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Abstract

Inspired by the success of contrastive learn-
ing in natural language processing, we in-
corporate contrastive learning into the condi-
tional masked language model which is exten-
sively used in non-autoregressive neural ma-
chine translation (NAT). Accordingly, we pro-
pose a Contrastive Non-autoregressive Neural
Machine Translation (Con-NAT) model. Con-
NAT optimizes the similarity of several differ-
ent representations of the same token in the
same sentence. We propose two methods to ob-
tain various representations: Contrastive Com-
mon Mask and Contrastive Dropout. Positive
pairs are various different representations of the
same token, while negative pairs are represen-
tations of different tokens. In the feature space,
the model with contrastive loss pulls positive
pairs together and pushes negative pairs away.
We conduct extensive experiments on six trans-
lation directions with different data sizes. The
results demonstrate that Con-NAT showed a
consistent and significant improvement in fully
and iterative NAT. Con-NAT is state-of-the-art
on WMT’16 Ro-En (34.18 BLEU).

1 Introduction

Neural machine translation has developed rapidly
with the development of deep learning. The
traditional neural machine translation mod-
els (Sutskever et al., 2014; Bahdanau et al., 2015;
Wu et al., 2016; Vaswani et al., 2017) are autore-
gressive (AT), which means that they predict target
tokens one by one based on source tokens and pre-
viously predicted tokens. This dependence leads
to the limitation of translation speed, and the time
required for translation is directly proportional to
the sentence length.

Recently, non-autoregressive machine transla-
tion (NAT) becomes a research hotspot. The non-
autoregressive generation mode eliminates token
dependency in the target sentence and generates all
tokens in parallel, considerably improving transla-

Figure 1: Methods to construct positive pairs and neg-
ative pairs. (a) Contrastive Common Mask. (b) Con-
trastive Dropout.

tion speed. However, the speed increase is accom-
panied by a decrease in translation quality. Many
iterative models have been developed to make a
trade-off between translation speed and quality.
The iterative model improves translation quality
by continually and iteratively optimizing the gener-
ated target sentence. The iterative model is usually
to predict the masked token in the target sentence,
such as BERT (Devlin et al., 2019).

The masked tokens are usually chosen at random.
A sentence can be masked in a variety of ways. In
different masked sequences of the same sentence,
the predicted tokens at the same position should
be the same. Embodied in token representations is
the similarity of representations. The representa-
tion of the same masked token should be similar
because they are from the same token and have
the same semantics in a similar context (the same
source sentence and the different masked results of
the same target sentence). We think about how to
make these different representations of the same
token more similar. Inspired by the successful use
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of contrastive learning in NLP pre-trained mod-
els (e.g., Gao et al., 2021), we explore combining
contrastive learning and the conditional masked
language model, treating different representations
of the same masked token as positive pairs and rep-
resentations of different tokens as negative pairs.
We pull in positive pairs and push out negative pairs
using contrastive learning.

As illustrated in Figure 1, we propose two strate-
gies for constructing positive pairs in this paper.
Contrastive Common Mask is a method that uti-
lizes representations of the same token in differ-
ent masked sequences of the same sentence. As
shown in Figure 1(a), "fell" is masked both in
"he [mask] asleep almost [mask]" and "he [mask]
asleep [mask] instantly", which are different ran-
domly masked results of "he fell asleep almost in-
stantly". The other is inspired by Gao et al. (2021),
where we feed the same input to the decoder twice
and get two different representations due to the
dropout setting, which we call Contrastive Dropout.
The two representations of the same token should
be similar, as shown in Figure 1(b).

We use the constructed positive and negative
pairs to calculate the contrastive loss and jointly
optimize it with the cross-entropy loss. We verify
the effectiveness of our model in six translation
directions of three standard datasets with varying
data sizes. Experiments show that our model beats
CMLM (Ghazvininejad et al., 2019) with 0.80-1.46
BLEU margins and GLAT (Qian et al., 2021) with
0.18-0.65 BLEU margins at the same translation
speed. It also outperforms other CMLM-based
models and beats the state-of-the-art NAT model
on WMT’16 Ro-En (34.18 BLEU).

The main contributions of this work can be con-
cluded as follows:

• To the best of our knowledge, our work is the
first effort to combine token-level contrastive
learning and the conditional masked language
model.

• We propose two methods to construct positive
pairs for the contrastive conditional masked
language model: Contrastive Common Mask
and Contrastive Dropout.

• Our model Con-NAT achieves a consistent
and significant improvement in six transla-
tion directions on fully and iterative NAT and
is state-of-the-art on WMT’16 Ro-En (34.18
BLEU).

2 Preliminaries

Non-Autoregressive Machine Translation
The machine translation task is defined as gen-
erating a target sentence Y =

{
y1, . . . , yTy

}

under the condition of a given source sentence
X = {x1, . . . , xTx}. Most models factorize the
conditional probability Pθ(Y | X) by:

Pθ(Y | X) =

Ty∏

t=1

P (yt | Y<t,X; θ) ,

where Y<t denotes the target tokens generated be-
fore time step t, Ty denotes the target sentence
length and θ denotes the model parameters. This
autoregressive mode makes the decoding process
time-consuming, because the target tokens are gen-
erated step by step.

