
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 6232–6244
December 7-11, 2022 ©2022 Association for Computational Linguistics

Improved Knowledge Distillation for Pre-trained Language Models via
Knowledge Selection

Chenglong Wang1, Yi Lu1∗, Yongyu Mu1, Yimin Hu1, Tong Xiao1,2† and Jingbo Zhu1,2

1NLP Lab, School of Computer Science and Engineering,
Northeastern University, Shenyang, China

2NiuTrans Research, Shenyang, China
{clwang1119,yilu001102}@gmail.com

{xiaotong,zhujingbo}@mail.neu.edu.cn

Abstract

Knowledge distillation addresses the problem
of transferring knowledge from a teacher model
to a student model. In this process, we typ-
ically have multiple types of knowledge ex-
tracted from the teacher model. The problem
is to make full use of them to train the student
model. Our preliminary study shows that: (1)
not all of the knowledge is necessary for learn-
ing a good student model, and (2) knowledge
distillation can benefit from certain knowledge
at different training steps. In response to these,
we propose an actor-critic approach to selecting
appropriate knowledge to transfer during the
process of knowledge distillation. In addition,
we offer a refinement of the training algorithm
to ease the computational burden. Experimen-
tal results on the GLUE datasets show that our
method outperforms several strong knowledge
distillation baselines significantly.

1 Introduction

Pre-trained language models (PLMs) have signif-
icantly advanced state-of-the-art on various natu-
ral language processing tasks, such as sentiment
analysis (Bataa and Wu, 2019; Baert et al., 2020),
text classification (Sun et al., 2019a; Arslan et al.,
2021), and question answering (Yang et al., 2019).
Despite the remarkable results, PLMs have a large
number of parameters which make them expensive
for deployment (Yang et al., 2019).

To solve this problem, recent works resort to
knowledge distillation (KD) (Hinton et al., 2015)
to compress and accelerate the PLMs (Sun et al.,
2019b; Sanh et al., 2019; Li et al., 2021b; Liang
et al., 2021). Its key idea is to transfer the knowl-
edge from a large PLM (i.e., teacher model) into
a lightweight model (i.e., student model) without
a significant performance loss. In this process,

*This work is done during the internship at Northeastern
University NLP Lab.

†Corresponding author.

we typically have multiple types of knowledge ex-
tracted from the teacher model, such as response
knowledge, feature knowledge, and relation knowl-
edge (Gou et al., 2021). Recent works mainly fo-
cus on how the student model learns the transferred
knowledge more efficiently, such as designing train-
ing schemes (Sun et al., 2019b; Mirzadeh et al.,
2020; Jafari et al., 2021; Li et al., 2021a) or enrich-
ing task-specific data (Jiao et al., 2020; Liang et al.,
2021). However, few works consider how to make
full use of the multiple types of knowledge into the
training of the student model.

Our preliminary study (see Section 4.1) shows
that not all of the knowledge is necessary for learn-
ing a good student model when conducting distilla-
tion with diverse knowledge. Furthermore, inspired
by dynamic KD (Li et al., 2021b), we assume that
learning from certain knowledge at different train-
ing steps is beneficial to KD. We conduct probing
experiments to verify this assumption in Section
4.2. Specifically, we repeat KD 200 times and ran-
domly select knowledge at each training step. We
find that different distilled student models have a
distinct performance. For example, the best stu-
dent model is nearly 10% higher than the worst
one in terms of accuracy on the RTE dataset. In
addition, it notably exceeds the student model that
learns from fixed knowledge. Based on our pre-
liminary study, we have the following suggestion:
the distilled student model could achieve superior
performance if it learns appropriate knowledge at
each training step. This suggestion motivates us to
investigate how to select the appropriate knowledge
for the student model during the process of KD.

Based on the above findings, we propose
an actor-critic approach to selecting appropriate
knowledge to transfer at different training steps
(Bhatnagar et al., 2009). This approach first uses
an actor-critic algorithm to implement a knowledge
selection module via a long-term reward optimiza-
tion. This optimization can consider the influence

6232

of knowledge selection on future training steps.
Furthermore, we develop a multi-phase training
approach that divides the distillation process into
many phases and provides a particular reward at
the phase end. Compared to the usual actor-critic
algorithm, it can ease the burden of computing re-
wards. After that, we perform KD by employing
the trained knowledge selection module to select
knowledge at each training step.

We test the proposed approach on six GLUE
datasets (Wang et al., 2019) which involve question
answering, sentiment analysis, and textual entail-
ment. Experimental results show that our method
significantly outperforms the vanilla KD method
(Hinton et al., 2015) and other competitive KD
methods. Notably, results also show our BERT6 (6-
layer BERT) student model can achieve more than
98.5% of the performance of teacher BERTBASE

while keeping much fewer parameters (∼61%). In
addition, we prove that when armed with data aug-
mentation, our approach can yield further improve-
ments and be superior to TinyBERT (Jiao et al.,
2020), leading to a strong baseline with the data
augmentation.

2 Related Work

Knowledge distillation (KD) (Hinton et al., 2015)
is widely used to compress and accelerate the pre-
trained language models (PLMs) (Jiao et al., 2020;
Sun et al., 2020; Wang et al., 2020; Li et al., 2021b).
Its core idea is to transfer the knowledge from a
large PLM (i.e., teacher model) into a lightweight
model (i.e., student model). Recent works on KD
could be classified into three groups. The first
group focused on utilizing various knowledge from
the teacher model to distill the student model. For
example, multiple teacher models are leveraged to
provide a more diverse and accurate knowledge for
the student model (Liu et al., 2019a; Yuan et al.,
2021). Sun et al. (2019b) exploited knowledge
from intermediate layers of the teacher model dur-
ing distillation. Moreover, Weight Distillation (Lin
et al., 2021) transfers the knowledge in parameters
of the teacher model to the student model. The sec-
ond group tended to design effective strategies to
facilitate the student model to learn the knowledge
from different types of knowledge, such as enrich-
ing the task-specific data (Jiao et al., 2020; Liang
et al., 2021) and the two-stage learning framework
(Turc et al., 2019; Jiao et al., 2020). The third group
that has attracted less attention generally explored

appropriate data and teacher models for student
models in the KD. For example, Li et al. (2021b)
proposed a data selection strategy that only selects
some vital data for the student model according to
its competency. Yuan et al. (2021) attempted to
adjust the weights to the multiple teacher models
during distillation.

Different from these methods, in this paper, we
are concerned with how to select appropriate knowl-
edge for student models during the process of KD.
To this end, we train an effective knowledge selec-
tion model via an actor-critic algorithm and em-
ploy it to select appropriate knowledge to transfer
at each training step.

