Code Vulnerability Detection via Nearest Neighbor Mechanism

Qianjin Du'* Xiaohui Kuang?

Gang Zhao?**

'Department of Computer Science and Technology, Tsinghua University
ZNational Key Laboratory of Science and Technology on Information System Security
dgj20@mails.tsinghua.edu.cn
xhkuang@bupt.edu.cn; bisezhaog@163.com

Abstract

Code vulnerability detection is a fundamental
and challenging task in the software security
field. Existing research works aim to learn se-
mantic information from the source code by
utilizing NLP technologies. However, in vul-
nerability detection tasks, some vulnerable sam-
ples are very similar to non-vulnerable samples,
which are difficult to identify. To address this
issue and improve detection performance, we
introduce the k-nearest neighbor mechanism
which retrieves multiple neighbor samples and
utilizes label information of retrieved neighbor
samples to provide help for model predictions.
Besides, we use supervised contrastive learning
to make the model learn the discriminative rep-
resentation and ensure that label information
of retrieved neighbor samples is as consistent
as possible with the label information of test-
ing samples. Extensive experiments show that
our method can achieve obvious performance
improvements compared to baseline models.

1 Introduction

Code vulnerabilities generally denote security bugs
or weaknesses in software. The presence of vul-
nerabilities in software is an inevitable problem
because of design flaws of the program language
and faults caused by programmers. Traditional
detection methods, such as static methods (Kim
et al., 2017; Roy et al., 2009) or dynamic methods
(Serebryany, 2015; Cadar et al., 2008; Sen et al.,
2005), generally require a lot of human labor to
summarize vulnerability rules or massive compu-
tational resources to trigger potential vulnerabil-
ities by executing programs. To improve detec-
tion efficiency, there are multiple efforts (Li et al.,
2018; Zhou et al., 2019; Feng et al., 2020) have
attempted to introduce deep learning and NLP tech-
niques for automated vulnerability detection. Deep

*Corresponding authors.

void funcPointer()

{
charx p = (charx)malloc(100);
memcpy (p,"helloPointer",13);
free(p);
p = NULL;

void funcErrorPointer()

{
charx p = (charx)malloc(100);
memcpy (p,"helloPointer",13);
free(p);

' }

(a) Vulnerable instance (b) Non-vulnerable instance

Figure 1: Illustrations of the vulnerable and non-
vulnerable code snippets.

learning-based detectors can extract semantic fea-
tures from the source code and automatically learn
potential vulnerability patterns. Li et al. (2018) pro-
posed a vulnerability detection framework named
VulDeePecker, which used a binary classifier based
on LSTM to detect whether a piece of code is vul-
nerable or not. In order to learn comprehensive
program semantics to characterize vulnerabilities
of high diversity and complexity in the source code,
Zhou et al. (2019) utilized the graph neural net-
work to extract code semantic representations. In-
spired by the big success of pre-training models
on numerous natural language processing (NLP)
tasks (Liu et al., 2019; Raffel et al., 2020), code
pre-training models for programming languages,
such as CodeBert (Feng et al., 2020) and Graph-
CodeBERT (Guo et al., 2020), were proposed and
applied to a variety of code-related tasks such as
code search, code completion, and code vulnera-
bility detection, etc. Although the above methods
have achieved remarkable improvements, they still
easily generate a large number of false predictions
because of the relatively large classification uncer-
tainty.