Non-autoregressive models break the conditional
dependency between target tokens and generate all
target tokens in parallel. The conditional probabil-
ity Pθ(Y | X) is factorized as:

Pθ(Y | X) =

Ty∏

t=1

P (yt | X; θ) .

Although the assumption of conditional indepen-
dence improves the translation speed, it also im-
pairs the model performance.

The Conditional Masked Language Model
The mainstream iterative NAT (CMLM) and fully
NAT(GLAT) take the masked language model as
training objective (Devlin et al., 2019). The objec-
tive function allows the model to learn to predict
any arbitrary subset of the target sentence in paral-
lel:

Pθ(Yms | X,Yobs) =

TYms∏

t=1

P (yt | X,Yobs; θ) ,

where Yms is a set of target tokens randomly re-
placed by the special token [mask], and Yobs is
the set of observed target tokens.

Contrastive Learning Contrastive learning al-
gorithms compare positive and negative pairs to
learn representations, and they have achieved re-
markable success in computer vision, natural lan-
guage processing, recommendation systems, and
other fields. It pulls positive pairs together and
pushes negative pairs apart in the feature space.
For positive and negative pairs, different algorithms
and applications use different selection strategies.
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Figure 2: The overall framework of our Con-NAT model. [M] is the special token [mask]. Left figure: the model
structure. Right figure: the combination of Contrastive Common Mask and Contrastive Dropout. For different
masked results of the same sentence, it is Contrastive Common Mask when combined vertically, and Contrastive
Dropout when combined horizontally.

We assume that there is a mini-batch of 2N ex-
amples. For example i, there is a positive pair
(i, j(i)), and the other 2(N − 1) examples are
treated as negative examples of i. The training
objective for example i is:

ℓi = − log
exp

(
sim

(
zi, zj(i)

)
/τ

)
∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
,

where z denotes the example feature, τ is a tempera-
ture hyper-parameter and sim is the similarity func-
tion (e.g. the cosine similarity: sim(zi, zj(i)) =

zi
⊤zj(i)/∥zi∥∥zj(i)∥).

3 Methodology

In this section, we present how we incorporate con-
trastive learning into NAT. We begin by introduc-
ing the structure of our model Con-NAT, followed
by two positive pair construction methods for con-
trastive learning, and lastly, the training objective
combined with the contrastive loss. Figure 2 shows
the overall framework.

3.1 Model

We use the standard CMLM or GLAT as our base
model fbase. The encoder is a standard transformer
encoder, and the decoder is a transformer decoder
without the causal mask. As the token representa-
tion, we utilize the output of the last layer of the
decoder, which is denoted as h. A projection head
fproj maps the representation h into a vector repre-
sentation z that is more suitable for the contrastive

loss. Such a projection head has been shown to
be important in improving the representation qual-
ity of the layer before it (Chen et al., 2020). This
projection head is implemented as a multi-layer per-
ceptron with a single hidden layer. We formulate
the process of obtaining z as follows:

h = fbase (Yobs,X; θ) ,

z = fproj (h) .

3.2 Contrastive Learning

Positive pairs are different representations of the
same token in the same sentence, while negative
pairs are representations of other tokens in the same
mini-batch. For the acquisition of different repre-
sentations of the same token, we adopt two meth-
ods. One is to randomly mask the same sentence
twice in a row, and the tokens that are masked twice
constitute a positive pair, which we call Contrastive
Common Mask. The other is inspired by Gao et al.
(2021) and simply feeds the same input to the de-
coder twice. We can obtain two different repre-
sentations of the same token as positive pairs by
applying the standard dropout twice, which we call
Contrastive Dropout.

Contrastive Common Mask During training,
the model randomly masks some of the tokens from
the target sentence. We perform this process on
the same target sentence twice and get two sets of
results, {Yobs1 ,Yms1} and {Yobs2 ,Yms2}. And
we get z(m1) and z(m2) as follows using different

6221



decoder inputs:

z(m1) = fpro (fbase (Yobs1 ,X; θ)) ,

z(m2) = fpro (fbase (Yobs2 ,X; θ)) .

Contrastive Dropout There are dropout mod-
ules in the fully-connected layers and multi-head
attention layers. Due to their randomness, we will
get different features if we feed the same input
sentence into the model multiple times. Similarly,
with the same decoder input and different dropout
parameters, we get z(d1) and z(d2) as follows :

z(d1) = fpro (fbase (Yobs,X; θ, θdrop1)) ,

z(d2) = fpro (fbase (Yobs,X; θ, θdrop2)) ,

where θdrop2 and θdrop2 denote different dropout
masks.

If we combine these two construction methods,
we get four sets of features, z(m1,d1), z(m1,d2),
z(m2,d1) and z(m2,d2).