3 Background

3.1 Knowledge Distillation
In KD, the student model learns knowledge from
the teacher model by mimicking corresponding be-
haviors. In the distillation process, this mimicking
can be implemented by minimizing the following
loss function:

LKD =
∑

x∈X
Ldiff (f

S(x), fT (x)) (1)

where X is the training dataset, x is an input sam-
ple, fS(·) and fT (·) are the functions of describing
the behaviors of the student model and the teacher
model, respectively. Ldiff (·) is a loss function that
evaluates the difference between their behaviors.
In the process of KD, due to many behaviors (e.g.,
extracting features) existing in the student and the
teacher model, we typically have multiple types
of knowledge. Previous works mainly focus on
designing elaborate fS(·), fT (·), and Ldiff (·) to
encourage the student model to learn certain fixed
knowledge better (Sun et al., 2019b; Jiao et al.,
2020; Liang et al., 2021). Unlike them, in this
work, we make full use of the multiple types of
knowledge and select appropriate knowledge for
the student model during the process of KD.

3.2 Knowledge Types
The student model can learn from various of knowl-
edge extracted from the teacher model in KD. Ac-
cording to Gou et al. (2021), the types of knowl-
edge can often be Response Knowledge (ResK),
Feature Knowledge (FeaK), and Relation Knowl-
edge (RelK). In addition, we consider a Finetune
Knowledge (FinK) derived from the training dataset
on compressing PLMs. The overview of these
knowledge types is following:

6233

Knowledge
RTE SST-2

BERT6 BERT3 BERT6 BERT3

FinK 65.8 58.1 89.7 88.0
ResK 67.1 56.8 90.2 87.5
FeaK 66.1 57.8 90.4 87.1
RelK 64.6 58.9 88.9 88.2
FinK&ResK 65.2 55.6 90.0 88.3
FinK&ResK&FeaK 64.6 56.7 90.0 87.0
FinK&ResK&FeaK&RelK 64.5 57.4 90.7 87.7

Table 1: Accuracies (%) of distilled student models
on the RTE and SST-2 development sets. The teacher
model is the BERTBASE. The student models are the 6-
layer BERT6 and the 3-layer BERT3, respectively. Note
that the knowledge is fixed during the process of KD.

• ResK: ResK refers to the knowledge that the
student model learns by mimicking the neu-
ral response of the last layer of the teacher
model. It includes more information about the
predicted results (Hinton et al., 2015).

• FeaK: FeaK denotes the feature representa-
tion that the student model learns from the out-
puts of the intermediate layers of the teacher
model. Different from ResK, it contains more
information about the calculation process of
the teacher model.

• RelK: RelK represents the relationships be-
tween different layers or samples (Yim et al.,
2017). It focuses more on the relationship
between model layers.

• FinK: FinK is the knowledge that the student
model learns from ground-truth labels by fine-
tuning on the training dataset (Hinton et al.,
2015; Devlin et al., 2019). Here, we also con-
sider it as a knowledge type in KD.

In this work, we explore how to select appropri-
ate knowledge from these types to transfer during
the process of KD. To ensure transferring the above
types of knowledge to the student model, we design
loss functions LResK , LFeaK , LRelK , and LFinK ,
respectively. The Appendix A presents the design
details of loss functions.

4 Preliminary Study

Due to its unique information and character, we
assume that each type of knowledge has a different
impact on KD results. Based on this, we conduct
preliminary studies to probe the relationship be-
tween knowledge and KD.

4.1 Different Knowledge for KD
We conduct an experiment using different knowl-
edge to distill the student models individually. In

Task Method Sbest Sworst ∆

RTE
Random-All 68.4 58.3 10.1
Random-One 67.2 58.9 8.7
Fixed-All 67.1 64.5 2.6

SST-2
Random-All 91.3 86.1 5.2
Random-One 90.7 87.9 2.8
Fixed-All 90.7 88.9 1.8

Table 2: Accuracies (%) of Sbest and Sworst on the de-
velopment sets. Fixed-All denotes that we use the same
knowledge to train the student model at each training
step. Its results are taken from Table 1.

the experiment, we tune the weights of each type of
knowledge on the dev set, similar to tuning hyper-
parameters. Table 1 compares these distilled stu-
dent models. We can see that the student models
have noticeable gaps in terms of accuracy while
using different knowledge. It indicates that not all
knowledge is necessary for learning a good student
model. Interestingly, we can also see that the ap-
propriate knowledge changes as the student model
or the dataset changes. We conjecture that factors
such as student capacity and sample complexity
could affect transferring knowledge, which is con-
sistent with Stanton et al. (2021)’s findings.

4.2 Different Knowledge at Training Steps

Inspired by dynamic KD (Li et al., 2021b), we as-
sume that the appropriate knowledge may change
dynamically because the student model and the
sample keep changing during training. We con-
duct probe experiments to verify this assumption.
We randomly select knowledge for the student
model at each training step. Here, we employ
this random strategy for the training steps of all
epochs (Random-All) and the training steps of the
first epoch (Random-One), respectively. To make
experiments more general, both Random-All and
Random-One are repeated 200 times.

We report the best and worst performance of
the distilled student models denoted by Sbest and
Sworst in Table 2. From the results of Random-All,
we can see that there is a conspicuous gap in ac-
curacy scores between Sbest and Sworst. Notably,
Sbest performs significantly better than Sworst by
10% on the RTE dataset. We conjecture that Sbest

means the student model is trained with the ap-
propriate knowledge at most of the training steps,
while Sworst is the opposite. In addition, we notice
that Sbest achieves 68.4% accuracy, which signif-
icantly surpasses all student models with a fixed
knowledge. It indicates that KD can benefit from
certain knowledge at different training steps. This

6234

also motivates us to investigate the method for se-
lecting appropriate knowledge.

For the results of Random-One, there is also a
remarkable performance difference between Sbest

and Sworst, though only the training steps of the
first epoch in KD involves random selection of
knowledge. It shows that knowledge selection at
the current training step affects the following train-
ing steps. Therefore, we should consider the future
influence while selecting appropriate knowledge.

5 Method

5.1 Overview

In this work, our goal is to select appropriate knowl-
edge to transfer during the process of KD. Consider-
ing the current selection may affect future training
steps, we propose the actor-critic approach, which
addresses the knowledge selection problem via a
long-term reward optimization. Figure 1 gives an
overview of our method. Our method involves
two stages: training a knowledge selection mod-
ule (KSM) and distilling the student model with
the trained KSM. In the first stage, we use an actor-
critic algorithm consisting of an actor and a critic to
implement KSM. The actor outputs an action that
selects knowledge based on a given state. The critic
network predicts the action value, i.e., the sum of
future rewards. In the second stage, we employ the
trained KSM to select appropriate knowledge and
transfer them to the student model.

