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Abstract

Open Information Extraction models have
shown promising results with sufficient supervi-
sion. However, these models face a fundamen-
tal challenge that the syntactic distribution of
training data is partially observable in compari-
son to the real world. In this paper, we propose
a syntactically robust training framework that
enables models to be trained on a syntactic-
abundant distribution based on diverse para-
phrase generation. To tackle the intrinsic prob-
lem of knowledge deformation of paraphrasing,
two algorithms based on semantic similarity
matching and syntactic tree walking are used to
restore the expressionally transformed knowl-
edge. The training framework can be generally
applied to other syntactic partial observable
domains. Based on the proposed framework,
we build a new evaluation set called CaRB-
AutoPara, a syntactically diverse dataset con-
sistent with the real-world setting for validat-
ing the robustness of the models. Experiments
including a thorough analysis show that the
performance of the model degrades with the
increase of the difference in syntactic distribu-
tion, while our framework gives a robust bound-
ary. The source code is publicly available at
https://github.com/qijimrc/RobustOIE.

1 Introduction

Open Information Extraction (OpenIE) involves
converting natural text to a set of n-ary structured
tuples of the form (arg1, predicate, arg2, ..., argn),
composed of a single predicate as well n arguments.
With the advantages of domain independence and
scalability, OpenIE serves as a backbone in natural
language understanding and fosters many applica-
tions such as text summarization (Fan et al., 2019)
and question answering (Yan et al., 2018).

Tremendous efforts have been devoted to build
models that can better fit the extractions from
texts (Michele et al., 2007; Angeli et al., 2015;
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Figure 1: Cluster CaRB into 5 subsets based on the HW-
Syntactic Distance and evaluate the IMOJIE model on
them. The horizontal axis indicates the indices sorted by
the number of samples (above the bars) in the subsets.
The left and right vertical axes represent the F1 scores
of the model and the distance between the training set
and the clustering center of each subset, respectively.

Saha and Mausam, 2018; Kolluru et al., 2020b; Yu
et al., 2021). However, a major issue remaining in
OpenIE is the syntactic partial observability – the
syntactic distribution on the existing training set
is only based on partial observations, and it is far
from covering the entire syntactic hypothesis space
in the real world. This issue creates a challenge
that the models rely heavily on the syntactic forms
during training, and degrade significantly when the
syntactic distribution changes in the real world.

An evaluation is shown in Figure 1. We cluster
the CaRB (Bhardwaj et al., 2019) samples based on
the HW-Syntactic Distance (introduced in Sec. 3.5),
which is an effective metric that measures the syn-
tactic difference between two sentences, and eval-
uate the state-of-the-art model trained on the Ope-
nIE4 data (Kolluru et al., 2020b) on them. A frus-
trating result shows that the model performance
exhibits a significant degradation as the syntactic
similarity between the training set and clustering
centers of subsets decreases. The biased perfor-
mance comes from the inconsistency of the syn-
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tactic distributions among data. For example, in
Figure 1, the model achieves a depressing F1 score
of 0.47 on the subset 5 with the lowest average
syntactic similarity to the training set. Therefore,
to build robust OpenIE systems, we need to train
the models on a sufficient syntactic distribution.

However, it is not trivial to obtain data that are
both diverse and accurate to satisfy the distribution
assumption. First, it is extremely expensive and
almost impossible for human annotators to provide
a large corpus with diverse syntactic expressions.
Second, existing distant supervision-based methods
are not applicable to OpenIE due to the uncertain-
ties of both the type and form of arguments and
predicates.

Humans learn syntactic grammar by paraphras-
ing the same meaning into different expressions.
For example, the following two sentences con-
vey the same meaning in different syntactic forms.
The diverse paraphrases of normal-scale training
data can guarantee sufficient syntactic distribution.
However, an intrinsic problem that hinders the effi-
ciency of this approach is the Knowledge Defor-
mation. In the following example, it is difficult to
reveal the source object Earth in the target para-
phrase b as it has been transformed into the form
of the name of the planet with different syntax.

• a. After five years of searching, the Colonials
found a new world and named it Earth.

• b. The colonials searched for five years until
they discovered a new world and gave him the
name of the planet.

In this paper, we propose a syntactically robust
training framework that enables OpenIE models
to be trained on a syntactic-abundant distribution
based on the diverse paraphrase generation. Specif-
ically, we first generate a large-scale syntactically
diverse paraphrase candidates set for the training
data based on an off-the-shelf paraphrase gener-
ator. Then, we propose two adaptive algorithms
to recover the deformed arguments of the original
knowledge, a semantic similarity-based matching
method to locate the disordered arguments and a
syntactic tree walking-based method to complete
the consecutive spans. We further employ the gen-
erative T5 (Raffel et al., 2020) model to restore
the deformed predicates as there are potential tense
and voice changes in the target paraphrase. Finally,
a simple but effective denoising method is utilized
to prevent the impact of false positives in training.

To exhaustively validate the syntactic robustness
of OpenIE models in the real-world setting, an addi-
tional evaluation set including diverse paraphrases
and knowledge triples has been built on the basis
of CaRB. We conduct experiments on the standard
and our proposed evaluation sets based on the divi-
sion of different syntactic categories, and a compre-
hensive analysis shows that the model performance
decreases with increasing the difference in the syn-
tactic distributions, while our training framework
gives a robust boundary.