Contrastive Loss Now that we have different
representations of the same token in the same sen-
tence, we use it to calculate the loss of contrastive
learning. Let Y1 and Y2 represent two types of ran-
domly masked tokens for the same sentence, which
may or may not be the same, z1 and z2 denote
the corresponding features. Let N = |Y1 ∩ Y2|
denote the number of common masked tokens. We
select the representations of common masked to-
kens from z1 and z2 to form Z, where |Z| = 2N .
Let i, k ∈ I ≡ {1 . . . 2N} be the index of one
representation of an arbitrary token, j(i) ∈ I be
index of the other representation for the same token.
Then the contrastive loss is given by:

Lcon =
∑

i∈I
Li

= −
∑

i∈I
log

exp
(
sim

(
zi, zj(i)

)
/τ

)
∑

k ̸=i exp (sim (zi, zk) /τ)
.

As shown above, for both Yms1 and Yms2 , we
get two representations for contrastive learning,
z(m1,d1), z(m1,d2) and z(m2,d1), z(m2,d2), re-
spectively. Different representation combinations
are used to calculate the different losses of con-
trastive learning. For the Contrastive Common
Mask, we get two losses:

L1
m = Lcon(z

(m1,d1), z(m2,d1)),

L2
m = Lcon(z

(m1,d2), z(m2,d2)).
(1)

For the Contrastive Dropout, we can also get two
losses:

L1
d = Lcon(z

(m1,d1), z(m1,d2)),

L2
d = Lcon(z

(m2,d1), z(m2,d2)).
(2)

We can also use Lcon(z
(m1,d1), z(m2,d2)) and

Lcon(z
(m1,d2), z(m2,d1)) to calculate the losses.

However, too many contrastive learning loss itmes
will occupy a large GPU memory, resulting in a
small batch size, which is not conducive to training.
So we just use (1) and (2).

3.3 Training Losses
Masked Language Model CMLM-based mod-
els are optimized by cross-entropy loss over
every masked token in target sentence. We
calculate losses for both {Yobs1 ,Yms1} and
{Yobs2 ,Yms2} by:

L1
ce = −

Tymask1∑

t=1

logP (yt | X,Yobs1 ; θ) ,

L2
ce = −

Tymask2∑

t=1

logP (yt | X,Yobs2 ; θ) .

(3)

Length Predict The length of the target sentence
must be known in advance for CMLM-based mod-
els to predict the entire sentence in parallel. Also,
we follow Ghazvininejad et al. (2019) and add a
special token [LENGTH] to the encoder. The model
uses the decoder output of [LENGTH] to predict the
length of the target sentence. The length loss is:

Llen = −
Lmax∑

i

P (i = Ty) logP (Ty | X), (4)

where Lmax represents the maximum length of the
target sentence.

Training Objective We optimize our model by
jointly minimizing the contrastive loss and transla-
tion loss. As the training objective, we add up the
above-mentioned losses, two cross-entropy losses
for translation as (3), four contrastive losses for
optimizing feature space as (1) and (2), and one
length loss for predicting target length as (4):

L =
1

2

(
L1
ce + L2

ce

)
+ Llen

+
α

4

(
L1
m + L2

m + L1
d + L2

d

).

where α is a hyper-parameter to control the inten-
sity of contrastive losses.
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Models Iter. En-De De-En En-Ro Ro-En

AT Transformer T 27.38 31.78 34.16 34.46

Fully
NAT

w/ NPD

NAT-FT (m=100) (Gu et al., 2018) 19.17 23.20 29.79 31.44
imit-NAT (m=7)(Wei et al., 2019) 24.15 27.28 31.45 31.81
NAT-HINT (m=9) (Li et al., 2019) 25.20 29.52 - -
Flowseq (m=30) (Ma et al., 2019) 25.31 30.68 32.20 32.84

NAT-DCRF (m=9) (Sun et al., 2019) 26.07 29.68 - -
AXE (Ghazvininejad et al., 2020a) 23.53 27.90 30.75 31.54

OAXE (Du et al., 2021) 26.10 30.20 32.40 33.30
GLAT (m=7) (Qian et al., 2021) 26.55 31.02 32.87 33.51

w/ CTC

NAT-CTC (Saharia et al., 2020) 25.70 28.10 32.20 31.60
Imputer (Saharia et al., 2020) 25.80 28.40 32.30 31.70

GLAT (Qian et al., 2021) 26.39 29.54 32.79 33.84
Tricks (Gu and Kong, 2021) 27.49 31.10 33.79 33.87

Ours Con-GLAT 27.20 31.21 33.05 33.89

Iterative
NAT

w/ CTC Imputer (Saharia et al., 2020) 8 28.20 31.80 34.40 34.10

CMLM (Ghazvininejad et al., 2019) 10 27.03 30.53 33.08 33.31
SMART (Ghazvininejad et al., 2020b) 10 27.65 31.27 - -

ENGINE (Tu et al., 2020) 10 - - - 34.04
DisCo (Kasai et al., 2020) Adv. 27.34 31.31 33.22 33.25
MvCR (Xie et al., 2021) 10 27.39 31.18 33.38 33.56

CMLM+PMG (Ding et al., 2021a) 10 27.60 - - 33.80
CMLM+LFR (Ding et al., 2021b) 10 27.80 - - 33.90

Ours Con-CMLM 10 27.93 31.57 33.88 34.18

Table 1: Performance (BLEU) comparison between our proposed models Con-NAT (Con-GLAT and Con-CMLM)
and existing models. Iter. denotes the number of iterations, Adv. means adaptive and m is the number of re-ranking
candidates.