5.2 Definitions

In this work, we use an actor-critic algorithm to im-
plement the KSM. Here, we first describe some key
concepts of the actor-critic algorithm, including
state, action, and reward.

State. At training step t, we use st to denote the
corresponding state. Here, st should comprise suf-
ficient information for selecting appropriate knowl-
edge. To this end, we use the informative [CLS]
embeddings of the last layers in the student and
the teacher models (Devlin et al., 2019) to achieve
it. Specifically, for the i-th sample at training step
t, we use cSi and cTi to denote the [CLS] embed-
ding of the last layer of the student and the teacher
model, respectively. Then we utilize two trainable
feature networks, N S

fea and N T
fea, to extract the

useful feature vector v:

vS
i = N S

fea(c
S
i), vT

i = N T
fea(c

T
i) (2)

where both N S
fea and N T

fea consist of a 2-layer
multi-layer perceptron (MLP) network. We con-
catenate all extracted feature vectors in given batch
as st.

Action. Given the state st, an action at can be
created, which is used to select the appropriate
knowledge to transfer at training step t. Here, we
present soft and hard actions to select appropriate
knowledge subtly. The soft action determines how
much to learn from each knowledge type, while the
hard action selects one or more knowledge types
for training the student model.

Reward. Here we define the immediate reward
rt as the cross-entropy loss difference on a devel-
opment set after the student model is trained with
selected knowledge. See Table 6 in Appendix for a
comparison of different rewards.

5.3 Knowledge Selection Module

To improve the performance of the distillation
model, we need to select the appropriate knowl-
edge for transferring at different training steps. For
this purpose, we implement a knowledge selec-
tion module via the actor-critic algorithm which
consists of an actor and a critic. Here, we utilize
long-term rewards to optimize it to consider the
influence of knowledge selection on future training
steps.

5.3.1 Actor and Critic
Actor. In this work, the actor network µθ is com-
posed of a three-layer MLP with four output neu-
rons. It takes a state st and outputs the soft action
with a Sigmoid function:

at = Sigmoid(µθ(st)) (3)

where at = {at1, at2, at3, at4} contains four real val-
ues belonging to [0, 1]. We use atm in at to denote
the percentage of the selected m-th type of knowl-
edge*. At training step t, the student model’s loss
is calculated as follows:

Lsoft
t = at1LFinK + at2LResK + at3LFeaK

+ at4LRelK

(4)

In addition, to directly select one or more types of
knowledge, we obtain the hard action via a condi-
tional function g(·):

g(atm) =

{
1 atm ≥ λ

0 otherwise
(5)

*Here, we treat FinK, ResK, FeaK, and RelK as 1-th, 2-th,
3-th, and 4-th type of knowledge.

6235

Student Feature

Network

Teacher Feature

Network

……
S
1c

S
2c

S
nc

T
1c

T
2c

T
nc

……

Actor

Critic
Action

Action Value

(a) the architecture of the KSM

Different Knowledge

Transfer

Input

Encoder
Block

……

Encoder
Block

Output

Student ModelSelected Knowledge

KSM

Finetune Knowledge

Response Knowledge

Feature Knowledge

Relation Knowledge

Finetune Knowledge

Response Knowledge

Feature Knowledge

Relation Knowledge

(b) selecting appropriate knowledge for KD via the KSM

Figure 1: An overview of the proposed method. We use an actor-critic approach to design a knowledge selection
module (KSM), which aims to select the appropriate knowledge to transfer during KD. Besides the soft action
presented in Figure 1(b), we also design the hard action for the actor module (see Section 5.3.1).

where λ ∈ [0, 1] is a threshold value. The student
model’s loss with the hard action is as follows:

Lhard
t = g(at1)LFinK + g(at2)LResK+

g(at3)LFeaK + g(at4)LRelK

(6)

Here if atm ≥ λ, m-th type of knowledge is ap-
propriate for the student model; otherwise, it is
not.

Critic. The critic network Qϕ is also composed
of a three-layer MLP. It computes the action value
Qϕ(st, at) of a given pair (st, at), where st and at
are concatenated as the input. The action value is
an estimation of the sum of rewards earned after the
actor takes the action at at the state st. Here, we
define the action value as the long-term reward, i.e.,
the performance gain of the student model from the
training step t to the training end.

5.3.2 Optimization
Actor Optimization. Following the deep deter-
ministic policy gradient algorithm (Silver et al.,
2014), we optimize the long-term reward by up-
dating the actor parameters via the sampled policy
gradient:

∇θJ ≈ 1

N

N∑

t=1

∇θQϕ(st, at) (7)

Critic Optimization. At each training step, we
can only gain an immediate reward rt. How-
ever, the critic provides a long-term reward rather
than an immediate reward. Therefore, we employ
Temporal-Difference (Tesauro, 1991) to approxi-
mate the actual long-term reward with rt:

Q∗
ϕ(st, at) = γtrt +Qϕ(st+1, at+1) (8)

where γ is a discount factor (Sutton and Barto,
2018). Then we can give the optimization objective
of the critic network through the approximate long-

term reward:

LQ =
1

N

N∑

t=1

MSE(Qϕ(st, at), Q
∗
ϕ(st, at)) (9)

where MSE(·) is the mean squared error loss func-
tion, and N is the number of training steps in KD.

Feature Networks Optimization. During train-
ing KSM, we update the student feature network
with the actor network and the teacher feature net-
work with the critic network, respectively, in order
to reduce the instability of training KSM.

5.3.3 Multi-Phase Training
Due to a large number of training steps in some
datasets, computing the reward via the loss on the
development set can yield considerable costs dur-
ing training the KSM. For example, training with
5 epochs on the QQP dataset needs to compute
the reward about 50,000 times in an episode. To
ease the computational burden, we propose a multi-
phase training approach to train the KSM. Specif-
ically, we divide the complete KD process into
many phases where each phase contains k training
steps. After the student model is trained on a phase,
we treat the cross-entropy loss difference on a de-
velopment set as the phase reward rp. It expresses
the sum of all rewards in a phase. Here we can
use a phase optimization objective Lp

Q to train the
critic network instead of the LQ:

Lp
Q =

1

Np

Np∑

j=1

MSE(rpj ,

e(j)∑

t=b(j)

r̂t) (10)

where Np is the number of phases in KD, b(j) and
e(j) are the beginning and end training steps in the
j-th phase. The r̂t is an estimated reward computed
by Eq. 8:

r̂t =
Qϕ(at, st)−Qϕ(at+1, st+1)

γt
(11)

6236

Algorithm 1 Our Method
Input: the well-trained teacher model MT ; the initial stu-

dent model MS ; training dataset X
Output: the distilled MS ;

