
obtain u; in parallel based on v;. Then we can
make the matrix multiplication between the con-
catenation of u; of all time steps and a lower trian-
gular matrix of ones to parallelly obtain Zf;% Uu;.
Finally, by making a sum, we get the approxima-
tion of z;. Similarly, we obtain the latent samples
from the posterior distribution in Eq.(10).

In the approximation of Eq.(12), we assume that
W{u and W£1 are idempotent matrices to avoid
the power of matrix. However, such simplification
may bring too much noise. To stabilize the training
process, we adopt spectral normalization (Miyato
et al., 2018) to restrain W{u and Wil.

4.3 Why Could TRACE Boost Diversity

We give a theoretical demonstration of the advan-
tage of TRACE on the improvement of generation
diversity. We have the following theorem:

Theorem 2 Each reconstruction term in the ELBO,
Eq(zgtmﬁ)p(mt\zﬁ, T<y), is upper bounded by
I,(xs; z<¢|@<t), where I is the mutual information.

The proof can be found in Appendix B.4. Based
on Theorem 2, optimizing the reconstruction terms
means maximizing I(x;; 2<¢|x <), which could
enhance the dependency between x; and z<;. In
this way, the model would rely more on the flexi-
ble latent space than the deterministic context text,
bringing more randomness to improve diversity
while maintaining satisfactory coherence.

5 Experiment

5.1 Dataset

We carry out experiments on two datasets for lan-
guage modeling and unconditional generation, in-
cluding the Yelp and Yahoo (Yang et al., 2017; He
et al., 2019) and one dataset, WritingPrompts (WP)
(Fan et al., 2018) for conditional generation. We
list the detailed data statistics of these datasets in
Table 1. Due to the limited computation capability,
we restrain a max length of 750 for training in WP.

5.2 Implementation Details

We use the pretrained language model GPT-2 (Rad-
ford et al., 2019) as the backbone. The encoder
and decoder of TRACE share the same parameters

Dataset ‘ # Train ‘ # Dev ‘ # Test ‘ Length

Yelp 100k | 10k | 10k | 96
Yahoo | 100k | 10k | 10k | 79
WP | 164k | 15k | 15k | 421

Table 1: Statistics of datasets. Length means the aver-
age text length of the three datasets.

initialized with GPT-2 and are fine-tuned on the
target datasets. We choose 32 for the dimension of
latent space and use the cyclical annealing trick (Fu
et al., 2019) during training. We set batch size as
32 and the learning rate as 5e — 5, <y in the layer
normalization as 3. We separate segments with
fixed length 10 on Yelp and Yahoo datasets and use
the initial sentence as a segment on the WP dataset
with NLTK toolkit (Bird, 2006) for segmenting. We
use the top-k sampling strategy (Holtzman et al.,
2020) to decode the sequence with k as 50 for all
models on all datasets. When the generated token
is [SEP], we sample a new latent variable based
on the prior distribution to enter a new segment.
We implement TRACE and other VAE baselines
with open-source Huggingface Transformers (Wolf
et al., 2020) library of v4.10.0 and use NVIDIA
GeForce RTX 3090 to conduct all experiments.

5.3 Baseline

We compare TRACE with several transformer-
based solid models. All baseline models are uti-
lized with the same backbone model.

GPT-2: We finetune the GPT-2 model (Radford
et al., 2019) on each dataset.

IND/CGD: We implement the Transformer ver-
sion of the two models, TWR-VAE (Li et al.,
2020c) and VAD (Du et al., 2018) which belongs
to IND and CGD respectively. The segment sepa-
ration is consistent with TRACE.

No Recurrence (Li et al., 2020a): We remove
the recurrence and only involve one latent variable
to verify the effectiveness of recurrence. The latent
variables are injected into the decoder by being
added with the text embedding in the decoder.