2 Syntactically Robust Training
Framework for OpenIE

2.1 Overview
The task of OpenIE aims to build a model pθ
to automatically extract a set of n-ary tuples
{ri = (a1, pr, a2, a3, ..., an)}mi=1 for each sen-
tence, where pr indicates the predicate, a1, a2 in-
dicate the subject and object, and a3, ..., an refer
to the other argments such as time and location.
Given a training set D = (s1, s2, ..., s|D|) consist-
ing of sentences samples, where each sentence ex-
hibits a syntactic structure es. Our goal is to max-
imize the expectation of log-likelihood function
log pθ(r1, ..., rm, e

s|s) with respect to the data dis-
tribution pD as following:

L(θ) =Eri,es∼pD [log pθ(r1, ..., rm, e
s|s)]

=Eri,es∼pD [log pθ(r1, ..., rm|es, s)pθ(es|s)]

where different OpenIE models may adopt a
distinct strategy to model the probability pθ, such
as the triples generating paradigm (Kolluru et al.,
2020a) or sequence labeling paradigm (Zhan and
Zhao, 2020), and the maximization process is per-
formed by gradient ascent.

The syntactic distribution in training set es ∼ pD
is far from covering the entire syntactic hypothesis
space, and plays a fatal role in OpenIE modeling.
In this research, we aim to expand the training with
a sufficient syntactic distribution. The proposed
framework is illustrated in Figure 2. We first gen-
erate a syntactically diverse paraphrase candidate
set for the training data with an off-the-shelf para-
phrase generation model. Then, we restore the de-
formed arguments using semantic similarity-based
matching and syntactic tree walking algorithms,
followed by a T5-based predicate restoration. Fi-
nally, a denoised training is adopted to optimize
the model on the sufficient distribution.
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After five years of searching, the Colonials found a new world and named it Earth.
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Figure 2: Overview of the proposed framework. Based on the diverse paraphrase candidates set generated by a
syntactically controllable model, two algorithms, semantic similarity-based arguments localization and syntactic
tree walking, are used to restore the deformed arguments. By taking the arguments as conditions, the predicates are
generated with the T5 model.

2.2 Paraphrase Generation
To create syntactically diverse paraphrases candi-
dates set onD, we adopt AESOP (Sun et al., 2021),
a syntactically controllable paraphrase generation
model as our generator. As can be seen in Fig-
ure 2, by utilizing the BART (Lewis et al., 2020)
model as a backbone, the model takes source sen-
tence<sep>source full syntactic parse<sep>target
syntactic parse as the input sequence, and out-
puts a sequence of the form target syntactic
parse<sep>paraphrase in which the generated
paraphrase conforms with the pruned target syntax.

The AESOP model used in our work is trained
on a parallel annotated data with a two-level target
syntactic tree. During generation given the training
set D, we first get their constituency parse trees1

{TDs1 , ..., TDs|D|} and linearize them into parenthe-
ses trees as the source full syntactic parses (A
part is shown in Figure 2). Then, we collect a
set of constituency parse pairs pruned at height 3
{(TPs1 , TPt1 ), ..., (TPs|P| , TPt|P|)} from the ParaNMT-
50M (Wieting and Gimpel, 2018) and count their
frequencies. For each sentence in D, following
the original work we obtain m most similar parses
{T ′Ps1 , ..., T ′Psm} by calculating weighted ROUGE
scores between parse strings, and select k top-
ranked parses from {TPt1 , ..., TPt|P|} for each T ′Psi
by a sampling with the distribution of:

TPt ∼ p(TPt |T ′Psi ) =
#(T ′Psi , T

P
t )∑

j #(T ′Psi , T
P
tj
)

(1)

where #(T ′Psi , T
P
t ) refers to the count of occur-

1We use Stanford CoreNLP (Manning et al., 2014).

rence in the statistic data. In the end, we generate k
paraphrases for each sentence in D. For a tradeoff
of quality and quantity, we set k and m to 5 and
2, respectively. As a result, we get the paraphrases
candidates set P , which is roughly five times the
size of sentences in training set D.

2.3 Knowledge Restoration

As the paraphrases change the expression form
of the original sentence, we need to recover the
knowledge of transformed triples. The difficulty
of knowledge restoration lies in two aspects: first,
the OpenIE arguments are generally formed as a
large span of words, which can be rearranged and
rephrased in the target sentence. Second, the syn-
tactic changes also lead to a transformation of tense
or voice of verbs in the predicates. For example
in Figure 2, the argument the Earth changes its
expression and length to become the name of the
planet, and the predicate were searching changes
its tense to become searched for.

Therefore, we first locate the arguments with the
contextualized semantic matching and complete it
with syntactic tree walking. Then for each pair of
recovered arguments, we restore the corresponding
predicate with the T5 model (Raffel et al., 2020).