1: %%% the first stage
2: Train the KSM via Algorithm 2;
3:
4: %%% the second stage
5: for t = 1 to N do
6: compute a state st via Eq. 2;
7: use an action at = µθ(st) to select appropriate

knowledge;
8: train MS via Eq. 4 or Eq. 6;
9: end for

10: return MS

Algorithm 2 Training of the KSM
Input: the well-trained teacher model MT ; the initial stu-

dent model MS ; training dataset X ; the initial KSM (an
actor µθ , a critic Qϕ, two feature networks NS

fea and
N T

fea)
Output: the trained KSM

1: for episode = 1 to K do
2: reset MS ;
3: divide the whole KD process into Np phases;
4: for j = 1 to Np do
5: for t = b(j) to e(j) do
6: compute a state st via Eq. 2;
7: sample an action at = µθ(st);
8: utilize the actions in the previous phases to

compute ret via Eq. 12 or Eq. 13;
9: compute an action value Qϕ(s, a);

10: train MS via Eq. 4 or Eq. 6;
11: end for
12: compute rpj via the loss difference;
13: train the KSM via Eq. 9 and Eq. 10;
14: end for
15: end for
16: return KSM

With the help of dividing phases, we can effec-
tively relieve the computational burden. Generally,
the conventional training of the actor-critic algo-
rithm needs to compute rewards N times, while
our multi-phase training only calculates rewards
⌈N/k⌉ times.

5.3.4 Exploration Reward

To speed up the training of the KSM, we also design
an exploration reward ret at training step t, which
encourages the actor to take more different actions
(Tang et al., 2017). For the soft action, we consider
the similarity between actions as ret :

ret = α× (1− 1

k

k∑

l=1

Sim(at, al)) (12)

where Sim(·) is a cosine similarity function, and al
is the l-th action in the previous phase. In addition,
we calculate exploration reward ret for hard action

based on its repetition:

ret = α× (1− count(at)

k
) (13)

where count(at) is the number of times the action
at was taken in the previous phase, and α is a scale
factor. We provide the critic network with an addi-
tional optimization objective Le

Q via ret computed
by Eq. 9.

5.4 Knowledge Distillation
Algorithm 1 presents our overall method. In the
first stage, we train a KSM with an actor-critic
algorithm. As described in Algorithm 2, we first
divide the complete KD process into Np phases
in an episode (line 3). At each training step in
a phase, we compute a state, an action, and an
exploration reward (lines 6-9) and train the student
model with selected knowledge (line 10). Then,
we compute the phase reward when the phase ends.
Subsequently, we optimize KSM via the Le

Q and
Lp
Q loss objectives computed by the Eq. 9 and

Eq. 10, respectively (line 13). This process iterates
on episodes until the performance of the student
model converges. In the second stage, we adopt the
trained KSM to select appropriate knowledge that
is used to distill the student model.

6 Experiments

6.1 Datasets and Settings
Datasets. Following Sun et al. (2019b), we con-
duct experiments on six GLUE datasets (Wang
et al., 2019): MNLI (Williams et al., 2018), QQP
(Chen et al., 2018), QNLI (Rajpurkar et al., 2016),
SST-2 (Socher et al., 2013), MRPC (Dolan and
Brockett, 2005), and RTE (Bentivogli et al., 2009).
Settings. We use BERTBASE as the teacher model
and the BERT6 and BERT3 as the student models.
The details of training settings are shown in Ap-
pendix B. All experiments are repeated three times,
and we report the average results over three runs
with different seeds.

6.2 Baselines
We compare the proposed method with finetune
(Devlin et al., 2019), vanilla KD (Hinton et al.,
2015), and other competitive pre-trained model KD
methods such as patient knowledge distillation
(PKD) (Sun et al., 2019b), DistilBERT (Sanh et al.,
2019), and Dynamic KD (Li et al., 2021b).

In addition, we also design Random-Soft and
Random-Hard baselines to evaluate the effective-
ness of our method. Random-Soft and Random-

6237

Method Student #Params
RTE

(2.5k)
MRPC
(3.7k)

MNLI-m/mm
(393k)

SST-2
(67k)

QNLI
(105k)

QQP
(364k)

Avg.

BERTBASE (Teacher) - 109.0M 69.3 87.6/83.5 84.1/83.1 94.3 90.5 71.0/89.2 84.9

PKD BERT6 67.0M 65.5 85.0/79.9 81.5/81.0 92.0 89.0 70.7/88.9 82.5
Dynamic KD BERT6 67.0M - 86.5/- 81.8/81.0 - - - -
DistilBERT BERT6 67.0M 58.4 86.9/- 82.6/81.3 92.5 88.9 70.1/- -
Finetune BERT6 67.0M 65.2 85.1/79.2 81.1/79.8 91.7 87.1 69.4/88.2 81.8
Vanilla KD BERT6 67.0M 65.1 85.5/79.8 82.4/81.6 91.4 86.9 70.0/88.4 82.2
Random-Hard BERT6 67.0M 65.1 85.2/79.0 82.1/81.3 91.2 86.7 69.8/88.3 82.0
Random-Soft BERT6 67.0M 64.8 85.0/79.2 82.2/81.3 91.5 86.5 69.7/88.1 81.9
Our method (Hard Action) BERT6 67.0M 66.6 87.7/82.2 82.6/81.8 92.1 89.0 70.5/88.9 83.3
Our method (Soft Action) BERT6 67.0M 66.8 87.9/82.2 83.1/82.1 92.6 89.3 71.1/89.1 83.6

PKD BERT3 45.7M 58.2 80.7/72.5 76.7/76.3 87.5 84.7 68.1/87.8 77.7
Random-Hard BERT3 45.7M 54.3 80.7/71.8 76.8/76.1 87.4 82.9 66.4/86.4 76.5
Random-Soft BERT3 45.7M 55.7 78.9/69.7 77.1/76.3 87.7 82.3 66.4/86.5 76.5
Our method (Hard Action) BERT3 45.7M 58.4 81.4/71.5 77.5/76.8 88.4 84.6 68.1/88.0 77.9
Our method (Soft Action) BERT3 45.7M 58.7 81.9/72.7 78.0/77.3 88.3 85.1 68.7/88.2 78.3

Table 3: Results from the GLUE test server. The best and second-best results for each group of student models
are in bold and in italics, respectively. The numbers under each dataset indicate the corresponding number of the
training dataset. For MRPC and QQP, we report F1/Accuracy. We also report the average accuracy for each dataset
in the “Avg.” column. The results for Dynamic KD are achieved via the Uncertainty-Entropy strategy (Li et al.,
2021b). The results of DistilBERT and PKD are taken from Jiao et al. (2020) and Sun et al. (2019b), respectively.