5.4 Metrics

We evaluate unconditional generation tasks with
three perspectives; (a) Representation Learn-
ing: we report ELBO, KL, mutual informa-
tion (MI) (Alemi et al., 2016) and activate units
(AU) (Burda et al., 2016). We change the threshold
to 0.1 when computing the AU metric to distinguish
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Model Representation Learning Generation Quality | Generation Diversity
ELBO| | KLt | MIT | AUt | PPL] | CND] SB| | Dist} | JS |
Dataset: Yelp
GPT-2 - - - 22.13 0.68 65.90 | 15.96 | 0.51
IND 328.17 | 232 | 2.92 25 | 15.35 0.76 61.24 | 16.24 | 0.45
CGD 327.84 | 0.07 | 0.04 16.29 0.46 68.36 | 13.68 | 0.59
No Recurrence | 327.35 | 3.89 | 3.88 26 | 20.12 0.43 65.38 | 15.47 | 0.44
TRACE-R 298.61 | 3.51 | 19.57 | 32 | 13.03 0.47 57.02 | 23.01 | 0.33
TRACE-P 315.28 | 4.52 | 5.25 32 | 14.88 0.82 60.25 | 16.58 | 0.40
Dataset: Yahoo
GPT-2 - - - 24.17 0.55 54.06 | 21.07 | 0.28
IND 285.61 | 231 | 2.89 20 | 17.05 0.90 53.08 | 20.55 | 0.45
CGD 285.92 | 0.17 | 0.12 18.84 0.45 58.81 | 18.12 | 0.53
No Recurrence | 286.89 | 3.62 | 5.65 25 | 21.18 0.45 54.15 | 20.78 | 0.32
TRACE-R 258.25 | 3.65 | 43.20 | 32 | 14.56 0.53 47.33 | 26.35 | 0.26
TRACE-P 278.35 | 3.99 | 8.72 32 | 16.85 0.78 52.75 | 20.61 | 0.30

Table 2: Evaluation results for unconditional generation. SB: Self-BLEU. TRACE-R: TRACE with standard RGD.
TRACE-P: The parallel version of TRACE. The best/second best results are in bold and underlined, respectively.

different models further. (b) Generation Quality:
we report PPL and CND (Li et al., 2020b) to eval-
uate the generation capacity of models. Different
from standard auto-regressive language models like
GPT-2, VAE-based models could not estimate ex-
act PPL. Therefore, following He et al. (2019), we
use importance-weighted samples to approximate
log p(x) and estimate PPL. CND measures the di-
vergence between the generated one and the ground
truth testset. (¢) Generation Diversity: we report
Self-BLEU (Zhu et al., 2018), Dist (Li et al., 2016)
and JS (Jaccard similarity) (Wang and Wan, 2018)
to evaluate the diversity of generated text.

We consider the quality and diversity in story
generation. We report BLEU (Papineni et al.,
2002), Rouge-1, 2, L (Lin and Hovy, 2002), and
BERTScore (Zhang et al., 2020) to evaluate the
quality of generated samples, and the same diver-
sity metrics used in unconditional generation. More
details about metrics are listed in Appendix A.1.

5.5 Results
5.5.1 Unconditional Generation

We present the results of the unconditional gen-
eration task on Yelp and Yahoo datasets in Table
2. As the results show, TRACE achieves signifi-
cant improvement on most metrics. Better ELBO
and MI indicate TRACE has stronger capability of
representation learning. Especially, considerably
higher MI empirically validates Theorem 2, which

manifests that with the RGD mechanism, the ob-
served data will be connected to the latent space
more closely. Higher KL and AU also empirically
show the benefit of residual parameterization. Be-
sides, lower PPL and comparable CND indicates
acceptable quality of the text generated by TRACE.