2.3.1 Argument Restoration
As the expressional transformations, it is difficult
to get the corresponding arguments in the target
paraphrase sentence based on methods like pat-
tern matching. Therefore, we utilize the seman-
tic similarity with BERT (Devlin et al., 2019) to
locate the arguments. We first compute the em-
beddings hs ∈ R|s|×d and ht ∈ R|t|×d for the
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source sentence s and target paraphrase sentence t,
respectively. Then, for a triple (as1, p

s
r, a

s
2) where

asi → (lsi , r
s
i ), p

s
r → (lsp, r

s
p)

2 in the source sen-
tence, we calculate the semantic similarity scores
cai , cr ∈ R|t| by summing the cosine similarities
between each word in asi , p

s
r and target words of t:

cai =

rsi∑

j=lsi

cos(hsj ,h
t), cr =

rsp∑

j=lsp

cos(hsj ,h
t) (2)

Next, we merge the consecutive indices of
target words whose semantic similarity scores
are greater than a threshold τ to get the result-
ing candidate spans {(lti1, rti1), ..., (ltim, rtim)} and
{(ltp1, rtp1), ..., (ltpm, rtpm)} for asi and psr, and the
final triplets are obtained by selecting a set of spans
with the highest total score and no overlap. By
applying this algorithm on P , we get dataset DP .
We refer to the set expanded with this newly built
set as DΦ = D ∪DP .

Though the resulting spans based on semantic
similarity matching are accurate in position, we
find it incomplete due to the fact that words such
as prepositions or adverbs can not be matched ef-
fectively by the contextualized embedding. On the
other hand, a subtree with NP, QP or NX as the root
in the constituency parses represents a continuous
phrase fragment. Therefore, we propose to use the
syntactic tree walking to further complete the tar-
get arguments. Specifically, for each word in span
(ltij , r

t
ij), we perform a post-order traversal for the

target syntactic tree to effectively find the subtree
with NP, QP or NX as the root and containing the
the word as a node. We obtain the refined span
(lt
′
ij , r

t′
ij) by replacing the original span (if it cov-

ers the original span, otherwise the original span
is retained) with the corresponding words of the
subtree. Finally, we select the optimal target spans
{(lt∗1 , rt∗1 ), ..., (lt∗n , r

t∗
n )} of all arguments from the

refined spans set of each argument by a simple op-
timality criterion that maintains n spans with the
highest similarity without overlaps. We retain the
argument restoration as Algorithm 1 in detailed.

2.3.2 Predicate Restoration
As the paraphrase may change the voice and tense
of the predicate in the original sentence, it is not ap-
plicable to recover the predicate using the same al-
gorithm as the arguments restoration. We adopt the

2For convenient, we use lsi and rsi to denote the indices of
start word and end word of argument ai in the sentence s.

Algorithm 1 Arguments Restoration

Input: Source/target sentence embeddings hs/ht,
source tuple (as1, p

s
r, ..., a

s
n), a

s
i → (lsi , r

s
i )

Output: target n-tuple (at1, a
t
2, ..., a

t
n)

1: get target constituency parse tree T t

2: subtree roots T = {NP,QP,NX}
3: threshold τ = 0.7
4: for each argument asi ∈ (as1, ..., a

s
n) do

5: calculate scores cai =
∑rsi

j=lsi
cos(hsj ,h

t)

6: get candidate spans cspi = {(lti1, rti1), ...}
by merging the consecutive indices with values
greater than τ in cai

7: for spij = (ltij , r
t
ij) ∈ cspi do

8: for tokk ∈ spij do
9: traverse(T t) to find subtree T tk

that satisfies: T tk.root ∈ T && tokj ∈ T tk
10: T tj ← T tj + T tk
11: end for
12: sp′ij = (lt

′
ij , r

t′
ij)⇐ T tj

13: end for
14: csp′i = {sp′i1, sp′i2, ...}
15: end for
16: return {sp∗i |sp∗i ∈ csp′i, i = 1, ..., n} with

highest score without overlaps

T5 model (Raffel et al., 2020) to restore the predi-
cate in the target paraphrase sentence, as there are a
lot of predicates that can not be found from the con-
tinuous span of the original sentence. Specifically,
we build a new dataset on D with the same corpus
size. For each data sample in the new dataset, the
input is of the form of source sentence, argument1,
argument2 <\s>, and the output is a generated
sequence referring to the predicate. We train the
basic T5 model on the new dataset. Then, we re-
store the predicate for each pair of arguments ob-
tained from the algorithm 1 to get a final refined
set DP ′ . We refer to the refined final expanded set
as DΨ = D ∪DP ′ .

2.4 Denoised Training
During the training, we aim to maximize the expec-
tation of log-likelihood function with respect to the
data distribution:

L(θ) =E(r1,...,rm)∼pd [log pθ(r1, ..., rm|s)] (3)

where pd refers to a training set, and pθ is a
neural network model with learnable parameters
θ, which either employs the sequence labeling
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paradigm to predict classification labels on the in-
put sequence, or leverages the generative paradigm
to generate target triples each token at a time. In
this paper, we validate our proposed training frame-
work on IMOJIE (Kolluru et al., 2020b), a strong
generative model that predicts triples conditioned
on the previous generation.

As the rephrasing in large argument spans may
introduce false-positive word noises, we employ a
simple but effective masking strategy to ignore the
impact of negative words while retaining the con-
tribution of valuable correct words in the span. For
a triple (a1, pr, a2), we calculate the importance of
each word in an argument ai based on its seman-
tic matching score obtained from the arguments
restoration algorithm. For those words which are
recovered from the syntactic tree, we set them to
the average value of other words. We finally nor-
malize the reciprocals of these importance scores
and randomly select 15% of all words according to
the probabilities distribution. These sampled words
will be masked to not calculate their gradients in
training. Note that we only mask the words in
arguments as the predicate is short and less noisy.