Hard denote that the KSM randomly takes a soft
and hard action, respectively.

6.3 Main Results

We submit our model predictions to the official
GLUE evaluation server, and the results are summa-
rized in Table 3. First, compared with all baselines,
our method can achieve optimal results while dis-
tilling the student models BERT6 and BERT3 on all
the datasets. Second, compared with the Random-
Hard (or Random-soft), we can observe that our
method achieves significant improvements in the
F1 and the accuracy scores. It demonstrates that
the KSM system outperforms the baselines that ran-
domly select knowledge to use. Third, the BERT6

student model distilled by our method with soft
action significantly outperforms the popular vanilla
KD by a margin of at least 1.4%. We attribute this
to the fact that KD benefits from selected knowl-
edge at different training steps. Fourth, our method
achieves the BERT6 student model with ∼61% pa-
rameters and achieves a similar performance com-
pared with the teacher model BERTBASE. For ex-
ample, on the QQP dataset, the BERT6 student
model trained by our method with soft action has
89.1% accuracy, which only is 0.1% away from
the teacher model. In addition, compared with
the teacher model BERTBASE, the BERT3 student
model has only 41% parameters while maintaining
92% performance.

Furthermore, we further investigate the perfor-
mance gain on two different actions. From the

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Episode

62

63

64

65

66

67

68

69
A

cc
ur

ac
y

(%
)

Our Method (Soft Action)
w/o Multi-Phase Training
w/o Exploration Reward

Figure 2: Ablation study. We plot the mean accuracy
of student models distilled with three different seeds on
the RTE development set.

results, we can find that the soft action performs
better than the hard action, though both can con-
tribute to our method to achieve an improvement
over baselines on most of the datasets. One poten-
tial explanation might be that the soft action space
is larger than the hard action space. Therefore,
the soft action is more likely to explore a better
knowledge selection than the hard action.

6.4 Ablation Study

We conduct an ablation study to explore the effects
of the proposed multi-phase training and explo-
ration reward on accuracy and efficiency. Figure
2 shows the accuracy of student models distilled
with the KSM on the RTE development set after re-
moving multi-phase training or exploration reward.
We can see that using the multi-phase training can
train a good KSM more likely, though the number

6238

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Episode

62

63

64

65

66

67

68

69

A
cc

ur
ac

y
(%

)

Vanilla KD
Our Method (Soft Action)
Our Method (Hard Action)

Figure 3: Comparison of the soft and hard actions. Our
method can achieve faster KSM learning with the hard
action and gain better results with the soft action.

Method
RTE
(52k)

MRPC
(80k)

SST-2
(1,084k)

QNLI
(2,237k)

Finetune 64.8 86.6/81.3 81.8 84.0
Vanilla KD 67.3 88.0/82.8 91.2 87.0
TinyBERT 70.0 87.3/82.6 93.1 90.4
Our Method 70.4 88.9/83.9 93.8 90.8

Table 4: Results of our method with the augmented
datasets from the GLUE test server. The results of
TinyBERT are taken from Jiao et al. (2020).

of offering a reward is reduced. We conjecture that
the underlying reason is that the phase reward may
be more accurate and stable than the immediate
reward at each training step. In addition, we can
also observe that without the exploration reward,
the KSM fails to explore the better knowledge se-
lection more quickly.

6.5 Discussion
Performance on Data Augmentation Although
the trained KSM can select the appropriate knowl-
edge, the use of the fewer samples in the training
dataset fail to provide the opportunity for the stu-
dent model to learn them (Jiao et al., 2020; Liang
et al., 2021). In such cases, we assume that if armed
with the data augmentation, the student model
could learn the knowledge assigned by KSM more
sufficiently, thus achieving better performance. To
this end, we augment the training datasets (i.e.,
RTE, MRPC, SST-2, and QNLI datasets) about 20
times via the data augmentation procedure (Jiao
et al., 2020). To make a fair comparison, we ini-
tialize our student model with the released BERT6

†

distilled via General Distillation (Jiao et al., 2020).
Table 4 compares our student model (soft action)
with vanilla KD, finetune, and TinyBERT.

†https://huggingface.co/huawei-noah/TinyBERT_
General_6L_768D

1 2 3 4 5 6
Number of Student Layer

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

A
cc

ur
ac

y
(%

)

Finetune
Vanilla KD
Our Method (Soft Action)

Figure 4: Performance of distilled student model with
various layers on the MRPC development set.

The results show that our method is consistently
better than all baselines. It demonstrates that data
augmentation can significantly improve the student
models distilled by our method. In addition, com-
pared to the vanilla KD, our method can take ad-
vantage of the data more efficiently and transfer
more knowledge to the student model.

This performance on data augmentation empha-
sizes that our method is orthogonal to the Tiny-
BERT, as we address the knowledge selection prob-
lem during KD. It also provides a suggestion that
our method can be complementary to other KD
methods, such as the MixKD (Liang et al., 2021)
and MiniLM (Wang et al., 2020).

Comparison of Soft Action and Hard Action
To intuitively present the effect of different actions
on performance, we compare the soft and hard
actions on the RTE dataset. Figure 3 shows the
mean accuracy of the student models distilled with
different action strategies on the development set.
It can be found that our approach can integrate
seamlessly with different strategies. Furthermore,
we notice that the hard action can achieve faster
KSM learning, while the soft action can achieve
better results. We can draw similar observations
on the results of other datasets, e.g., on a relatively
larger dataset QQP (see Figure 5 in Appendix).

Performance on Different Student Models To
explore the performance of different student mod-
els, we distill student models with different layers
and plot the performance to compare baselines (i.e.,
finetune and vanilla KD) in Figure 4. The results
show that our method consistently outperforms the
baselines while distilling the student model with
various layers. It indicates that our method can
be adapted to the distillation of different student
models well.

6239

https://huggingface.co/huawei-noah/TinyBERT_General_6L_768D
https://huggingface.co/huawei-noah/TinyBERT_General_6L_768D

A Regularization Perspective on Knowledge Se-
lection In practice, we consider that the knowl-
edge selection can act as a regularization which pre-
vents the co-adaptation (Grisogono, 2006; Sabiri
et al., 2022) in KD, i.e., distilling a student model
highly depends on a certain behavior of the teacher.
If the distilled student model receives the inap-
propriate knowledge from the dependent behavior
of the teacher, it can significantly alter the perfor-
mance of the student model, which is what might
happen with overfitting (Hawkins, 2004; Phaisan-
gittisagul, 2016). However, knowledge selection
allows the student model to learn from multiple
different behaviors properly at each training step
during KD. Thus, compared to the traditional KD
methods that distill a student model via single or
fixed knowledge, our method can ease the effect
from the inappropriate knowledge from a behavior
to prevent the co-adaptation.