Moreover, TRACE can produce much more di-
verse text compared with baselines. Among the
baselines, the CGD baseline suffers from the KL
vanishing problem, which means the decoder ig-
nores the latent variables. Therefore, without the
randomness arising from latent variables, CGD per-
forms the worst on generation diversity. In contrast,
TRACE obtains the most prominent enhancement
on all diversity metrics. Such improvement origi-
nates from two aspects: First, compared to GPT-2
and No Recurrence, sampling latent variables at
each time step brings extra randomness for the out-
put. Second, Unlike the other two temporal VAE
baselines, TRACE is endowed with the theoretical
advantage of RGD, which strengthens the inter-
action between the text and latent space and then
absorbs much flexibility from the generalized latent
space. IND simply increases randomness from stan-
dard Gaussian prior distribution, which negatively
affects quality while causing limited diversity.

Lastly, comparing TRACE-R and TRACE-P, de-
spite the slight drop of quality and diversity,
TRACE-P still outperforms baselines on most met-
rics except CND. Such marginal cost is accept-
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Model Quality Diversity
BLEUT | Rouge-11 | Rouge-21 | Rouge-LT | BertScoret | SB | Distt | JS |
GPT-2 27.89 27.72 3.92 10.18 78.12 53.78 | 22.99 | 0.51
IND 31.17 32.44 4.35 11.39 81.31 67.44 | 13.69 | 1.34
CGD 31.65 32.56 4.46 11.59 81.28 68.25 | 14.87 | 1.97
No Recurrence | 31.57 32.27 4.28 11.30 81.25 67.25 | 13.51 | 1.38
TRACE-R 30.65 31.80 4.12 11.15 81.14 64.11 | 13.18 | 0.84
TRACE-P 28.55 29.52 3.48 10.98 80.63 47.26 | 26.17 | 0.70
Table 3: Evaluation results for conditional generation.
able considering the acceleration with parallelism. Model Fluency | Coherence | Novelty
See the comparison of training speeds in Sec. 5.8. GPT2 218 208 246
The performance loss is mainly caused by the last IND 738 241 240
two approximation steps in Appendix B.2. The- CGD 2.43 247 241
oretically, we approximate the multiplication of No Recurrence | 2.42 2.51 2.44
t independent random variables as one Gaussian TRACE-R 240 246 2.55
distribution using the central limit theorem (holds TRACE-P 224 232 2.46

for infinite length) in Eq.(35), and restrict two pa-
rameter matrices to be idempotent (holds when
the eigenvalue is 1 or 0) in Eq.(36). In practice,
these assumptions don’t hold because the sequence
length is not infinite, and the spectral normalization
only restrains the largest eigenvalue (strictly limit-
ing makes optimization difficult). Therefore, em-
pirically we hurt the interaction of latent variables
and sacrifice some information in them, leading to
decreased performance compared to TRACE-R.

5.5.2 Conditional Generation

We report the results of conditional generation on
the WP dataset. As shown in Table 3, TRACE
achieves comparable generation performance on
quality (still better than GPT-2) and significant im-
provement on diversity (especially on Self-Bleu
and Dist compared with other VAE baselines). Al-
though the quality of text generated by TRACE-P
is relatively defective, TRACE-P still outperforms
GPT-2 on both quality and diversity. The overall
enhancement of diversity empirically further vali-
dates our theoretical analysis.

Interestingly, TRACE-P achieves better genera-
tion diversity than TRACE-R on WP, which is oppo-
site to the results on both Yelp and Yahoo datasets.
This contrary tendency of diversity mainly origi-
nates from different sequence lengths. On Yelp
and Yahoo datasets, whose text are relatively short,
TRACE-R performs better. However, on the WP
dataset with much longer text, the approximation
in TRACE-P reduces the exploitation of x.; by
reducing the interaction of each z;, as shown in

Table 4: Human evaluation results on the WP dataset.
The scores range from 1 (worst) to 5 (best). The p-value
< 0.01, and the Kappa score is 0.61, which means the
evaluation is in an acceptable inter-annotator agreement.

Eq.(36), which loosens the dependency on context
and forces TRACE-P to produce more uncertain text
(better diversity but lower quality) than TRACE-R.