3 Experiment

This work proposes a syntactically robust training
framework including two knowledge restoration
strategies. Therefore, our experiments are intended
to demonstrate the effectiveness as well as the ro-
bustness of the proposed framework on test sets.

3.1 Datasets

We use the standard training set OpenIE4 (Kolluru
et al., 2020b), and the constructed sets DΦ,DΨ

for model training. During evaluation, in addition
to the benchmark dataset CaRB (Bhardwaj et al.,
2019), we build a syntactically diverse evaluation
set to validate the robustness of OpenIE model.

3.1.1 Training set

Data # samples Fact-level
accuracy

Span-
level
accuracy

D 215,356 / /
DΦ 429,171 87% 34%
DΨ 382,752 91% 71%

Table 1: Train set statistics and the human verification
results. We randomly sample 100 samples for each
dataset and evaluate two fine-grained metrics.

We use the dataset OpenIE4 as the basic set D
in our experiment, which is published by (Kolluru
et al., 2020b) and prep-processed by (Kolluru et al.,
2020a). The data is automatically built by running
OpenIE-4, ClausIE, and RnnOIE on the sentences
obtained from Wikipedia.

To estimate the quality of the generated samples
of DΦ and DΨ, we conduct fine-grained human
verification by randomly samplling 100 data sam-
ples from each set. For a fair comparison, taking
the triples from the human-annotated dataset CaRB
as the reference criteria, we evaluate the generated
samples on fact-level and span-level, respectively.
Specifically, a triple is fact-level correct if all el-
ements in the triple conform with the definition
of arguments or predicate. A triple is span-level
correct only if all arguments and predicates contain
the complete words span in the sample sentence.
The overall statistics are shown in Table 1. We
can see that though the fact-level accuracy shows
the useable for DΦ, the spans of arguments and
predicate are extremely inaccurate with the accu-
racy of 34%. By further performing the algorithms
of syntactic tree walking-based arguments restora-
tion and predicate restoration, we improve both the
fact-level and span-level accuracy to 91% and 71%,
suggesting the satisfaction of the generated data.

3.1.2 Evaluation set

Data # sent. arg.len pre.len
CaRB 1282 14.9 2.7
CaRB-AutoPara 2269 17.3 2.3

Table 2: Evaluation set statistics. The # sent. refers to
the total number of sentences, and arg.len/pre.len are
the average lengths of argument/predicate of all samples
in corresponding data, respectively.

We use the standard benchmark CaRB (Bhard-
waj et al., 2019) to evaluate the proposed frame-
work, which is a high-quality crowdsourced dataset
with 1282 sentences and each sentence has manu-
ally annotated about 4 n-tuples.

In order to evaluate the syntactic robustness of
OpenIE models, we build a syntactically diverse
dataset based on CaRB with the proposed frame-
work. We generate 5 paraphrases for each sentence
from CaRB, and get 2269 high-quality sentences af-
ter performing the knowledge restoration. We refer
to this automatically generated dataset as CaRB-
AutoPara. The statistics of both datasets are shown
in Table 2. We can see that the newly built dataset is
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twice as large in scale and the lengths of arguments
and predicates conform with the CaRB.

3.2 Evaluation Metrics
We use the scoring system proposed by (Bhardwaj
et al., 2019) to evaluate the OpenIE models on
two test sets. The system first creates an all-pair
matching table, with each column as a prediction
tuple and each row as a gold tuple. It then computes
single-match precision and multi-match recall by
considering the number of common tokens in (gold,
perdition) pair for each element of the fact.

Based on the confidence with each output triple,
we report three important metrics: (1) Optimal F1:
the largest F1 value in the P-R curve, (2) AUC: the
area under the P-R curve, and (3) Last F1: the F1
score computed at the point of zero confidence.

3.3 Experimental Settings
We follow the original work to train a BART-based
paraphrase model (Sun et al., 2021) on ParaNMT-
small (Chen et al., 2019), and the syntactic map-
ping set is collected from (Wieting and Gimpel,
2018). For knowledge restoration, we use the pre-
trained BERT (Devlin et al., 2019) model to cal-
culate the cosine similarity, and fine-tune the T5
model (Raffel et al., 2020) with a language model
head on it for the predicate restoration. The thresh-
old τ and maintaining number of spans k are em-
pirically set to 0.7 and 5, respectively.

We train two implementations of our proposed
framework based on the baseline model IMO-
JIE (Kolluru et al., 2020b) to investigate the ef-
fectiveness and syntactically robustness. IMOJIEΦ

is trained on DΦ that adopts the semantic similar-
ity matching as the knowledge restoration method
only. IMOJIEΨ is trained on DΨ that uses the en-
tire knowledge restoration algorithms. All models
followed the original implementations by using
BERT as encoder and LSTM with the CopyAtten-
tion mechanism (Cui et al., 2018a) as the decoder.
The detained parameters setting are shown in Ap-
pendix A.

