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Abstract

Adversarial examples in NLP are receiving in-
creasing research attention. One line of inves-
tigation is the generation of word-level adver-
sarial examples against fine-tuned Transformer
models that preserve naturalness and grammat-
icality. Previous work found that human- and
machine-generated adversarial examples are
comparable in their naturalness and grammat-
ical correctness. Most notably, humans were
able to generate adversarial examples much
more effortlessly than automated attacks. In
this paper, we provide a detailed analysis of
exactly how humans create these adversarial
examples. By exploring the behavioural pat-
terns of human workers during the generation
process, we identify statistically significant ten-
dencies based on which words humans prefer
to select for adversarial replacement (e.g., word
frequencies, word saliencies, sentiment) as well
as where and when words are replaced in an in-
put sequence. With our findings, we seek to
inspire efforts that harness human strategies for
more robust NLP models.

1 Adversarial attacks in NLP

Researchers in natural language processing (NLP)
have identified the vulnerability of machine learn-
ing models to adversarial attacks: controlled,
meaning-preserving input perturbations that cause
a wrong model prediction (Jia and Liang, 2017;
Iyyer et al., 2018; Ribeiro et al., 2018). Such ad-
versarial examples uncover model failure cases and
are a major challenge for trustworthiness and relia-
bility. While several defence methods exist against
adversarial attacks (Huang et al., 2019; Jia et al.,
2019; Zhou et al., 2019; Jones et al., 2020; Le et al.,
2022), developing robust NLP models is an open
research challenge. An in-depth analysis of word-
level adversarial examples, however, identified a
range of problems, showing that they are often un-
grammatical or semantically inconsistent (Morris

et al., 2020).1 This finding raised the question of
how feasible natural and grammatically correct ad-
versarial examples actually are in NLP.

To answer this question, Mozes et al. (2021a)
explored whether humans are able to generate
adversarial examples that are valid under such
strict requirements. In that study, crowdworkers
were tasked with the generation of word-level ad-
versarial examples against a target model. The
findings showed that at first sight—without strict
validation—humans are less successful than auto-
mated attacks. However, when adding constraints
on the preservation of sentiment, grammaticality
and naturalness, human-authored examples do not
differ from automated ones. The most striking find-
ing was that automated attacks required massive
computational effort while humans were able to
do the same task using only a handful of queries.2

This suggests that humans are far more efficient
in adversarial attacks than automated systems, yet
exactly how they achieve this is unclear.

In this work, we address this question by
analysing human behaviour through the public
dataset from Mozes et al. (2021a). We look at
which words humans perturbed, where within a sen-
tence those perturbations were located, and whether
they mainly focused on perturbing sentiment-
loaded words. We find that (i) in contrast to auto-
mated attacks, humans use more frequent adversar-
ial word substitutions, (ii) the semantic similarity
between replaced words and adversarial substitu-
tions is greater for humans than for most attacks,
and (iii) humans replace sentiment-loaded words
more often than algorithmic attackers. Our goal is
to understand what makes humans so efficient at
this task, and whether these strategies could be har-
nessed for more adversarially robust NLP models.

1For example, replacing the word summer with winter.
2For example, 140,000 queries are needed per example

for SEMEMEPSO (Zang et al., 2020), on average, to generate
successful adversarial examples on IMDb (Maas et al., 2011),
whereas humans need 10.9 queries (Mozes et al., 2021a).
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Attack
All Successful Unsuccessful

∆M ∆SD d ∆M ∆SD d ∆M ∆SD d

HUMANADV 0.6 3.1 0.2 0.5 3.0 0.1 0.6 3.1 0.2
TEXTFOOLER 2.5 2.6 0.8 2.5 2.6 0.8 2.5 2.6 0.8
GENETIC 1.5 2.1 0.5 1.4 2.0 0.5 1.5 2.1 0.5
BAE 2.0 4.0 0.5 1.9 4.1 0.5 2.0 4.0 0.5
SEMEMEPSO 2.4 2.8 0.8 2.4 2.8 0.8 – – –

Table 1: Word frequency differences between replaced
words and adversarial substitutions. ∆M and ∆SD rep-
resent the mean and standard deviation of the differences
between replaced words and substitutions (i.e., positive
values: replaced words > substitutions), d denotes the
Cohen’s d effect size. Note that for SEMEMEPSO, all
adversarial examples are successful.