4 Experiments

4.1 Experimental Settings

Dataset We evaluate our models on six direc-
tions from three standard datasets with different
training data sizes widely used in previous NAT
studies: WMT’16 En-Ro (610K sentence pairs),
WMT’14 En-De (4.5M sentence pairs), WMT’17
En-Zh (20M sentence pairs). All datasets are tok-
enized into subword units by BPE (Sennrich et al.,
2016). Specially, joint BPE is used on WMT’16 En-
Ro and WMT’14 En-De. We use the same prepro-
cessed data as Kasai et al. (2020) for a fair compar-
ison with other models (WMT’16 En-Ro: Lee et al.
(2018); WMT’14 En-De: Vaswani et al. (2017)).
We evaluate performance with SacreBLEU (Post,
2018)1 for pair from En to Zh and BLEU (Papineni

1SacreBLEU hash: BLEU+case.mixed+lang.en-
zh+numrefs.1+smooth.exp+test.wmt17+tok.zh+version.1.3.7.

et al., 2002) for all other directions.

Sequence-Level Knowledge Distillation We
use sequence-level knowledge distillation (Kim
and Rush, 2016) as previous works on non-
autoregressive translation (e.g., Gu et al., 2018;
Ghazvininejad et al., 2019). Since the performance
of the AT teacher will affect the final performance
of the NAT student model (Wang et al., 2019), we
used the distillation data provided by Kasai et al.
(2020) for a fair comparison. They are produced
by standard left-to-right transformer models (trans-
former large for En-De, transformer base for En-
Ro). In Appendix A, we provide a summary of AT
teacher models used in related works.

Hyper-parameters We follow the hyper-
parameters for a transformer base (Vaswani et al.,
2017; Ghazvininejad et al., 2019; Kasai et al.,
2020). The projection head is implemented as a

6223



Model Iter. Zh-En En-Zh

1 13.64 24.23
CMLM 4 21.90 32.63

10 23.21 33.19

1 14.93 26.19
Con-CMLM 4 23.03 34.02

10 24.28 34.65

Table 2: The performance (BLEU) comparison between
Con-CMLM and CMLM on WMT’17 En-Zh test sets.

Model En-De De-En

CMLM 24.61 -
MvCR 24.37 28.90

Flowseq 21.15 26.04
Imputer 25.00 -
DisCo 23.90 -

Con-CMLM 25.60 30.05

Table 3: The performance (BLEU) of Con-CMLM on
raw data, compared to other non-autoregressive models.

multi-layer perceptron with a single hidden layer
of size 256 and output vector of size 64. Please see
Appendix B for details of other hyper-parameters.
Our code is based on CMLM2 and DisCo3.

Baselines We adopt Transformer (AT) and ex-
isting NAT models for comparison. NAT models
can be divided into fully NAT models and iterative
NAT models. See Table 1 for more details. Itera-
tive NAT models with enough number of iterations
generally outperform fully NAT models. Noisy
parallel decoding (NPD) is an important technique
for fully NAT to improve the performance of the
model, which requires an additional AT model for
re-ranking. The models trained with CTC loss are
usually better than the models trained with cross-
entropy loss because of its inherent de-duplication
mechanism. The current state-of-the-art model
is the Imputer, which combines the CTC and the
masked language model.

4.2 Overall Results

Table 1 shows the main results on WMT’14 En-De
and WMT’16 En-Ro test sets. For iterative NAT,
our model significantly and consistently improves
the quality of translation across four translation di-

2https://github.com/facebookresearch/Mask-Predict
3https://github.com/facebookresearch/DisCo

0.2 0.4 0.6 0.8

CMLM 0.956 0.913 0.863 0.811
Con-CMLM 0.961 0.921 0.874 0.824

Table 4: The similarity of token representations.

rections compared to existing NAT models, except
for Imputer. Furthermore, our model outperforms
the Imputer on the Ro-En and is state-of-the-art
(34.18 BLEU). Our model Con-CMLM outper-
forms standard CMLM with margins from 0.80
to 1.04 BLEU points, demonstrating the usefulness
of our methods. It is also significantly superior
to other CMLM-based models, such as SMART,
CMLM+LFR, CMLM+PMG, and MvCR. For fully
NAT, Con-GLAT also outperforms GLAT.

Table 2 shows the results on the large-scale
dataset WMT’17 En-Zh. Our approach still
achieves a consistent and substantial improvement
over CMLM.