In vulnerability detection tasks, vulnerabilities
are sometimes subtle flaws. Fig.1 illustrates
the comparison between the vulnerable and non-
vulnerable code snippets. We can find that the
difference between vulnerable and non-vulnerable
samples is very small. This means that some vul-
nerable and non-vulnerable samples are close to

6173

Findings of the Association for Computational Linguistics: EMNLP 2022, pages 6173-6178
December 7-11, 2022 ©2022 Association for Computational Linguistics

1
.I
| kNN
I. L AE A
mp/ER EEgN
kN kNN/..
- g = = E Vulnerable Instance
u [| ' L .. B Non-vulnerable Instance
[| Decision Boundary

Figure 2: The illustration of vulnerable and non-
vulnerable samples in the representational space.

the classifier boundary, which has the large classifi-
cation uncertainty and easily results in false posi-
tive/negative predictions (as depicted in Fig.2). To
alleviate this problem and improve classification
performance, we argue that fully exploiting the
label information of samples with the same class
can assist the model to classify samples more ac-
curately. That is, when predicting the label of a
sample, the model can obtain a good guideline
from its neighbor samples. Motivated by this ober-
vation, we present a novel code vulnerability detec-
tion method by introducing the k-nearest neighbor
mechanism, which could fully utilize the label in-
formation of neighbor samples to perform more
accurate vulnerability classification. Specifically, it
firstly retrieves multiple neighbor samples accord-
ing to the representation of the sample and then
integrate their labels into the final prediction of
the model. Furthermore, in order to retrieve more
similar samples and make the label information
of retrieved neighbor samples more effective, we
introduce supervised contrastive learning (SCL) to
learn discriminative code representations. Super-
vised contrastive learning (SCL) could pull samples
with the same class closer to each other and push
away samples with the different classes. In short,
our contributions are summarized as follows:

* We propose a novel vulnerability detection
method by introducing the k-nearest neighbor
mechanism, which fully utilizes the label in-
formation of neighbor samples to assist the
model to conduct prediction.

* We introduce supervised contrastive learning
to learn more discriminative code representa-
tions, so as to retrieve more similar neighbor
samples to improve detection performance.

* We conduct extensive experiments to demon-
strate the effectiveness of the proposed

method. Experimental results show that our
method achieves universal and significant per-
formance improvements compared to baseline
methods.

2 Related Work

2.1 Code Vulnerability

To alleviate the reliance on the intense labor of
security experts and improve detection efficiency,
recent research works (Lin et al., 2017; Grieco
etal., 2016; Li et al., 2018; Zou et al., 2019) have
attempted to introduce deep learning techniques
for vulnerability detection. There are multiple re-
search works in pinpointing vulnerabilities at dif-
ferent levels of granularity (e.g., program (Grieco
et al., 2016), package (Neuhaus and Zimmermann,
2009), file (Shin et al., 2010), function (Yamaguchi
et al., 2014; Zhou et al., 2019)) by combining deep
learning with static bug detection.

2.2 K-Nearest Neighbor

Some research works have applied kNN to NLP in
recent years. Khandelwal et al. (2019) performed
an accurate natural language model by introducing
kNN, which directly queries training examples at
test time. Then Khandelwal et al. (2020) proposed
a machine translation framework based on kNN,
which predicts tokens with the nearest neighbor
classifier over a large datastore of cached exam-
ples. Muktafin et al. (2021) used kNN and TF-IDF
algorithm to perform sentiments analysis. Riza
et al. (2019) utilized kNN to perform a question
generator system. Wang et al. (2022) proposed a
k-nearest neighbor mechanism for multi-label text
classification. Besides, they designed a multi-label
contrastive learning objective that makes the model
aware of the k-nearest neighbor mechanism.

3 Methodology

In this section, we will elaborate the details of the
proposed method. The overview of the proposed
method is illustrated in Fig.3.

3.1 Problem Formulation

Let a sample be defined as (x;, y;), where x; rep-
resents a code sample and y; € {0,1} (where 1:
vulnerable code and 0: non-vulnerable code). The
goal of vulnerability detection is to learn a map-
ping from x; to y;, f : x; — y; to predict whether
a code sample is vulnerable or not. The prediction

6174

Source Code Model
int main(){ Code
int a =10; Input Representation
o0 —
test_user(a) Retrieve l
}
Model Memory
Prediction Bank
—H
P \:
D i
Final E «
Prediction :
H

\.