See more discussion in Appendix C.

7 Conclusion
In this paper, we focus on making full use of the
multiple types of knowledge into the distilling of
the student model. We have proposed an actor-
critic approach to selecting appropriate knowledge
to transfer during the process of knowledge distil-
lation. To ease the burden of computing rewards
during training, we propose a multi-phase training
approach and an exploration reward. Our exper-
iments on GLUE datasets show that our method
significantly outperforms several strong knowledge
distillation baselines.

Limitations

In this section, we discuss some limitations of this
work as follows:

• We train a model to select appropriate knowl-
edge to transfer during the process of knowl-
edge distillation. In this process, training
the model is time-consuming and resource-
intensive. For example, on the RTE dataset,
if we utilize one TITAN V GPU and set the
distillation epoch to 5, it will take 40 minutes
to train the model.

• It is difficult to scale the proposed approach
to a large dataset. The underlying reasons are:
(i) More training steps in the supersize dataset
will make the knowledge selection question
more difficult. (ii) The larger dataset, the

state is more complex, which may confuse
the knowledge selection module.

Acknowledgements

This work was supported in part by the National
Science Foundation of China (Nos. 61876035
and 61732005), the China HTRD Center Project
(No. 2020AAA0107904), Yunnan Provincial Ma-
jor Science and Technology Special Plan Projects
(Nos. 202002AD080001 and 202103AA080015),
National Frontiers Science Center for Industrial In-
telligence and Systems Optimization (Northeastern
University, China. No. B16009) and the Funda-
mental Research Funds for the Central Universities.
We also thank anonymous reviewers for valuable
feedback.

References
Yusuf Arslan, Kevin Allix, Lisa Veiber, Cedric Lothritz,

Tegawendé F Bissyandé, Jacques Klein, and Anne
Goujon. 2021. A comparison of pre-trained language
models for multi-class text classification in the finan-
cial domain. In Proceedings of WWW.

Gaétan Baert, Souhir Gahbiche, Guillaume Gadek, and
Alexandre Pauchet. 2020. Arabizi language models
for sentiment analysis. In Proceedings of COLING.

Enkhbold Bataa and Joshua Wu. 2019. An investiga-
tion of transfer learning-based sentiment analysis in
Japanese. In Proceedings of ACL.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In TAC.

Shalabh Bhatnagar, Richard S Sutton, Mohammad
Ghavamzadeh, and Mark Lee. 2009. Natural actor–
critic algorithms. Automatica.

Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi
Zhao. 2018. Quora question pairs. University of
Waterloo.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of IWP.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and
Dacheng Tao. 2021. Knowledge distillation: A sur-
vey. International Journal of Computer Vision.

Anne-Marie Grisogono. 2006. Co-adaptation. In Com-
plex Systems, volume 6039, pages 23–37.

6240

https://dl.acm.org/doi/pdf/10.1145/3442442.3451375
https://dl.acm.org/doi/pdf/10.1145/3442442.3451375
https://dl.acm.org/doi/pdf/10.1145/3442442.3451375
https://aclanthology.org/2020.coling-main.51/
https://aclanthology.org/2020.coling-main.51/
https://aclanthology.org/P19-1458/
https://aclanthology.org/P19-1458/
https://aclanthology.org/P19-1458/
https://tac.nist.gov/publications/2010/additional.papers/RTE6_overview.proceedings.pdf
https://tac.nist.gov/publications/2010/additional.papers/RTE6_overview.proceedings.pdf
https://www.sciencedirect.com/science/article/pii/S0925231208000532
https://www.sciencedirect.com/science/article/pii/S0925231208000532
http://static.hongbozhang.me/doc/STAT_441_Report.pdf
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/I05-50025B15D.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/I05-50025B15D.pdf
https://arxiv.org/pdf/2006.05525
https://arxiv.org/pdf/2006.05525
https://www.researchgate.net/profile/Anne_Marie_Grisogono/publication/260262982_Co-Adaptation/links/5541c4d60cf2b790436be61d/Co-Adaptation.pdf

Douglas M Hawkins. 2004. The problem of overfit-
ting. Journal of chemical information and computer
sciences, 44(1):1–12.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015.
Distilling the knowledge in a neural network. Pro-
ceedings of NeurIPS.

Aref Jafari, Mehdi Rezagholizadeh, Pranav Sharma, and
Ali Ghodsi. 2021. Annealing knowledge distillation.
In Proceedings of EACL.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language
understanding. In Proceedings of EMNLP Findings.

Bei Li, Ziyang Wang, Hui Liu, Quan Du, Tong Xiao,
Chunliang Zhang, and Jingbo Zhu. 2021a. Learn-
ing light-weight translation models from deep trans-
former. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 13217–
13225.

Lei Li, Yankai Lin, Shuhuai Ren, Peng Li, Jie Zhou,
and Xu Sun. 2021b. Dynamic knowledge distillation
for pre-trained language models. In Proceedings of
EMNLP.

Kevin J. Liang, Weituo Hao, Dinghan Shen, Yufan Zhou,
Weizhu Chen, Changyou Chen, and Lawrence Carin.
2021. Mixkd: Towards efficient distillation of large-
scale language models. In Proceedings of ICLR.

Ye Lin, Yanyang Li, Ziyang Wang, Bei Li, Quan Du,
Tong Xiao, and Jingbo Zhu. 2021. Weight distilla-
tion: Transferring the knowledge in neural network
parameters. pages 2076–2088. Proceedings of ACL.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019a. Multi-task deep neural networks
for natural language understanding. In Proceedings
of ACL.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang
Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. 2020. Improved knowledge distil-
lation via teacher assistant. In Proceedings of AAAI.

Ekachai Phaisangittisagul. 2016. An analysis of the
regularization between l2 and dropout in single hid-
den layer neural network. In ISMS, pages 174–179.
IEEE.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
EMNLP.

Bihi Sabiri, Bouchra El Asri, and Maryem Rhanoui.
2022. Mechanism of overfitting avoidance tech-
niques for training deep neural networks. In ICEIS
(1), pages 418–427.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv
preprint.

David Silver, Guy Lever, Nicolas Heess, Thomas De-
gris, Daan Wierstra, and Martin A. Riedmiller. 2014.
Deterministic policy gradient algorithms. In Proceed-
ings of ICML.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of EMNLP.

Samuel Stanton, Pavel Izmailov, Polina Kirichenko,
Alexander A Alemi, and Andrew G Wilson. 2021.
Does knowledge distillation really work? Proceed-
ings of NeurIPS.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019a. How to fine-tune bert for text classification?
In Proceedings of CCL.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019b.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of EMNLP.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of ACL.

Richard S Sutton and Andrew G Barto. 2018. Reinforce-
ment learning: An introduction. MIT press.