5.6 Human Evaluation

We conduct the human evaluation on the WP
dataset. We generate 50 samples given the source
input from the testset with each model and invite
five proficient annotators to access the generated
text by scoring three criteria: Fluency (whether
generated text are syntactically fluent), Coher-
ence (whether the generated part is consistently
structured and coherent with input), and Novelty
(whether each generated instance is novel and dis-
tinct), which cover both generation quality and
quality we care about. See Appendix A.2 for more
evaluation details.

We report the evaluation results in Table 4.
TRACE obtains satisfactory results on Fluency and
Coherence but stands superior to other baselines on
Novelty. The results of the human evaluation are
consistent with automatic evaluations.

5.7 Ablation Study

Table 5 shows the results of the ablation study on
the Yelp dataset. We mainly justify the effective-
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Figure 2: Training speed (average seconds per step) of
TRACE-R and TRACE-P with different segment lengths.

Model | ELBO | | CND| | SB| | Dist? | JS|

TRACE-R | 298.61 047 |57.02 | 2301|033
-LN 307.33 049 | 64.89 | 1537 | 043
-RP 326.88 0.78 | 67.89 | 13.87 | 0.58
+BN 305.02 0.63 | 59.25 | 22.88 | 0.35

TRACE-P | 315.28 0.82 | 60.25 | 16.58 | 0.40
-SN 318.25 091 |6232 1722|043

Table 5: Ablation study on Yelp. +BN means replacing
layer normalization with batch normalization. -LN, -RP
and -SN means removing layer normalization, residual
design and spectral normalization, respectively.

ness of residual parameterization, layer normaliza-
tion used after the posterior network, and spectral
normalization for the prior network in TRACE-P.
We also compare batch normalization by replac-
ing layer normalization with batch normalization.
Experimental results show that all of them bene-
fit the quality or diversity. Specifically, without
layer normalization or residual parameterization,
TRACE will tend to ignore the latent variables and
loss the diversity brought by the recurrent structure
during generation. The difference between batch
normalization and layer normalization is relatively
marginal, while the former still performs better.

5.8 Analysis

Training Speed We compare the training speed
of TRACE-R and TRACE-P on Yelp dataset with
different pre-defined fixed segment lengths. Small
segment length will lead to more recurrence steps
in TRACE-R. As shown in Fig. 2, small segment
length leads to increased number of segments, re-
sulting in much more training time for TRACE-
R. In contrast, for TRACE-P, our proposed paral-
lel training method remarkably shortens the train-
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Figure 3: CND and Self-Bleu achieved by TRACE-R
with varying segment length.

Model | CNDJ | Self-Bleu] | Distt
Greedy decoding

IND 7.88 93.81 4.31
CGD 55.27 99.56 0.87

No Recurrence | 4.06 94.01 4.36
TRACE-R 2.01 78.11 9.28

Beam search, beam size=10

IND 76.27 97.18 0.89
CGD 266.52 99.82 0.08

No Recurrence | 63.12 97.41 0.85
TRACE-R 36.28 87.56 6.09

Top-k, k=50

IND 0.76 61.24 16.24
CGD 0.46 68.36 13.68

No Recurrence 0.43 65.38 15.47
TRACE-R 0.47 57.02 23.01

Table 6: Comparison of different decoding strategies on
Yelp Dataset.

ing time. When segment length is 1 (token-wise),
the training of TRACE-P is more than twice faster
than that of TRACE-R. When segment length is
5, TRACE-P is still 50% faster than TRACE-R. As
the segment length grows, the number of segments
decreases, and consequently, the training speeds of
TRACE-R and TRACE-P reach unanimity. Such em-
pirical results generally confirm the effectiveness
of TRACE-P’s parallelism. Besides, it is worth em-
phasizing that despite the deceleration of TRACE-R
in the training phase, the inference process is hardly
influenced by the recurrence structure because of
the auto-regressive decoding manner. Since the
efficiency bottleneck of deploying NLG models
mainly lies in inference, we believe the speed of
TRACE-R is still practical enough for downstream
NLG tasks.
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Prompt: When everyone turns 18 , they receive a pet which
is figurative of their personality. You 're the first person to
receive a dragon...