2 Data and Models

We present a fine-grained analysis of the strategies
that human crowdworkers employed to generate
word-level adversarial examples against sentiment
classification models. In the dataset from Mozes
et al. (2021a), 43 participants were recruited via
Amazon Mechanical Turk and trained to perform a
word-level adversarial attack on test set sequences
from the IMDb movie reviews dataset (Maas et al.,
2011). In total, 170 adversarial examples were
collected. For each of the collected adversarial
examples, the authors also generated automated ad-
versarial examples using the TEXTFOOLER (Jin
et al., 2019), BAE (Garg and Ramakrishnan,
2020), GENETIC (Alzantot et al., 2018) and SE-
MEMEPSO (Zang et al., 2020) attacks.

The TEXTFOOLER attack uses a greedy word-
replacement algorithm that is guided by word
saliencies and semantic similarity measures be-
tween an unperturbed sequence and the adversar-
ial candidate. The BAE attack resorts to a dif-
ferent technique, utilising a BERT-based language
model to remove and replace tokens in an input se-
quence. The GENETIC attack, in contrast, is based
on a population-based method using genetic algo-
rithms. Finally, the SEMEMEPSO attack is based
on replacements of word sememes instead of en-
tire words and combines this with a particle swarm
optimisation approach.

All attacks were performed against a RoBERTa
model (Liu et al., 2019) fine-tuned on IMDb.3

Here, we only consider adversarial examples that
preserved sentiment after evaluation by an inde-
pendent set of crowdworkers, which Mozes et al.
(2021a) used as a key validity criterion.

3For more model details, see Section 3 in Mozes et al.
(2021a).

3 Analysis

In this section, we report on a series of experiments
analysing the human- and machine-authored adver-
sarial examples.

3.1 What do humans replace?

Word frequency. We investigate the word fre-
quency of the adversarial examples. Existing
work (Mozes et al., 2021b; Hauser et al., 2021)
identified significant differences in word frequency
between adversarially perturbed words (hereafter
referred to as replaced words) and their substitu-
tions (hereafter referred to as adversarial substi-
tutions) for a number of attacks. The substituted
words were considerably less frequent than their
original counterparts (e.g., annoying → galling).4

Here, we examine whether this pattern is also ev-
ident in humans’ strategies. Table 1 shows the
differences of the loge word frequencies between
replaced words and corresponding substitutions for
all four automated adversarial attacks and the hu-
man attack. All attacks replace words with less
frequent substitutions. The notable observations
here are the human-authored examples: the loge
frequency differences are lowest for the human-
generated substitutions (HUMANADV). The effect
size Cohen’s d, which expresses the absolute mag-
nitude of the effect that frequencies differ, further
shows that the high-to-low frequency replacement
is much less used by humans (d = 0.2) than by
the other, automated attacks (d ≥ 0.5). These find-
ings persist when inspecting either successful or
unsuccessful adversarial examples in isolation.

To test for statistical differences between the
attacks, we first conduct a 5 (attacks) by 2 (suc-
cess) ANOVA on the loge frequency differences
between replaced words and substitutions, to de-
termine whether main effects or interaction effects
were present. We observe a significant main effect
for attack, F (4, 12003) = 152.85, p < .001, but
none for success nor an interaction between attack
and success.5

Overall, the results suggest that humans use a
strategy different from automated approaches and
find replacements that do not rely on the high-to-
low frequency mapping to the same extent as au-
tomated attacks. Illustrations of the highest and

4Word frequency is computed with respect to the model’s
training corpus in these experiments.

5Follow-up experiments revealed significant differences
between HUMANADV and all attacks.
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lowest frequency differences among word substitu-
tion pairs can be found in the Appendix (Table 4).

Word saliency usage. In the crowdsourcing
study by Mozes et al. (2021a), humans were pro-
vided with the word saliency information (i.e., indi-
vidual words were highlighted based on how much
the model’s prediction confidence would change if
they were deleted).6 This was originally intended
to make the task easier for humans. Now, we inves-
tigate whether humans did indeed focus on salient
words.

Did humans prefer salient words? First we in-
vestigate whether the saliency of a replaced word
correlates with the iteration index at which this
word was selected for replacement by a human
crowdworker.7 Across all examples, we obtain
a negligible negative Pearson correlation of r =
−0.05 (p < 0.01). However, the correlation is
weak, which does not provide additional evidence
in favour of utilising saliencies for automated at-
tacks based on human behaviour.

Did salient words lead to successful attacks?
We furthermore analyse whether the average
saliency across all replaced words of a sequence
correlates with whether this led to a successful (i.e.,
label-flipping) adversarial example. For each valid
human-generated adversarial example, we hence
compute the point-biserial correlation between at-
tack success and mean saliency of replaced words.
The findings suggest that the higher the saliency of
replaced words, the higher the chance of success
of an adversarial example, r = 0.26 (p < .006).
Analogously, we also computed the correlation be-
tween the mean word saliency across all replaced
words per iteration and the corresponding decrease
in prediction confidence. The findings indicate a
small correlation of r = 0.12 (p < .001): replac-
ing a more salient word leads to larger increases in
prediction confidence change.