We compare the performance of Con-CMLM to
other iterative NAT models that train on raw data
without sequence-level knowledge distillation. Ta-
ble 3 shows that Con-CMLM still significantly out-
performs other iterative NAT models. Con-CMLM
performs better than Imputer, which is not achieved
in distillation data. The better performance on the
raw data means that our method is more general
and robust.

It is worth noting that the contrastive module is
only used in the training process and is discarded
during inference. Therefore the translation latency
is not increased. Con-CMLM and Con-GLAT have
the same speedup as CMLM and GLAT, respec-
tively.

4.3 Analysis

Similarity of Token Representations We fur-
ther verify the idea of optimizing the similarity
of different representations of the same token in
the same sentence. We mask the gold target twice
with the same mask rate, predict masked tokens
and calculate the cosine similarity of the two rep-
resentations. Table 4 shows the average similarity
of all common masked tokens with different mask
rates in {0.2, 0,4, 0.6, 0.8}. Our approach makes
representations of the same masked token more
similar. As the mask ratio increases, the similarity
gap between CMLM and Con-CMLM increases.
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Model Iter. En-De De-En En-Ro Ro-En

CMLM

1 18.05 21.83 27.32 28.20
4 25.94 29.90 32.53 33.23
10 27.03 30.53 33.08 33.31

Con

-CMLM

1 20.19 25.02 30.90 31.77
4 27.28 31.18 33.45 33.83
10 27.93 31.57 33.88 34.18

Table 5: Performance (BLEU) comparison between
Con-CMLM and CMLM with different iterations.

Model 1 4 10

Short 0.84 0.09 0.04
CMLM Long 8.10 0.79 0.27

All 4.60 0.45 0.16

Short 0.39 0.06 0.02
Con-CMLM Long 4.01 0.41 0.18

All 2.29 0.25 0.10

Table 6: The average number of consecutive repeated
tokens per sentence with different iterations on the
WMT’16 En-Ro test set.

Comparison of Different Iterations Iterative
NAT can effectively improve model performance
by increasing the number of iterations. Naturally,
the larger the number of iterations is, the slower the
translation speed is. Therefore we need to strike a
balance between translation speed and model per-
formance. One, four, and ten iterations are widely
employed for CMLM-based models. We compare
the model performance of CMLM and Con-CMLM
in the six translation directions in the Table 2 and
Table 5. As we can see, Con-CMLM constantly
beats CMLM in every iteration step and task, and
the fewer the iterations, the more significant the im-
provement. Furthermore, the Con-CMLM perfor-
mance with four iterations outperforms the CMLM
performance with ten iterations, which the other
previous CMLM-based models do not achieve.

Repeated Translation In NAT, a major issue
is repeated translation, which means that illogi-
cal consecutive repeated tokens frequently exist in
translated sentences. This is especially noticeable
in long sentences. We calculate the average number
of consecutive repeated tokens per sentence on the
WMT’16 En-Ro test set. Table 6 shows the results.
According to whether the sentence length is fewer
than 25, all samples are divided into Short and

Con-CMLM En-De En-Ro

27.93 33.88
27.95 33.97

Different 27.90 33.92
Random Seed 27.87 33.89

27.92 33.84

Ave. 27.91 33.90

Table 7: Performance (BLEU) of Con-CMLM with
different random seed. The first row is the result in
Table 1.

Long groups. It can be seen that after the addition
of the contrastive module, the number of consecu-
tive repeated tokens is significantly reduced.

Model Stability We switch random seeds for
more experiments to test the stability of the model.
As we can see from Table 7, the results of our
model are not well-trained by chance. Even with
some other random seeds, the results are better.

Complementary to Related Work In the course
of our work, we discovered MvCR (Xie et al.,
2021), which is relevant to our work. MvCR intro-
duces Shared Mask Consistency and Model Consis-
tency through bidirectional Kullback-Leibler (KL)
divergence. Shared Mask Consistency is similar to
the idea of Contrastive Common Mask proposed
by us. The difference is that we use the last layer
of Decoder and the method of contrastive learning,
while they use the predicted distributions and the
method of consistency regularization. And we do
not use the features of an online model and an av-
erage model for contrastive learning, while they do
not use the consistency between different dropout
parameters.

4.4 Ablation Study

Common Mask vs. Dropout As shown in Ta-
ble 8, we test the individual contributions of the
two contrastive methods in the four translation di-
rections. It can be seen that when Contrastive Com-
mon Mask and Contrastive Dropout are used alone,
the performance of the model has also been im-
proved to varying degrees compared with the base-
line CMLM. In the WMT’16 Ro-En task, CMLM
with Contrastive Common Mask is state-of-the-art
(34.32 BLEU). Furthermore, the improvement of
Contrastive Common Mask is more significant than
that of Contrastive Dropout. On the one hand,
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Models Iter. En-De De-En En-Ro Ro-En

CMLM 10 27.03 30.53 33.08 33.31

1 19.71 24.29 30.16 31.69
+ Common Mask 4 27.05 30.86 33.31 34.05

10 27.76(+0.73) 31.52(+0.99) 33.63(+0.55) 34.32(+1.01)

1 18.68 24.00 29.93 30.81
+ Dropout 4 26.61 30.61 33.14 33.33

10 27.18(+0.15) 31.14(+0.61) 33.41(+0.33) 33.59(+0.28)

Con-CMLM 10 27.93(+0.90) 31.57(+1.04) 33.88(+0.80) 34.18(+0.87)

Table 8: Ablation experiments on two methods of constructing positive pairs.