Haoran Tang, Rein Houthooft, Davis Foote, Adam
Stooke, Xi Chen, Yan Duan, John Schulman, Filip De
Turck, and Pieter Abbeel. 2017. #exploration: A
study of count-based exploration for deep reinforce-
ment learning. In Proceedings of NeurIPS.

Gerald Tesauro. 1991. Practical issues in temporal dif-
ference learning. Proceedings of NeurIPS, 4.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceed-
ings of EMNLP WorkShop.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Proceedings of NeurIPS,
33:5776–5788.

6241

https://web.archive.org/web/20160416153131id_/http://www.cse.hcmut.edu.vn/~chauvtn/data_mining/Reading/Chapter%204%20-%20Classification/2004%20The%20Problem%20of%20Overfitting.pdf
https://web.archive.org/web/20160416153131id_/http://www.cse.hcmut.edu.vn/~chauvtn/data_mining/Reading/Chapter%204%20-%20Classification/2004%20The%20Problem%20of%20Overfitting.pdf
https://www.islab.ulsan.ac.kr/files/announcement/654/Distilling%20the%20Knowledge%20in%20a%20Neural%20Network.pdf
https://aclanthology.org/2021.eacl-main.212/
https://aclanthology.org/2020.findings-emnlp.372/
https://aclanthology.org/2020.findings-emnlp.372/
https://ojs.aaai.org/index.php/AAAI/article/view/17561
https://ojs.aaai.org/index.php/AAAI/article/view/17561
https://ojs.aaai.org/index.php/AAAI/article/view/17561
https://aclanthology.org/2021.emnlp-main.31/
https://aclanthology.org/2021.emnlp-main.31/
https://arxiv.org/abs/2011.00593
https://arxiv.org/abs/2011.00593
https://aclanthology.org/2021.acl-long.162
https://aclanthology.org/2021.acl-long.162
https://aclanthology.org/2021.acl-long.162
https://aclanthology.org/P19-1441/?ref=https://githubhelp.com
https://aclanthology.org/P19-1441/?ref=https://githubhelp.com
https://arxiv.org/pdf/1907.11692.pdf%5C
https://arxiv.org/pdf/1907.11692.pdf%5C
https://ojs.aaai.org/index.php/AAAI/article/download/5963/5819
https://ojs.aaai.org/index.php/AAAI/article/download/5963/5819
https://ieeexplore.ieee.org/abstract/document/7877209/
https://ieeexplore.ieee.org/abstract/document/7877209/
https://ieeexplore.ieee.org/abstract/document/7877209/
https://aclanthology.org/D16-1264.pdf
https://aclanthology.org/D16-1264.pdf
https://www.researchgate.net/profile/Maryem-Rhanoui/publication/360503583_Mechanism_of_Overfitting_Avoidance_Techniques_for_Training_Deep_Neural_Networks/links/627e6abf107cae2919a2c802/Mechanism-of-Overfitting-Avoidance-Techniques-for-Training-Deep-Neural-Networks.pdf
https://www.researchgate.net/profile/Maryem-Rhanoui/publication/360503583_Mechanism_of_Overfitting_Avoidance_Techniques_for_Training_Deep_Neural_Networks/links/627e6abf107cae2919a2c802/Mechanism-of-Overfitting-Avoidance-Techniques-for-Training-Deep-Neural-Networks.pdf
https://openreview.net/forum?id=1u1I_xmPJLx
https://openreview.net/forum?id=1u1I_xmPJLx
http://proceedings.mlr.press/v32/silver14.html
https://aclanthology.org/D13-1170.pdf
https://aclanthology.org/D13-1170.pdf
https://proceedings.neurips.cc/paper/2021/file/376c6b9ff3bedbbea56751a84fffc10c-Paper.pdf
https://arxiv.org/pdf/1905.05583
https://aclanthology.org/D19-1441/
https://aclanthology.org/D19-1441/
https://aclanthology.org/2020.acl-main.195/
https://aclanthology.org/2020.acl-main.195/
https://aclanthology.org/2020.acl-main.195/
https://books.google.com/books?hl=zh-CN&lr=&id=uWV0DwAAQBAJ&oi=fnd&pg=PR7&dq=Reinforcement+learning:+An+introduction&ots=misJr333g9&sig=nytMG4igLLyb2kXLvjcORLiqBaA
https://books.google.com/books?hl=zh-CN&lr=&id=uWV0DwAAQBAJ&oi=fnd&pg=PR7&dq=Reinforcement+learning:+An+introduction&ots=misJr333g9&sig=nytMG4igLLyb2kXLvjcORLiqBaA
https://proceedings.neurips.cc/paper/2017/file/3a20f62a0af1aa152670bab3c602feed-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3a20f62a0af1aa152670bab3c602feed-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3a20f62a0af1aa152670bab3c602feed-Paper.pdf
https://proceedings.neurips.cc/paper/1991/file/68ce199ec2c5517597ce0a4d89620f55-Paper.pdf
https://proceedings.neurips.cc/paper/1991/file/68ce199ec2c5517597ce0a4d89620f55-Paper.pdf
https://openreview.net/forum?id=BJg7x1HFvB
https://openreview.net/forum?id=BJg7x1HFvB
https://aclanthology.org/W18-5446/
https://aclanthology.org/W18-5446/
https://proceedings.neurips.cc/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of NAACL.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. In Proceedings of NAACL (Demonstra-
tions), pages 72–77.

Junho Yim, Donggyu Joo, Ji-Hoon Bae, and Junmo Kim.
2017. A gift from knowledge distillation: Fast opti-
mization, network minimization and transfer learning.
In Proceedings of CVPR.

Fei Yuan, Linjun Shou, Jian Pei, Wutao Lin, Ming Gong,
Yan Fu, and Daxin Jiang. 2021. Reinforced multi-
teacher selection for knowledge distillation. In Pro-
ceedings of AAAI.

6242

https://aclanthology.org/N18-1101/?ref=https://githubhelp.com
https://aclanthology.org/N18-1101/?ref=https://githubhelp.com
https://aclanthology.org/N19-4013/?ref=https://githubhelp.com
https://aclanthology.org/N19-4013/?ref=https://githubhelp.com
http://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/17680/17487
https://ojs.aaai.org/index.php/AAAI/article/view/17680/17487

A Design Details of Learning Each
Knowledge Type

A.1 Response Knowledge

For learning the response knowledge, we use the
vanilla KD loss function:

LResK =
∑

x∈B
KL(σ(

fS(x)

τ
), σ(

fT (x)

τ
)) (14)

where KL(·) is the Kullback-Leibler divergence
function, σ(·) is the softmax function and τ is a
temperature hyper-parameter (Hinton et al., 2015).
For the sample x, fS(x) and fT (x) are the final
outputs of the student model and the teacher model,
respectively.