Neighbors

Figure 3: The framework of the proposed method.

function f can be learned by minimizing the loss
function below:

n

minz L(f(x),v:) (D

i=1
where L£(-) is the cross-entropy loss function.

3.2 K-Nearest Neighbor for Vulnerability
Detection

As mentioned before, to further improve detection
performance, we propose a novel detection method
based on the k-nearest neighbor mechanism, which
utilizes the label information of neighbor samples
to assist the model to make predictions. The pro-
posed method consists of two components: the
construction of the memory bank for storing sam-
ple representations and the prediction based on the
k-nearest neighbor mechanism.

The construction of the memory bank Given
an code sample (z;, y;), h; denotes the latent fea-
ture representation outputted by the vulnerability
detection model. The memory bank is the data
structure that is used to store the latent representa-
tion and the corresponding label of each training
sample. Formally, the memory bank is built by:
MB = {(h1,41), s (hn, yn) }-

Prediction based on the k-nearest neighbor
mechanism Given a code sample x;, the latent rep-
resentation of x; can be obtained from the model:
hi = f(z;). Then the representation h; will be
used as the key to query the memory bank to
obtain the k-nearest neighbor samples by calcu-
lating the distance of each sample pairs (h;, h;):
henn = {(hj, y;)};—1, where h; denotes the rep-
resentation of a sample stored in the memory bank

M B. The prediction based on the k-nearest neigh-
bor mechanism is formulated by:

k
YkNN = Z ojYj (@)
j=1

where a; denotes the weight of the j;;, neighbor
sample. In our work, «; is calculated by:

__eap(D(h,hy))

7 Y, exp(D(hi, ho))
where D(-) denotes the euclidean distance of sam-
ple pairs (h;, h;).

The final prediction is formulated as follows:

3

U = YYModel + OYLNN “4)

where Y7041 denotes the model prediction and ~
and § represent the weights of model prediction
and kNN prediction respectively.

3.3 Supervised Contrastive Learning

As mentioned before, some vulnerable code text
is similar to the non-vulnerable code text, which
is easy to cause labels of the retrieved samples to
be different from the label of the testing sample.
That is, for a non-vulnerable code sample, quite
a few of its retrieved neighbor samples may be
vulnerable, which cannot provide effective help
and even misleads the final prediction. To alleviate
this problem, supervised contrastive learning (SCL)
(Khosla et al., 2020) is introduced to learn more
discriminative code representations.

Supervised contrastive learning aims to pull sam-
ples belonging to the same class together in the rep-
resentational space and push away samples from
different classes. In this way, it makes vulnerable
samples closer to each other in the representational
space so that the label information of retrieved sam-
ples can provide more effective help for the model
prediction (Khosla et al., 2020). Within a mini-
batch B = {x1,...z)s} consisting of M samples,
let P(7) be the index of all the other samples whose
classes are the same as the sample ¢ and A(i) be
the index of all samples except the sample :. The
supervised contrastive learning can be calculated
as:

eap(zi - zp/7)

>, exp(zi-za/T)

acA(i)

&)

—1
Eoww = 2] 2 1

i €B pEP(i)

where 7 is the contrastive learning temperature
and z; = f(x;) denotes the latent representation.

6175

The overall loss function can be formulated as:
L = Lok + A\lgup, Where Lo g denotes the cross
entropy loss function.

4 Experiments

4.1 Experimental Setup

Our experiments are implemented based on the
open-source deep learning framework Pytorch
(Paszke et al., 2019). The total training epochs
for all models is 50 with a batch size of 64. We op-
timize the model weights using SGD with an initial
learning rate of 0.01. As for the hyper-parameters
of our proposed method, + is set to 0.7 and 9§ is
set to 0.3. A is set to 0.2. We conduct experi-
ments on the published code vulnerability dataset
QEMU+FFmpeg (Zhou et al., 2019), which col-
lects real-world vulnerabilities from GitHub repos-
itories. The labelling is done based on commit
messages and domain experts. Statistics on the
QEMU+FFmpeg dataset are summarized in Table
1. Following the previous work (Zhou et al., 2019),
we adopt the F1-score as our evaluation metric.