Contrastive Layer En-Ro

6 33.88
5 33.64
4 33.51

6+5 w/shared-head 33.59
6+5 w/different-heads 33.34

word embed 33.65

Table 9: Performances on WMT’16 En-Ro with differ-
ent contrastive layers.

we think that the decoder input context of Con-
trastive Common Mask is different, allowing the
model to explicitly capture the similarity of gen-
erated features in different contexts and making
features richer and more robust, whereas dropout is
only implicitly optimized by the parameters of the
model which is a little weaker. On the other hand,
Contrastive Common Mask also needs to feed the
sample to the model twice, which means that part
of Contrastive Dropout is included in Contrastive
Common Mask. When we combine the two meth-
ods, except in the WMT’16 Ro-En task, the model
performance has been improved again.

Contrastive Layer For contrastive learning, we
can obtain various representations from different
layers of the Decoder. The impact of different layer
representations is discussed here. First, we choose
the output of the Decoder’s fourth, fifth, and sixth
layers independently. Second, we combine the con-
trastive losses of the fifth and the sixth layers to-
gether. The projection heads for these two layers
can be the same or different. Finally, we also com-
pare the word embedding output of the Decoder.
Table 9 shows the result. Using representations
of the sixth layer alone has the best performance,

Dropout 0.1 0.2 0.3 0.4 0.5

En-Ro 33.19 33.69 33.88 33.79 33.41

Table 10: Performances on WMT16’En-Ro with differ-
ent dropout rates.

followed by word embedding. The shallower the
representation used, the worse the performance is.
Combining the contrastive losses for different lay-
ers is not helpful, whether using the same head or
different heads.

Dropout Probability Since we use dropout ex-
plicitly and implicitly in Contrastive Dropout and
Contrastive Common Mask, respectively, we con-
duct ablation experiments on WMT’16 En-Ro with
different dropout rates in {0.1, 0,2, 0.3, 0.4, 0.5}.
As Table 10 shows, dropout rates that are too high
or too low hurt the performance of the model. The
best choice of dropout rate is 0.3.

5 Related Work

In order to speed up the translation process, Gu
et al. (2018) introduced non-autoregressive trans-
lation. We divide NAT models into three types
according to the training loss. The first is the con-
ditional independent language model, which in-
cludes: enhancing the decoder input (Guo et al.,
2019; Bao et al., 2019; Ran et al., 2019), enhancing
the decoder output (Wang et al., 2019; Sun et al.,
2019), learning or transforming from autoregres-
sive model (Li et al., 2019; Guo et al., 2020a; Sun
and Yang, 2020; Tu et al., 2020; Liu et al., 2020),
latent variable-based model (Lee et al., 2018,
2020; Shu et al., 2020). The second is the condi-
tional masked language model, includes: strong
baseline model CMLM (Ghazvininejad et al.,
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2019), disentangled context transformer (Ding
et al., 2020), jointly masked sequence-to-sequence
model (Guo et al., 2020b), semi-autoregressive
training (Ghazvininejad et al., 2020b), increasing
the mask ratio gradually (Qian et al., 2021), learn-
ing autoregressive model (Tu et al., 2020), progres-
sive multi-granularity training (Ding et al., 2021a),
using the bi-direction distillation data (Ding et al.,
2021b), improving the alignment of cross en-
tropy (Ghazvininejad et al., 2020a; Du et al.,
2021). The last is the CTC model, which in-
cludes CTC (Libovický and Helcl, 2018) and Im-
puter (Saharia et al., 2020) which combines the
CTC and the masked language model. Other ex-
cellent approaches include: flow-based generative
model (Ma et al., 2019), adding a lite autoregres-
sive module (Kong et al., 2020), training with
monolingual data (Zhou and Keung, 2020), incor-
porating the pre-trained model (Guo et al., 2020c),
and tricks of the trade (Gu and Kong, 2021).

6 Conclusion

In this work, we propose Con-NAT, which is the
first effort to combine token-level contrastive learn-
ing and the conditional masked language model.
Con-NAT optimizes the similarity of different rep-
resentations of the same token in the same sen-
tence by contrastive learning. We propose Con-
trastive Common Mask and Contrastive Dropout
to construct positive pairs, using different random
masks and dropout masks, respectively. Our model
achieves consistent and significant improvement
in the six translation tasks and is state-of-the-art
on WMT’16 Ro-En. The lightweight contrastive
module is removed during inference, so it does not
affect the translation speed. In the future, we will
focus on combining the idea with the CTC and the
pre-trained masked language model.