A.2 Feature Knowledge

For learning the feature knowledge, we utilize the
PKD-Skip method (Sun et al., 2019b), where the
student model learns the outputs of the assigned
teacher model’s layers. The corresponding loss
function can be defined by:

LFeaK =
∑

x∈B

LS∑

i=1

∥∥∥∥∥∥
hS
x,i∥∥∥hS
x,i

∥∥∥
2

−
hT
x,I(i)∥∥∥hT
x,I(i)

∥∥∥
2

∥∥∥∥∥∥
2

(15)

where I(i) is the assigned indexes of the teacher
layer for responding the i-th layer of the student
model, LS is the number of layers of the student
model, hS

x,i and hT
x,i are the [CLS] embeddings

of i-th layer of the student model and the teacher
model for the sample x, respectively.

A.3 Relation Knowledge

For learning the relation knowledge, we use the
flow of solution procedure (FSP) method (Yim
et al., 2017). Specifically, we first define the FSP
matrix by:

G(h1,h2) =
h1 × h⊤

2

|h1|
(16)

where h1 and h2 are the [CLS] embeddings. Let
GS(·) and GT (·) to denote the FSP matrices of the
student model and the teacher model, respectively.
Based on this two FSP matrices, we can achieve the
loss function for learning the relation knowledge:

LRelK =
∑

x∈B

LS−1∑

i=1

MSE(GS(hS
x,i,h

S
x,i+1),

GT (hT
x,I(i),h

T
x+1,I(i+1)))

(17)

where MSE(·) is the mean squared error loss func-
tion. Here we use the same layer selection strategy
for the teacher model as the PKD-Skip method.

A.4 Finetune Knowledge

For learning the finetune knowledge, we use the
loss function:

LFinK = −
∑

x∈B
1{y = ŷ} log p(y|x) (18)

where 1{·} is the indicator function, y is the pre-
dicted label and ŷ is the ground-truth label of the
sample x.

B Training Setups

B.1 Training the KSM

We implement the KSM described in Sec. 5 based
on PyTorch‡. Specifically, we use a 2-layer MLP
to achieve the student and teacher feature networks.
The input layer size and output layer size are the
[CLS] embedding size and 8, respectively. Both
the actor network and the critic network are com-
posed of a 3-layer MLP. The hidden size and output
layer size in the actor are 256 and 4. The hidden
size and output layer size in the critic are 256 and
1. In addition, there are six hyper-parameters for
training the KSM. The candidate values for these
hyper-parameters are introduced in Table 5. Dur-
ing training the KSM, we can select the optimal
hyper-parameter setups with the best development
set accuracy.

Hyper-parameter Value

Threshold value λ {0.1, 0.2, 0.3}
Number of training steps k {32, 64, 96, 128}
Scale factor α {0.1, 0.2}
Discount factor γ 0.98
Learning rate of the actor ϵϕ 0.0002
Learning rate of the critic ϵθ 0.0002

Table 5: Hyper-parameters for training the KSM.

B.2 Training the Teacher Model

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size
as H , and the number of self-attention heads as
A for BERT. We use the pre-trained language
model BERTBASE (L = 12, H = 768, A = 12,
TotalParameters = 110M) (Devlin et al., 2019)
as the teacher model. We initialize the BERTBASE

with the bert-base-uncased§. The teacher mod-
els are trained with random seeds. In addition, the
sentence length is 128, and the learning rate is 5e-5.
We set the batch size and training epoch to 32 and 5,

‡https://github.com/pytorch/pytorch
§https://github.com/google-research/bert

6243

https://github.com/pytorch/pytorch
https://github.com/google-research/bert

1 2 3 4
Episode

88

89

90

91

92
A

cc
ur

ac
y

(%
)

Vanilla KD
Our Method (Soft Action)
Our Method (Hard Action)

Figure 5: Comparison of the soft and hard actions on
the QQP development set. For the QQP dataset, we can
train a well-performance KSM only across two episodes.
This is because a large dataset can provide more oppor-
tunities for updating the KSM in each episode.

Reward RTE MRPC QNLI Avg.

Loss 68.4 89.3/84.7 89.0 80.7
F1 66.9 87.8/82.9 88.1 79.3
Accuracy 66.7 88.1/83.2 87.3 79.1

Table 6: Results of different rewards for training KSM.

respectively. Note that it is possible to plug-in any
large pre-trained model such as BERTLARGE (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019b)
in our method.

B.3 Training the Student Model
We primarily report results on two student mod-
els: BERT6 (L = 6, H = 768, A = 12,
TotalParameters = 67.0M) and BERT3 (L =
3, H = 768, A = 12, TotalParameters =
45.7M). We initialize the BERT6 and BERT3 with
the bottom 6 and 3 transformer layers of BERTBASE,
respectively. In training the student model, we set
the batch size to 32 and the sentence length to 128.
We select a well-trained student model through
their scores among the learning rate set of {2e-5,
3e-5, 5e-5}.

C Discussion

Performance on Different Phase Sizes In Sec.
5.3.3, we divide the whole KD process into mul-
tiple phases. Then a question may arise about
whether the phase size has an impact on the KSM
performance. To probe this question, we run our
method to distill the student model BERT6 with
different phase sizes. As shown in Figure 6, we ob-
serve that the excessive phase size can hurt the per-
formance of the trained KSM, which we attribute
to the deficiency of phase rewards. In addition, the

16 32 64 96 128 256
Phase Size

87

88

89

90

91

92

A
cc

ur
ac

y
(%

)

Vanilla KD
Our Method (Soft Action)
Our Method (Hard Action)

Figure 6: Performance of the student models distilled
by our method with different phase sizes.

0.00

0.01
Loss Reward

0.0

0.2
Ph

as
e

R
ew

ar
d

F1 Reward

0 100 200 300 400 500 600
Phase

0.0

0.2 Accuracy Reward

Figure 7: Phase reward comparison of the different
rewards in one episode. The loss reward is more stable
and smooth than the F1 reward and the Accuracy reward.

too small phase size is not beneficial to our method
because its phase reward is similar to an immediate
reward.

Performance on Different Phase Rewards We
investigate the performance of our method while
taking the task metrics (i.e., F1 or Accuracy) differ-
ence as the phase reward. As shown in Table 6, we
observe that training KSM with a loss reward has
the best performance overall. To explore the rea-
sons for this observation, we further compare the
phase rewards of different rewards in one episode,
as shown in Figure 7. The results show that the loss
reward is more stable and smooth than the F1 and
Accuracy reward. Based on this, we conclude that
the stability and smoothness give the loss reward
the ability to train a better KSM.

6244