It is worth noting that, even though the word
saliency is defined as the decrease in prediction
confidence after deleting a word from the sequence,
this finding is not necessarily expected: a human
attacker not only needs to identify and remove an
existing word in the sequence, but they also have
to find a semantically suitable replacement that

6It is worth noting that we cannot be certain whether hu-
mans did indeed use the word saliencies during the process.

7An iteration index of 1 means that a word was the first to
be replaced.

Attack Valid pairs All Succ. Unsucc.

HUMANADV 990/1303 0.47 (0.19) 0.52 (0.18) 0.44 (0.19)
TEXTFOOLERa,b 1497/1805 0.57 (0.20) 0.58 (0.20) 0.53 (0.16)
GENETICb 1955/2437 0.44 (0.19) 0.44 (0.18) 0.44 (0.19)
BAEa,b 940/1623 0.69 (0.25) 0.70 (0.24) 0.69 (0.26)
SEMEMEPSOb 724/946 0.66 (0.17) 0.66 (0.17) –

Table 2: The mean (SD) cosine distances between re-
placed words and substitutions. a indicates significant
differences with HUMANADV for unsuccessful pairs, b

for successful ones.

Attack
All Succ. Unsucc.

Rep. Sub. Rep. Sub. Rep. Sub.

HUMANADV 22.9 20.7 23.7 24.0 22.5 19.3
TEXTFOOLERb 19.8 14.2 19.8 14.3 18.8 12.5
GENETICb 19.7 14.3 20.3 15.7 19.6 14.0
BAEa,b 16.5 4.3 19.3 5.3 15.8 4.0
SEMEMEPSO 21.8 20.8 21.8 20.8 – –

Table 3: Ratio (%) of replaced (Rep.) and adversarially
substituted words (Sub.) with existing sentiment value.
a indicates significant differences with HUMANADV for
replaced words, b for substitutions.

decreases the model’s prediction confidence.
It is furthermore worth mentioning that both

BAE and TEXTFOOLER define the token impor-
tance rankings based on a word saliency mea-
sure, and therefore explicitly incorporate the word
saliency into the attack process. The results ob-
tained in this work provide additional evidence in
favour of utilising saliencies for automated attacks,
showing that humans (which have been shown to
generate adversarial examples in a more efficient
way) also tend to utilise word saliencies.

Word similarities. Next, we compare the se-
mantic differences in adversarial substitution pairs
across the different attacks. While the algorithmic
attacks source word synonyms from available lexi-
cal databases such as WORDNET (Fellbaum, 1998)
or GLOVE embeddings (Pennington et al., 2014),
humans directly choose word replacements based
on their own vocabulary and can therefore use sub-
stitutions that more accurately fit the context of the
replaced word. Hence, we might expect to see a dif-
ference between the semantic similarity of human-
and machine-chosen substitutions.

To test this idea, we compare the pre-trained
word embeddings for the replaced words and their
corresponding substitutions. We choose counter-
fitted GLOVE embeddings (Mrkšić et al., 2016), as
they push synonyms further together and antonyms
further apart in representation space.
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(a) HUMANADV
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(b) GENETIC
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(c) BAE
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(d) TEXTFOOLER
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(e) SEMEMEPSO

Figure 1: Histograms visualising the distribution of index percentages at which the adversarial attacks perturb
individual input words.

Table 2 shows the cosine distances of the em-
beddings between the pairs for all five attacks.
Valid pairs denotes the fraction of valid pairs
used to compute the distances, since some of the
word pairs did not have embedding representa-
tions in the used space. To test for statistical
effects, we conduct a 5 (attacks) by 2 (success)
ANOVA on the cosine distances between embed-
dings of replaced words and corresponding sub-
stitutions, revealing significant main effects for at-
tack, F (4, 6097) = 363.63, p < .001, success,
F (1, 6097) = 16.43, p < .001, as well as an inter-
action effect, F (3, 6097) = 5.54, p < .001. The
entangled significant differences between attacks
are indicated in Table 2. For success, a t-test re-
veals significant differences (p < .001) between
successful and unsuccessful cosine distances across
attacks. For their interaction, the difference could
be driven by the lack of observations given for the
unsuccessful SEMEMEPSO pairs.