Acknowledgments

This work is supported by the Beijing Natural Sci-
ence Foundation (Z190001) and the National Natu-
ral Science Foundation of China (No. 12271011).

Limitations

For WMT’17 En-Zh, we need 16 GPUs for train-
ing, which may be difficult for some researchers.
Although this problem can be alleviated by gradi-
ent accumulation, this results in very long training
times.

Ethics Statement

The data we used are open-source data, which do
not involve privacy issues.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Yu Bao, Hao Zhou, Jiangtao Feng, Mingxuan Wang,
Shujian Huang, Jiajun Chen, and Lei Li. 2019.
Non-autoregressive transformer by position learning.
ArXiv preprint, abs/1911.10677.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey E. Hinton. 2020. A simple framework for
contrastive learning of visual representations. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 1597–1607. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

PK Diederik and B Jimmy. 2014. Adam: A method
for stochastic optimization. iclr. ArXiv preprint,
abs/1412.6980.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F. Wong,
Dacheng Tao, and Zhaopeng Tu. 2021a. Progres-
sive multi-granularity training for non-autoregressive
translation. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
2797–2803, Online. Association for Computational
Linguistics.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F. Wong,
Dacheng Tao, and Zhaopeng Tu. 2021b. Rejuvenat-
ing low-frequency words: Making the most of paral-
lel data in non-autoregressive translation. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3431–3441, Online.
Association for Computational Linguistics.

Liang Ding, Longyue Wang, Di Wu, Dacheng Tao, and
Zhaopeng Tu. 2020. Context-aware cross-attention
for non-autoregressive translation. In Proceedings of
the 28th International Conference on Computational

6227

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1911.10677
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2021.findings-acl.247
https://doi.org/10.18653/v1/2021.findings-acl.247
https://doi.org/10.18653/v1/2021.findings-acl.247
https://doi.org/10.18653/v1/2021.acl-long.266
https://doi.org/10.18653/v1/2021.acl-long.266
https://doi.org/10.18653/v1/2021.acl-long.266
https://doi.org/10.18653/v1/2020.coling-main.389
https://doi.org/10.18653/v1/2020.coling-main.389


Linguistics, pages 4396–4402, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Cunxiao Du, Zhaopeng Tu, and Jing Jiang. 2021. Order-
agnostic cross entropy for non-autoregressive ma-
chine translation. ArXiv preprint, abs/2106.05093.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. ArXiv preprint, abs/2104.08821.

Marjan Ghazvininejad, Vladimir Karpukhin, Luke
Zettlemoyer, and Omer Levy. 2020a. Aligned cross
entropy for non-autoregressive machine translation.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 3515–3523. PMLR.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6112–
6121, Hong Kong, China. Association for Computa-
tional Linguistics.

Marjan Ghazvininejad, Omer Levy, and Luke Zettle-
moyer. 2020b. Semi-autoregressive training im-
proves mask-predict decoding. ArXiv preprint,
abs/2001.08785.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K.
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In 6th International Con-
ference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Jiatao Gu and Xiang Kong. 2021. Fully non-
autoregressive neural machine translation: Tricks of
the trade. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
120–133, Online. Association for Computational Lin-
guistics.

Junliang Guo, Xu Tan, Di He, Tao Qin, Linli Xu, and
Tie-Yan Liu. 2019. Non-autoregressive neural ma-
chine translation with enhanced decoder input. In
The Thirty-Third AAAI Conference on Artificial Intel-
ligence, AAAI 2019, The Thirty-First Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019,
pages 3723–3730. AAAI Press.

Junliang Guo, Xu Tan, Linli Xu, Tao Qin, Enhong Chen,
and Tie-Yan Liu. 2020a. Fine-tuning by curriculum
learning for non-autoregressive neural machine trans-
lation. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second

Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020,
pages 7839–7846. AAAI Press.

Junliang Guo, Linli Xu, and Enhong Chen. 2020b.
Jointly masked sequence-to-sequence model for non-
autoregressive neural machine translation. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 376–385,
Online. Association for Computational Linguistics.

Junliang Guo, Zhirui Zhang, Linli Xu, Hao-Ran Wei,
Boxing Chen, and Enhong Chen. 2020c. Incorpo-
rating BERT into parallel sequence decoding with
adapters. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020. Non-autoregressive machine trans-
lation with disentangled context transformer. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 5144–5155. PMLR.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Xiang Kong, Zhisong Zhang, and Eduard Hovy. 2020.
Incorporating a local translation mechanism into non-
autoregressive translation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1067–1073,
Online. Association for Computational Linguistics.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1173–1182,
Brussels, Belgium. Association for Computational
Linguistics.

Jason Lee, Raphael Shu, and Kyunghyun Cho. 2020.
Iterative refinement in the continuous space for
non-autoregressive neural machine translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1006–1015, Online. Association for Computa-
tional Linguistics.