IND: When people turn eighteen, they get an animal which
represents them as one and can be found everywhere in
their town. We didn‘t really ask for it though - only that we
should at least know how it worked. Nowadays we had to
choose between the puppy dog and cat......

TRACE-R: | have been waiting for this moment ever since
the wizards gave me my special ability at elementary
school. They said | was one step ahead of everyone else,
and that your strength can grow exponentially if you use
\your abilities dragon gives you wisely and carefully......

Figure 4: Samples generated by different models on
the WP dataset. TRACE-R produces responses to the
dragon in the prompt and imagines an engaging story
that the protagonist was given a special ability by wiz-
ards and would begin an adventure with his pet dragon.

Separation of Segment We explore the influence
of segment length on the performance of TRACE-R
by evaluating CND for generation quality and Self-
Bleu for diversity. As Fig. 3 shows, the generation
diversity drops with the increase of segment length.
It is consistent with intuition that longer segment
leads to looser context correlations but enhanced
sampling randomness and thus improved diversity.

Decoding Strategy We evaluate the performance
of TRACE-R on generation quality and diversity
with different decoding strategies, including greedy
decoding and beam search with beam size = 10. In
these cases, the randomness only originates from
sampling the latent variables. As shown in Table 6,
by recurrently sampling latent variables which in-
teract with hidden states, TRACE has more distinct
advantages in generating diverse text with greedy
decoding or beam search. In contrast, sampling de-
coding itself can enhance generation randomness
and thus dilute the diversity improvement obtained
by our model. Therefore, using sampling decoding
becomes the most difficult case for further improv-
ing diversity. We select such a challenging setting
in main experiments to verify the effectiveness of
TRACE and find it still achieves non-trivial enhance-
ment on diversity, demonstrating the robustness of
TRACE in various decoding methods.

5.9 Case Study

Fig. 4 gives one generation example of TRACE-R
and IND from WP dataset. The input prompt men-
tioned that people receive a dragon as a pet. The
generated text of IND only talks about receiving

an animal. In contrast, the generation of TRACE-
R first tells that wizards gave him the ability, and
mentions the ability could grow with the dragon.
We can see the text produced by our model tells an
engaging story like a warrior would go to fight with
his given dragon. In general, TRACE-R generates a
more vivid continuation compared with IND.

6 Conclusion

In this paper, we revisit the recurrent VAE frame-
work prevalent in the era of RNN, and propose a
novel Transformer-based recurrent VAE structure
TRACE. TRACE learns a series of segment-wise
latent variables conditioned on the preceding ones.
We establish the latent distributions with novel
residual parameterization. To accelerate training,
we design an approximate algorithm of learning
latent variables to fit with the Transformer frame-
work. Experimental shows that TRACE achieves
significant improvement in generation diversity
based on the tight relationship between text hid-
den states and the latent space. In the future, we
will further explore the potential of TRACE in other
larger pretrained models like GPT-3.
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Limitations

While TRACE achieves significant improvement in
generation diversity, it still has some limitations.
First, the trade-off between quality and diversity
is a common problem in natural language gener-
ation. TRACE is not an exception. The diversity
of TRACE’s increases while the quality inevitably
drops a little. We will further explore better meth-
ods to balance quality and diversity. Second, our
parallel acceleration training method requires cer-
tain approximations, which, to some extent, hurts
the initial advantage of recurrence and leads to a
drop in the quality. We will continue to design
better acceleration training methods. Third, the
speedup of our parallel version of TRACE is lim-
ited. Under the practical segment length setting
(e.g., 10 and 20), the acceleration is marginal. We
also plan to further promote our methods to benefit
faster training in the future.
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A Experiment Details

A.1 Metrics Details

Perplexity (PPL). In the VAE-based framework, we commonly use importance weighted sampling to
estimate the PPL. Sampling n latent variables z1, 22, . . ., 2, from the variational posterior distribution
q(z;|x), we have:

Ly =E

1 - pl@, 2i)
log — 1 <logE
gnzqu)]— i

i=1

izp“”’zﬁ‘)] = logp(a). (15)

As illustrated in (Burda et al., 2016), when n — oo, £,, — log p(«). Therefore, we use L,, to estimate
log p() and calculate PPL with n = 100.