Total Samples | Vulnerabilities | Non-Vulnerabilities

21,020 9,116 11,904

Table 1: Statistics on the QEMU+FFmpeg dataset.

4.2 Baseline

In our experiments, adopted baselines are listed as
follows:

Devign (Zhou et al., 2019) uses a gated graph
convolutional networks to extract the semantic in-
formation of the source code and finally utilizes a
1-D CNN-based pooling (“Conv”) to make a pre-
diction.

CodeBERT (Feng et al., 2020) is a powerful pre-
trained model for programming language, which is
trained in six programming languages.

GraphCodeBERT (Guo et al., 2020) is a new pre-
trained programming language model, extending
CodeBERT to consider the inherent structure of
code data flow into the training objective.

4.3 Results

The experimental results are reported in Tab.2. We
can find that our proposed method achieves univer-
sal and obvious performance improvements com-
pared to baselines. The CodeBERT using our pro-
posed prediction method achieves the best perfor-
mance on FFmpeg, obtaining an F1-score gain of

Models FFmpeg | QEMU
Devign 62.18 65.74
Devign + Ours 64.60 67.81
CodeBERT 67.46 69.20
CodeBERT + Ours 70.15 71.52
GraphCodeBERT 67.05 70.01
GraphCodeBERT + Ours 69.43 72.47

Table 2: The final performance on QEMU+FFmpeg
dataset.

Models FFmpeg | QEMU
Devign 62.18 65.74
Devign + SCL 62.78 66.52
Devign + kNN 64.14 67.30
Devign + kNN + SCL 64.60 67.81
CodeBERT 67.46 69.20
CodeBERT + SCL 68.38 70.08
CodeBERT + KNN 69.32 70.96
CodeBERT + kNN + SCL 70.15 71.52
GraphCodeBERT 67.05 70.01
GraphCodeBERT + SCL 68.01 70.96
GraphCodeBERT + £NN 68.66 71.92
GraphCodeBERT + kNN + SCL 69.43 72.47

Table 3: Fl-score of the ablation studies. kNN indicates
the proposed k-nearest neighbor mechanism and SCL
indicates contrastive learning.

2.69% compared to the original CodeBERT model.
The GraphCodeBERT using our proposed method
achieves an F1-score of 72.47% on QEMU, sur-
passing the original GraphCodeBERT model by
2.46%.

4.4 Ablation Study

In our proposed method, we introduce the k-nearest
neighbor mechanism to fully utilize label informa-
tion of neighbor samples and use supervised con-
trastive learning to learn more discriminative code
representations. In this section, we conduct ex-
periments to verify the effectiveness of the above
components respectively. The results of ablation
studies are reported in Tab.3. We can find that both
the k-nearest neighbor mechanism and supervised
contrastive learning achieve performance improve-
ments individually. The k-nearest neighbor mech-
anism can bring an average gain of 1.68%. In ad-
dition, compared to the individual k-nearest neigh-
bor mechanism, the k-nearest neighbor mechanism
using supervised contrastive learning can achieve
better classification performance, demonstrating
that introducing supervised contrastive learning can
learn more discriminative code representations to
better assist the kNN prediction.

6176

4.5 Conclusion

In this paper, we propose a novel code vulnerability
detection method based on the k-nearest neighbor
mechanism, which fully utilizes the label informa-
tion of neighbor samples to assist the model to pre-
dict code vulnerabilities. Moreover, to ensure that
the label information of retrieved neighbor samples
can provide more effective help for model predic-
tions, we introduce supervised contrastive learning
to make vulnerable samples closer to each other
in the representational space. Finally, we conduct
extensive experiments to verify the effectiveness of
our proposed method.