3.4 Results on Different Datasets
How does the proposed framework perform on the
syntactic identically distributed data?

In comparison with the baseline model, we
find that the proposed syntactically robust training
framework generally enhances the OpenIE model
to achieve better performance on identically dis-
tributed data. As shown in Table 3, we compare

Model CaRB
F1 AUC Opt.F1

IMoJIE 53.3 33.3 53.5
IMoJIEΦ 53.6 32.4 54.0
IMoJIEΨ 54.7 34.0 55.0

Table 3: Experimental results on CaRB.

three models on the evaluation set CaRB, a mi-
nor scale dataset including 1282 human-annotated
sentences. We can see that with the simple con-
textual similarity-based knowledge restoration, our
model IMOJIEΦ achieves better performance than
the basic model on F1 and optimal F1 metrics. By
training model with the entire knowledge restora-
tion algorithms, the model IMOJIEΨ outperforms
the basic model by 1.4 F1 pts, 0.7 pts of AUC, and
1.5 pts of optimal F1. The results suggest that the
OpenIE model is syntactic sensitive and can benefit
from more syntactically sufficient training.

We argue that the CaRB data is the syntactic
identically distributed evaluation set with the
training set OpenIE4, as they are both sampled
from a specific domain of Wikipedia, making them
hold similar writing styles. For example, one sen-
tence describes the fact of “sb. won sth.”, and there
are two sentences Murray Rothbard died in 1995
in Manhattan of a heart attack. and Burnham died
of heart failure at the age of 86, on September 1,
1947. in the train and evaluation set respectively,
where both sentences can extract triples with the
same syntactic structure.
How does the proposed framework perform on a
non-identically distributed datasets?

Model CaRB-AutoPara
F1 AUC Opt.F1

IMoJIE 51.1 31.4 51.2
IMoJIEΦ 52.6 32.1 52.8
IMoJIEΨ 53.4 33.9 53.4

Table 4: Experimental results on CaRB-AutoPara.

To investigate the effectiveness as well as syn-
tactic robustness on open world setting, we evalu-
ate models on the syntactically diverse set CaRB-
AutoPara. We find that the proposed training frame-
work comprehensively improves the syntactic ro-
bustness of the existing model, making it exhibit
consistent better performance on no-identically dis-
tributed data. As shown in Table 4, the best per-
forming model significantly outperforms the base-
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Data CaRB-C1 CaRB-C2 CaRB-C3 CaRB-C4 CaRB-C5

Distance 0.227 0.386 0.468 0.541 0.665

Performance AUC Opt.F1 AUC Opt.F1 AUC Opt.F1 AUC Opt.F1 AUC Opt.F1
IMoJIE 34.2 55.3 31.5 51.4 25.7 50.0 30.7 47.9 24.7 47.0

IMoJIEΨ 34.4 55.7 27.9 51.7 34.4 54.6 31.0 51.1 31.2 50.6

Table 5: Experimental results on different subjects of syntactic categories.

line by 2.3 F1 pts, 2.5 pts of AUC, and 2.2 pts of op-
timal F1. In contrast, the basic model shows a large
degradation on this dataset compared to the orig-
inal CaRB. The results suggest that our proposed
syntactically robust training is more compatible
with the open-world scenarios, and it is necessary
to train and evaluate models on a non-identically
distributed dataset.

The proposed evaluation set CaRB-AutoPara
is more challenging for OpenIE models that are
trained on existing general datasets. The syntactic
structures are varied with respect to the training
set. By taking the same example mentioned above,
there are sentences with a different voice and tense
in the proposed CaRB-AutoPara, such as a ques-
tion sentence Isn’t it possible that he died of a heart
attack?.

3.5 Analysis

We further explore the performance of the model
on different subsets representing prototypical syn-
tactic categories, and analyze the trend of the model
effect as the syntactic differences between the train-
ing set and the subset changed.

How to effectively measure the syntactic differ-
ence between sentences? As the training data is
massive, we need an efficient metric of the syntac-
tic differences between sentences to divide the test
set and calculate the syntactic distance between the
training set and test set.

We propose a simple but effective syntactic dis-
tance algorithm called Hierarchical Weighted Syn-
tactic Distance (HW-Syntactic Distance), to mea-
sure the differences. Intuitively, the more similar
the skeleton of two sentences is, the less syntactic
difference they have, i.e., the less syntactic dis-
tance. We use a hierarchical weighted matching
strategy on the constituency parse trees to calculate
the syntactic distance between two sentences. As
shown in Figure 3, given two sentences with their
constituency parse trees T1, T2 prune at height 3,
we first transform the tree nodes in T1, T2 to se-

quences q1, q2 based on the level-order traversal.
Then, we use the longest substring matching algo-
rithm to accumulate the total matching length ltot

of two sequences, where the length of i-th matched
substring is multiplied by a sequentially discount-
ing weight wi. The final distance is a normalized
value based on the minimum sequence length of
q1, q2, and its value domain is [0, 1]. The detailed
algorithm of HW-Syntactic distance is available in
Appendix B.1.
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Figure 3: Illustration of HW-Syntactic Distance.

How does the models trained on partial syntactic
distribution perform on syntactic-specific data?
Based on this syntactic difference metric, we fur-
ther analyze the performance of models trained
on partially observed syntactic data D on different
syntactic-specified datasets.

To this end, we first cluster the CaRB sentences
into k subsets with the metric of HW-Syntactic Dis-
tance3. Then, we randomly sample 300 sentences
in the training set, and calculate the distance be-
tween the training set and each subset by averaging
the distances among sampled training sentences
and each cluster center. We empirically clustered
the CaRB sentences into 5 subsets with the opti-
mal distance costs, and partial clustering results are
available in Appendix B.3.