Mutual Information(MI) (Alemi et al., 2016). Mutual Information Z(x, z) measures the mutual
dependence between x and z, which is defined as:

Zy(x, 2) =Ep0) Ey(z)2) log q(2]|2) —Ey(z) log q(2), (16)

Here, q(») = Ep(4)q(2|x) is the aggregated posterior.

Activate Units(AU) (Burda et al., 2016). AU is computed as A = Covg(E, q(.(a)[2]) > 0, where §
is a threshold. We use AU to measure the active units in latent variables. To more clearly distinguish the
performance of TRACE and other baseline models, we increase the threshold to 0.1 from the commonly
used 0.01.

CND (Li et al., 2020b). CND measures the similarity between the generated samples and the reference
testset by approximating the divergence between these two distributions in n-gram spaces.

BLEU (Papineni et al., 2002). BLEU evaluates the similarity between the generated text and ground
truth by measuring the n-gram overlap of generated samples and references.

Rouge (Lin and Hovy, 2002). Rouge also calculates the proportion of n-gram overlap between generated
examples and reference samples, commonly used in evaluating text summarization.

BERTScore (Zhang et al., 2020). BERTScore computes the cosine similarity of representations of
generated and reference text obtained by pre-trained BERT (Devlin et al., 2019).

Self-BLEU (Zhu et al., 2018). Self-Bleu computes the BLEU score among the generated text by
averaging the BLEU score of each instance with all other samples as references. Lower Self-BLEU means
the smaller overlap and higher diversity within the generated samples.

Dist (Li et al., 2016). Dist computes the ratio of different n-grams among the generated text.

Jaccard Similarity(JS) (Wang and Wan, 2018). JS computes the Jaccard similarity between every two
generated samples.

A.2 Human Evaluation Details

We select 50 prompts from the WP dataset as input to the TRACE and other four baseline models to
generate the continuations. We invite five annotators proficient in English to score the generated samples
ranging from 1-5 with three criteria: Fluency, Coherence, and Novelty. During the evaluation, each
annotator is given 20 groups of samples. Each group has six samples generated by six models, and the
order of samples in each group is shuffled to avoid bias. Each sample is scored by two annotators and we
average the evaluating score of all samples for each model, reported in the Table 4.

B Additional Proof

B.1 Deduction of ELBO of RGD
The lower bound for standard VAE is:

logp(x) > Eq(z|a) log (17)

q(z|x
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Rewriting the ¢(z|z) and p(z, z) with RGD’s factorization, we obtain:

T

H p(wtlzgt, 33<t)p(zt\z<t, $<t)
t=1

log p(z) >E log

q(z<rlT<T)
H Q(Zt\2<t,$§t)

T
=Eq(z<rlz<r) Z log p(@i|z<t, T<t) +10g p(2t|2<t, ®<t) — log q(2¢]2<t, ®<t)
t=1
T

:Eq(zST\mST) Z 1ng(mt|zgta m<t> - log
t=1

Q(thz<t,$§t)
p(zt|z<t7$<t)

The first term in Eq.(20) is the construction term of ELBO. For the second term, we have:

§: o q(ztlz<t, ®<t)
q(z<rlX<T) zt\Z<t, m<t)

/Hq Zt|z<t, T<t) Zlog d(zilzch, <r) dzy...z7

Zt|z<t7 33<t)

a(e<r tlosr ) zT|z<T,wg>|\p<zT|z<T,m<T>)+

E‘J(ngz\wg 2) ( (zr—1]|z<r— 1, T<T— Dp(zr-1lz<r—1,T<7- 1)>+
-+ KL(q(2z1]21)|[p(21))