Limitations

Here we summarize the limitations for further dis-
cussion and investigation of the community. Our
proposed k-nearest neighbor mechanism requires
manually setting the optimal k* to achieve the best
classification performance, which is inefficient. A
better solution is to design an adaptive k-nearest
neighbor mechanism which could adaptively seek
optimal neighbor samples according to the distri-
bution information of training samples.

References

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
2008. Klee: unassisted and automatic generation of
high-coverage tests for complex systems programs.
In OSDI, volume 8, pages 209-224.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal,
Sanjay Rawat, Josselin Feist, and Laurent Mounier.
2016. Toward large-scale vulnerability discovery
using machine learning. In Proceedings of the Sixth
ACM Conference on Data and Application Security
and Privacy, pages 85-96.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Nearest
neighbor machine translation. arXiv preprint
arXiv:2010.00710.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization

through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. Advances in Neural
Information Processing Systems, 33:18661-18673.

Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo
Oh. 2017. Vuddy: A scalable approach for vulnera-
ble code clone discovery. In 2017 IEEE Symposium
on Security and Privacy (SP), pages 595-614. IEEE.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai
Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong.
2018. Vuldeepecker: A deep learning-based sys-
tem for vulnerability detection. arXiv preprint
arXiv:1801.01681.

Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, and
Yang Xiang. 2017. Poster: Vulnerability discovery
with function representation learning from unlabeled
projects. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 2539-2541.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Elik Hari Muktafin, Pramono Pramono, and Kusrini
Kusrini. 2021. Sentiments analysis of customer satis-
faction in public services using k-nearest neighbors
algorithm and natural language processing approach.
TELKOMNIKA (Telecommunication Computing Elec-
tronics and Control), 19(1):146-154.

Stephan Neuhaus and Thomas Zimmermann. 2009. The
beauty and the beast: Vulnerabilities in red hat’s
packages. In USENIX annual technical conference,
pages 527-538.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. arXiv
preprint arXiv:1912.01703.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1-67.

Lala Septem Riza, Anita Dyah Pertiwi, Eka Fitrajaya
Rahman, Munir Munir, and Cep Ubad Abdullah.
2019. Question generator system of sentence comple-
tion in toefl using nlp and k-nearest neighbor. Indone-
sian Journal of Science and Technology, 4(2):294—
311.

6177

Chanchal K Roy, James R Cordy, and Rainer Koschke.
2009. Comparison and evaluation of code clone de-
tection techniques and tools: A qualitative approach.
Science of computer programming, T4(7):470-495.

Koushik Sen, Darko Marinov, and Gul Agha. 2005.
Cute: A concolic unit testing engine for c. ACM
SIGSOFT Software Engineering Notes, 30(5):263—
272.

Kostya Serebryany. 2015. libfuzzer—a library for
coverage-guided fuzz testing. LLVM project.

Yonghee Shin, Andrew Meneely, Laurie Williams, and
Jason A Osborne. 2010. Evaluating complexity, code
churn, and developer activity metrics as indicators
of software vulnerabilities. IEEE transactions on
software engineering, 37(6):772-787.

Ran Wang, Xinyu Dai, et al. 2022. Contrastive learning-
enhanced nearest neighbor mechanism for multi-
label text classification. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 672—
679.

Fabian Yamaguchi, Nico Golde, Daniel Arp, and Kon-
rad Rieck. 2014. Modeling and discovering vulner-
abilities with code property graphs. In 2014 IEEE
Symposium on Security and Privacy, pages 590-604.
IEEE.

Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu. 2019. De-
vign: Effective vulnerability identification by learn-
ing comprehensive program semantics via graph neu-
ral networks.

Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and
Hai Jin. 2019. pvuldeepecker: A deep learning-
based system for multiclass vulnerability detection.
IEEE Transactions on Dependable and Secure Com-

puting.

6178