We find that the performance of the model on
3We use the K-means cluster algorithm, and cluster the

samples with at most 300 epochs until convergence.
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Figure 4: A case study shows the partial predictions of model trained on the proposed framework.

the subsets gradually increases as the syntactic
distance between the training and test subsets de-
creases. As shown in Table 5, compared to the
best performance of 55.3 obtained on the subset
CaRB-C5 with a distance of 0.227, the basic model
only achieved an optimal F1 score of 47.0 on the
subset CaRB-C1. In addition, we find that our
fully enhanced model is consistently better than
the basic model trained on partial syntactic dis-
tribution, suggesting that the proposed training
framework improves the syntactic robustness of
the OpenIE model comprehensively. We remain
more analysis and results of syntactic distribution
in Appendix B.2.

3.6 Case Study

Figure 4 shows the case study of our proposed
framework with different implementations. As
is shown, compared to the original training sam-
ple, the generated sample exhibit a syntactically
different structure. The model trained on the ex-
tended dataset with the semantic similarity-based
knowledge restoration can only extract two sep-
arate triples around the predicate should also be
included in. By using the full knowledge restora-
tion algorithms, the trained model can extract all
related triples for the predicate. A part of generated
samples based on the proposed syntactic robust
training framework are shown in Appendix C.

4 Related Work

Open Information Extraction is a fundamental
NLP task with a long research history (Niklaus
et al., 2018). Traditional models adopt rule-
based or statistical methods incorporating syntac-
tic or semantic parsers to extract knowledge tu-
ples (Michele et al., 2007; Fader et al., 2011; An-
geli et al., 2015; Del Corro and Gemulla, 2013; Pal
et al., 2016; Saha and Mausam, 2018; Stanovsky
et al., 2015; Gashteovski et al., 2017). Recently,
neural models that either adopt sequence label-

ing strategies (Stanovsky et al., 2018; Roy et al.,
2019; Zhan and Zhao, 2020; Kolluru et al., 2020a;
Yu et al., 2021), or leverage sequence generative
paradigms (Cui et al., 2018b; Sun et al., 2018; Kol-
luru et al., 2020b) have achieved promising result.
To alleviate the problem that neural models rely
heavily on labor-intensive annotated data, (Tang
et al., 2020) proposes an unsupervised method that
pretrains the model on synthetic data automatically
labeled by patterns and then refines it using the RL
process.

Paraphrase Generation has proven to be use-
ful for adversarial training and data augmenta-
tion (Zhou and Bhat, 2021). Early methods adopt
hand-crafted rules (McKeown, 1983), synonym
substitution (Bolshakov and Gelbukh, 2004), ma-
chine translation (Quirk et al., 2004), and deep
learning (Gupta et al., 2018; Liu et al., 2020) to
improve the quality of generated sentences. To
acquire syntactic diverse samples, recent studies in-
volve reinforcement learning (Qian et al., 2019) or
syntactic constrains (Iyyer et al., 2018; Goyal and
Durrett, 2020; Sun et al., 2021) into the models.

5 Conclusion

In this paper, we focus on solving the problem
of partially observable of syntactic distribution
on training data, and propose a syntactically ro-
bust training framework that enables OpenIE mod-
els to be trained on a syntactic-abundant distribu-
tion based on diverse paraphrase generation. We
propose a knowledge restoration algorithm to re-
cover the deformed triples in syntactically trans-
formed sentences based on semantic similarity-
based matching and syntactic tree walking. To
investigate the syntactic robustness of models, we
build a syntactically diverse evaluation set that is
consistent with the real-world setting. The experi-
mental result with extensive analysis demonstrated
the efficiency of our framework.
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Limitations

Although we have extensively studied different
paraphrase generation models with diverse syntac-
tic, it is difficult to guarantee the quality of the
generated sentences in a specific domain. In this
paper, some poorly generated sentences can cause
errors to propagate into knowledge restoration and
further lead to omitted triples. We built a syntacti-
cally diverse dataset to evaluate the robustness of
the OpenIE models. However, researchers willing
to use this dataset need to be aware of the inevitable
noises due to the automatic generation process.
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A Model Parameters settings

We train all models on an NVIDIA Tesla V100 with
32GB GPU ARM. Hyperparameter settings for the
paraphrase generation, knowledge restoration and
OpenIE are listed in Table 6, 7 and 8, respectively.

Hyperparameter Value
Backbone Model BARTbase
Model Dimension 768
Learning Rate 3e-5
Target Tree Height 2
Optimizer Adam

Table 6: Settings for paraphrase generation model.

Hyperparameter Value
Contextual Similarity Model BERTbase
Threshold τ 0.7
Maintaining Spans k 5
Predicate Restoration Model T5base
Model Dimension 768
Learning Rate 1e-3
Optimizer Adafactor

Table 7: Settings for knowledge restoration model.

Hyperparameter Value
Backbone Model BERTsmall
Model Dimension 768
Learning Rate 2e-5
LSTM Hidden Dimension 256
LSTM Word Embedding 100
Optimizer Adam

Table 8: Settings for OpenIE model.