Zhuohan Li, Zi Lin, Di He, Fei Tian, Tao Qin, Liwei
Wang, and Tie-Yan Liu. 2019. Hint-based train-
ing for non-autoregressive machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the

6228

https://arxiv.org/abs/2106.05093
https://arxiv.org/abs/2106.05093
https://arxiv.org/abs/2106.05093
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2104.08821
http://proceedings.mlr.press/v119/ghazvininejad20a.html
http://proceedings.mlr.press/v119/ghazvininejad20a.html
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://arxiv.org/abs/2001.08785
https://arxiv.org/abs/2001.08785
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.1609/aaai.v33i01.33013723
https://doi.org/10.1609/aaai.v33i01.33013723
https://aaai.org/ojs/index.php/AAAI/article/view/6289
https://aaai.org/ojs/index.php/AAAI/article/view/6289
https://aaai.org/ojs/index.php/AAAI/article/view/6289
https://doi.org/10.18653/v1/2020.acl-main.36
https://doi.org/10.18653/v1/2020.acl-main.36
https://proceedings.neurips.cc/paper/2020/hash/7a6a74cbe87bc60030a4bd041dd47b78-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/7a6a74cbe87bc60030a4bd041dd47b78-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/7a6a74cbe87bc60030a4bd041dd47b78-Abstract.html
http://proceedings.mlr.press/v119/kasai20a.html
http://proceedings.mlr.press/v119/kasai20a.html
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/2020.emnlp-main.79
https://doi.org/10.18653/v1/2020.emnlp-main.79
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/2020.emnlp-main.73
https://doi.org/10.18653/v1/2020.emnlp-main.73
https://doi.org/10.18653/v1/D19-1573
https://doi.org/10.18653/v1/D19-1573


9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5708–
5713, Hong Kong, China. Association for Computa-
tional Linguistics.
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En-De En-Ro

AXE L B
OAXE L B
GLAT B B

Imputer L B
Tricks B B

CMLM L B
SMART L B
DisCo L B
MvCR L B

CMLM+PMG L B
CMLM+LFR L B

Ours L B

Table 11: The summary of AT teacher models used in
related works. Where L represents transformer large
and B represents transformer base.

A Teacher Models

As we can see from Table 11, most of the models
use transformer large for En-De and transformer
base for En-Ro.

B Hyper-parameters

We follow the hyper-parameters for a transformer
base (Vaswani et al., 2017; Ghazvininejad et al.,
2019; Kasai et al., 2020): 6 layers for the encoder
and the decoder, 8 attention heads, 512 model di-
mensions, and 2048 hidden dimensions per layer.
Set dropout rate to 0.3 for WMT’16 En-De and
WMT’17 En-Zh, and 0.2 for WMT’16 En-Ro. We
sample weights from N (0, 0.02), initialize biases
to zero and set layer normalization parameters to
β = 0, γ = 1, following the weight initialization
scheme from BERT (Devlin et al., 2019). We set
weight decay to 0.01 and label smoothing to 0.1 for
regularization. We train with batches of approxi-
mately 2K · 8 (8 GPUs with 2K per GPU) tokens
for WMT’16 En-De and WMT’16 En-Ro, 2K · 16
for WMT’17 En-Zh. We use Adam (Diederik and
Jimmy, 2014) with β = (0.9, 0.999) and ϵ = 10−6.
We set the update frequency to 4 which means accu-
mulating gradients from 4 batches before each up-
date (Ott et al., 2018), and enable mixed-precision
floating point arithmetic (Micikevicius et al., 2018).
The learning rate warms up to 5 · 10−4 for the
first 10K steps, and then decays with the inverse
square-root schedule. We train models for 300K
steps on 8/16 NVIDIA TESLA V100 32G GPUs,
and average the 10 best checkpoints on the valida-

Figure 3: The BLEU points on the test set of WMT’16
En-Ro over sentences in different length buckets.

α 0.3 0.5 1.0 2.0

En-Ro 33.41 33.54 33.88 33.81

Table 12: Performances on WMT16’En-Ro with differ-
ent contrastive loss weights α.

tion set as the final model. Following the previous
works (Ghazvininejad et al., 2019; Kasai et al.,
2020), we apply a length beam with the size of 5.

C Analysis

Different Source Length We divide the samples
into different length buckets based on the source
sentence length to assess the model’s ability to
translate sentences of various lengths. Figure 3
shows the results on the test set of WMT’16 En-Ro
with one iteration. As the length of the source sen-
tence increases, the performance of CMLM drops
quickly, whereas the performance of our model
Con-CMLM decrease is noticeably slower. The
longer the source sentences are, the more consider-
able the margin between Con-CMLM and CMLM
is.

Effect of α α controls the intensity of contrastive
losses. To further understand the role of contrastive
losses, we try out different values in Table 12 and
observe that all the variants outperform the base-
line CMLM. The best choice of contrastive losses
weight is α = 1.0.
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