T
Eq(zgﬂmg) Z KL <Q(zt|z<t7 o<t)||p(2e|z<t, 33<t))

B.2 Deduction of Parallel Training

zi = fu(zi—1,T<t) + gu() + €xp (fa'(zt—la roy)+ 90(%)) 0 €t
~ fu(ztfl,ﬂkt) + gu(ﬂ’?t) + (fo(ztfla Tet) + golxe) + 1) O €t
= Wﬁlth + Wﬁgwq + Wiz + (Wﬁlzt_l + W£2w<t + W(g,wt> o€+ €

- [W{ﬂ“’@*Wﬁwﬁ (W£2$<t+Wg$t> O€t+€t} + [Wf

!
Mlzt71+Walzt,1oet

= v + (W[fl,l + Wﬁ'l o et)zt_l
= v+ (W/]:l + W£1 o et) (vt_l + (W{u + Wil o et_l)zt_2>
= v+ <W£1+W£1 o Gt)’vtfrl- <W£1+W£1 o €t> <W£1+W£1 o €t71)zt72

t—1 t
= ’Ut+z H (W£1+W£.1 o €j>vl

i=1 j=i+1

~ ’Ut—l-Z( Wf ) O£j>’vi
t—1
R UH‘Z (W{Ll—l—Wil o @)vi = v + Zuz
i=1 =1

(18)

(19)

(20)

1)

(22)

(23)
(24)
(25)

(26)

(27)
(28)
(29)
(30)
(31
(32)

(33)

(34)

(35)

(36)

In Eq.(28), we use the approximate equality exp x =~ x + 1 when « is close to 0. In Eq.(35), we use one
random variable to approximate the multiplication of ¢ independent random variables based on central

limit theorem. In Eq.(36), we approximate the matrix W{d and W£1 as idempotent matrix.
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B.3 Proof of Theorem 1
We expand the KL term as:

KL(q(zt|z<t, x<t)||p(2¢|2<t, T<t))

1A 37
=—( ut + Ao? —log Ao? — 1) &7
T2 o?

It is easy to find that Aag? — log Ao? — 1 > 0 holds true. So we can control the lower bound of the KL
term with Ap?. Following the application of batch normalization to VAE (Zhu et al., 2020), we regulate
layer normalization (Ba et al., 2016) to the output of the posterior network, so we have:

1(v* + 5?)

E(Ap;) > =,

(38)

where v and 3 are the parameters in layer normalization. Therefore, the KL term has a lower bound:

l 2 2
207
B.4 Proof of Theorem 2
We expand the target upper bound as follow:
s, 2|
$t7zt\$<t /// 213<t $t72t‘w<t) og ( L t| <t) dx; dz; de (40)
Q($t|iL‘<t) (Zt|iL'<t)

/// q(x<t)q(xs, z¢|X<t) log ———= (@2, 21) dz; dz; do oy 41

q(xi|T<t)
/// d(@ ), zefe <) log BP0 404 gy (42)

p(xi|T<t, 21)

/// q(x<t)q :ct,zt\sc<t)log Pz, 21) dz; dz; do oy (43)

q(xi|T <)
Eq(z, w0 KL(q(xt|T<t, 20)|[p(2t| T <8, 20) )+ (44)

Ti|Tot, 2
/// q(T<i)q wt,zt|33<t)10g p(@ilz, 2) dx;dz;de (45)

q(ze|T<t)
> [[[ dwiazilenecont@lza logpedaa, 2 dardzidasi— @0
/// (T <t)q(ze|@e, <) q(| T <) lOg @24 <) Ay d 24 A4 (47)
Z/// q(x<i)p(zi|e, i) (20| <) lOg P24 |Tt5 24) Ay A2 d g (48)
=Ey(z,|z-,) log P(Ti|2<t, 20). (49)

In Eq.(46), the inequality holds true because the KL value is always great than 0. In Eq.(48), the inequality
holds true because — log q(x|x ;) is always greater than 0.
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