B Syntactic Distribution Analysis

B.1 Hierarchical Weighted Syntactic Distance
The proposed Hierarchical Weighted Syntactic Dis-
tance (HW-Syntactic Distance) is shown in al-
gorithm 2. Given two sentences with their con-
stituency parse trees T1, T2, the algorithm outputs
their syntactic distance in [0, 1], where a smaller
value means a closer distance. We first get their
level-order traversal sequences q1, q2. Then we cal-
culate their discounting weighted optimal matching
length based on dynamic programming effectively.
The final distance is a normalized value based on
the minimum sequence length of q1, q2.

Algorithm 2 HW-Syntactic Distance
Input: Constituency parses T1, T2 of sentences

s1, s2, pruning height h, discount factor α
Output: Syntactic distance d between s1, s2

1: Get trees T h1 , T
h
2 pruned at height h, and their

level-order traversal sequences q1, q2

2: Initialize total length and count l = 0;m = 0
3: A[i][0]=1 if q1[i] == q2[0], i = 1, ..., q1.len
4: A[0][j]=1 if q1[0] == q2[j], j = 1, ..., q2.len
5: for i = 2→ q1.len do
6: for j = 2→ q2.len do
7: if q1[i] == q2[j] then
8: A[i][j] = A[i− 1][j − 1] + 1
9: else

10: A[i][j] = 0
11: if A[i− 1][j − 1] > 1 then
12: l = A[i− 1][j − 1]× αm
13: m++
14: end if
15: end if
16: end for
17: end for
18: if A[i− 1][j − 1] > 1 then
19: l = A[i− 1][j − 1]× αm
20: end if
21: Return 1− l/min(q1.len, q2.len)

B.2 Joint Words Distributions

We analyze the joint probability distribution of
distinct words between training data and CaRB
data based on the vocabulary built on CaRB. As
shown above, we find that there is a word-level
distribution difference between the two datasets.

B.3 Clustered Syntactic Samples
We cluster the CaRB data with the HW-Syntactic
Distance. Partial examples are shown in Table 9.
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Cluster Syntactic Parse Score

C1

In those years, he began to collaborate with some newspapers.
– (ROOT (S (PP (IN ) (NP )) (, ) (NP (PRP )) (VP (VBD ) (S )) (. ))) 0.245

In Canada, there are two organizations that regulate university and collegiate athletics.
– (ROOT (S (PP (IN ) (NP )) (, ) (NP (EX )) (VP (VBP ) (NP )) (. ))) 0.333

As a result, it becomes clear that the microbe can not survive outside a narrow pH range.
– (ROOT (S (PP (IN ) (NP )) (, ) (NP (PRP )) (VP (VBZ ) (ADJP ) (SBAR )) (. ))) 0.346

However, during his rehearsal, Knievel lost control of the motorcycle and crashed into a cameraman.
– (ROOT (S (ADVP (RB )) (, ) (PP (IN ) (NP )) (, ) (NP (NNP )) (VP (VP ) (CC ) (VP )) (. ))) 0.474

If given this data, the Germans would be able to adjust their aim and correct any shortfall.
– (ROOT (FRAG (SBAR (IN ) (S )) (. ))) 0.711

C2

HTB ’s aim is for an Alpha course to be accessible to anyone who would like to attend the course ,
and in this way HTB seeks to spread the teachings of Christianity .
– (ROOT (S (S (NP ) (VP )) (, ) (CC ) (S (PP ) (VP )) (. )))

0.019

“ Business across the country is spending more time addressing this issue , ” says Sen. Edward
Kennedy ( D. , Mass . ) .
– (ROOT (SINV (“ ) (S (NP ) (VP )) (, ) ("" ) (VP (VBZ )) (NP (NP ) (PRN )) (. )))

0.069

Returning home , Ballard delivers her report , which her superiors refuse to believe .
– (ROOT (S (S (VP )) (, ) (NP (NNP )) (VP (VBZ ) (NP )) (. ))) 0.131

“ It ’s really bizarre , ” says Albert Lerman , creative director at the Wells Rich Greene ad agency .
– (ROOT (SINV (“ ) (S (NP ) (VP )) (, ) ("" ) (VP (VBZ )) (NP (NP ) (, ) (NP )) (. ))) 0.136

Feeling the naggings of a culture imperative , I promptly signed up .
– (ROOT (S (S (VP )) (, ) (NP (PRP )) (VP (ADVP ) (VBD ) (PRT )) (. ))) 0.210

C3

Historically , Aiseau was a village dedicated to agriculture , logging , but also to the industry .
– (ROOT (S (NP (NNP )) (, ) (NP (NNP )) (VP (VBD ) (NP )) (. ))) 0.015
They beat Milligan 1-0 , Grand View 3-0 , Webber International 1-0 and Azusa Pacific 0-0 to win the
NAIA National Championships .
– (ROOT (FRAG (S (NP ) (VP )) (, ) (NP (NP ) (, ) (NP ) (CC ) (NP )) (. )))

0.051

For the record , Jeffrey Kaufman , an attorney for Fireman ’s Fund , said he was “ rattled – both
literally and figuratively . ”
– (ROOT (S (PP (IN ) (NP )) (, ) (NP (NP ) (, ) (NP ) (, )) (VP (VBD ) (SBAR )) (. ) ("" )))

0.154

Crouched at shortstop , Bert Campaneris , once Oakland ’s master thief , effortlessly scoops up a
groundball and flips it to second .
– (ROOT (S (S (VP )) (, ) (NP (NP ) (, ) (ADVP ) (NP ) (, )) (VP (ADVP ) (VP ) (CC ) (VP )) (. )))

0.162

Now Mr. Broberg , a lawyer , claims he ’d play for free .
– (ROOT (S (ADVP (RB )) (NP (NP ) (, ) (NP ) (, )) (VP (VBZ ) (SBAR )) (. ))) 0.178

C4

In the U.S. , more than half the PC software sold is either for spreadsheets or for database analysis ,
according to Lotus .
– (ROOT (S (PP (IN ) (NP )) (, ) (NP (NP ) (VP )) (VP (VBZ ) (PP ) (, ) (PP )) (. )))

0.101

It is part of the Surrey Hills Area of Outstanding Beauty and situated on the Green Sand Way .
– (ROOT (S (NP (PRP )) (VP (VBZ ) (NP )) (. ))) 0.018
This is the U.N. group that managed to traduce its own charter of promoting education , science and
culture .
– (ROOT (S (NP (DT )) (VP (VBZ ) (NP )) (. )))

0.138

Of the self - starting vacuum cleaner , he says : “ Could be Cuddles , Mrs. Stinnett ’s dog . ”
– (ROOT (S (PP (IN ) (NP )) (: ) (S (VP )) (, ) (NP (PRP )) (VP (VBZ ) (: ) (“ ) (S )) (. ) ("" ))) 0.210

According to the 2010 census , the population of the town is 2,310 .
– (ROOT (S (PP (VBG ) (PP )) (, ) (NP (NP ) (PP )) (VP (VBZ ) (NP )) (. ))) 0.271

C5

Sen. Mitchell is confident he has sufficient votes to block such a measure with procedural actions .
– (ROOT (S (NP (NNP ) (NNP )) (VP (VBZ ) (ADJP )) (. ))) 0.003

Dr. Pim played for Ireland against England in 1892 , 1893 , 1894 and 1896 .
– (ROOT (S (NP (NNP ) (NNP )) (VP (VBD ) (PP ) (PP )) (. ))) 0.051

From 1909 to 1912 , the Miami Canal was dug , bypassing the rapids at the head of the North Fork .
– (ROOT (S (PP (PP ) (PP )) (, ) (NP (DT ) (NNP ) (NNP )) (VP (VBD ) (VP )) (. ))) 0.112

Mrs. Marcos has n’t admitted that she filed any documents such as those sought by the government .
– (ROOT (S (NP (NNP ) (NNP )) (VP (VBZ ) (RB ) (VP )) (. ))) 0.114

Hapoel Lod played in the top division during the 1960s and 1980s , and won the State Cup in 1984 .
– (ROOT (S (NP (NNP ) (NNP )) (VP (VP ) (, ) (CC ) (VP )) (. ))) 0.203

Table 9: A part of samples in different clusters of CaRB data based on the HW-Syantactic distance. The score refers
to the distance between current sentence and corresponding clustering center.
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Original sample Generated sample

This finding indicated that organic compounds could carry
current.
(This finding, indicated that, organic compounds could carry
current)

According to these results, organic compounds can carry the
current.
(organic compounds, can carry, the current)
This finding has shown that organic compounds are capable
of transmitting impulses.
(This finding, has shown, that organic compounds are capa-
ble of transmitting impulses)
(organic compounds, are capable, transmitting impulses)
That this finding has shown that organic compounds can be
operated.
(this finding, has shown, that organic compounds can be
operated)
(organic compounds, can be operated, )

Regulations meant that the original sixth lap would be
deleted and the race would be restarted from the beginning
of said lap.
(Regulations meant that, would be deleted, the original sixth
lap)
(Regulations meant that, would be deleted, the race)

According to the rules, the original sixth round will be re-
moved and the race will be re started at the beginning of the
round.
(the race, will be re started, at the beginning of the round)
(the original sixth round, will be removed, )
The rules have made it possible to cancel the original sixth
round and restart the race at the start of the round.
(The rules, have made it possible, to cancel the original sixth
round)
(The rules, have made it possible, restart the race at the start
of the round)
But the rules stipulated that the original sixth round would
be removed and the race to be re-started at the beginning of
the round.
(The rules, stipulated, that the original sixth round would be
removed)
(the race, to be re started, at the beginning of the round)
(the original sixth round, would be removed)

Maduveya Vayasu song from nanjundi kalyana was a track
played during marriages for many many years in Kannada.
(Maduveya Vayasu, is, a song)
(Maduveya Vayasu song, is from, anjundi kalyana)
(Maduveya Vayasu song, was a track played during, mar-
riages)

The song of maduveya vayasu from nanjundi kalyana has
been played in the marriage of many years in kannada.
(The song of maduveya vayasu from nanjundi kalyana, has
been played, in the marriage of many years in kannada)
(The song of maduveya vayasu, is from, nanjundi kalyana)
Maduveya vayasu, the song of nanjundi kalyana has been
played in many marriages throughout the country.
(the song of nanjundi kalyana, has been played, in many
marriages throughout the country)
When they were married, they played the song of maduveya
vayasu from nanjundi kalyana.
(they, played, the song of maduveya vayasu from nanjundi
kalyana)
(they, were married)
(the song, is from, nanjundi kalyana)

Table 10: A part of generated syntactically robust data samples based the proposed framework.

C Syntactically Robust Samples

Base on the proposed framework, a part of gener-
ated samples are shown in Table 10.
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