The findings indicate that human-generated ad-
versarial substitution pairs are significantly more
similar than the substitution pairs of automated
attacks (all except GENETIC). A possible expla-
nation for this variability is that GENETIC uses
counter-fitted embedding spaces for identifying

semantically-related words for adversarial substitu-
tion. However, TEXTFOOLER uses the same em-
bedding representations, yet the distances appear
to be larger. Illustrative examples of semantically
similar and dissimilar word substitution pairs can
be found in the Appendix (Table 5).

Repeating the analysis with regular GLOVE em-
beddings yields similar results, albeit without an
interaction effect (see Appendix A). We further-
more provide an analysis of sentence similarities
between adversarial examples in Appendix B.

3.2 How many replaced words have sentiment
value?

Particularly for the task of sentiment analysis, an
attack might be more successful if it focuses on
words with a sentiment value (e.g., like, great). We
investigate the differences between attacks with
respect to how many replaced words and adver-
sarial substitutions have sentiment value. To do
this, we compute the ratio of replaced words (to all
replaced input words) that have a sentiment value
in the NLTK sentiment lexicon (Loper and Bird,
2002). Table 3 reveals that this sentiment ratio is
low (between 16% and 23%) across attacks.

For replaced words, we observe a significant
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Figure 2: Mean (standard deviation) prediction confidence changes on the true class across examples with respect to
(a) the word index percentage and (b) the iteration in which human crowdworkers change individual input words.

main effect for attack, F (4, 8105) = 5.28, p <
.001, but not for success or their interaction.
For adversarial substitutions, the same ANOVA
yields a significant effect for attack, F (4, 8105) =
54.64, p < .001, but likewise not for success or
their interaction. HUMANADV and SEMEMEPSO
tend to follow that strategy more so than the re-
maining attacks.8 We provide illustrations of the
substitution pairs with the highest increases and
decreases in sentiment in the Appendix (Table 8).

3.3 Where do humans replace?

Next, we investigate the specific regions in an input
sequence (e.g., start, middle, end) where adversar-
ial attacks prefer to perturb words. To do this, we
define the index percentage of a word in an input
sequence as the ratio of the word’s index to the
number of words in the input (e.g., the third word
of a sequence of ten words would have an index
percentage of 30%).

Figure 1 shows the frequency of index percent-
ages per attack and suggests that HUMANADV,
TEXTFOOLER and SEMEMEPSO preferentially
perturb words at the beginning and end of an input
sequence. In contrast, the distributions for BAE
and GENETIC show a uniform pattern. For GE-
NETIC this result is somewhat expected: the at-
tack selects words for replacement by sampling
words proportionately to their number of avail-
able synonyms rather than based on a semantically-
informed strategy. The HUMANADV’s preference
for replacing words at the beginning and the end of
the sequence could be explained by the attention

8This observation could potentially be explained by the
finding that humans tend to over-perceive word saliencies for
words with a strong sentiment value (Schuff et al., 2022).

that humans devote to these parts of the text when
reading from left to right. Perhaps most interest-
ingly, the distributions for TEXTFOOLER and BAE
differ, despite both using word saliencies as their
word importance ranking.

We investigate which individual word changes
led to notable changes in prediction confidence of
the target model. We first analyse this by looking
at the relationship between the index percentage
and the change in prediction confidence on the true
class (Figure 2). We observe that (a) the confidence
changes caused by human perturbations are not
prevalent at a specific index percentage, but rather
distribute fairly evenly across the start, middle and
end of the sequence. Second, Figure 2 (b) shows
that the confidence changes are higher in the first
iterations, and seem to drastically reduce after the
sixth iteration on average.

4 Discussion and conclusion

This work presented a granular analysis on strate-
gies followed by humans when attempting to gen-
erate adversarial examples through word-level sub-
stitutions. We have shown that the difference in
word frequency between replaced words and adver-
sarial substitutions is smaller for humans than for
the automated attacks. Furthermore, humans tend
to use substitutions that are more semantically sim-
ilar to the replaced words than most attacks, and
humans target words that have a sentiment value
to a larger extent than automated attacks. Based
on the findings provided, future directions could
focus on harnessing such strategies to improve ex-
isting adversarial attacks and in doing so ultimately
increase the robustness of machine learning-based
NLP models against adversarial attacks.
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Ethical considerations

This paper discusses adversarial attacks in NLP,
methods that are developed to uncover failure cases
of machine learning models, and specifically po-
tential approaches to further enhance such attacks
against text classification models. It is worth men-
tioning that these methods can be used maliciously,
for example to circumvent content filtering systems
for hateful or offensive language on social media.
Our work is intended to better understand the phe-
nomenon of adversarial examples in NLP, its re-
lation to human language understanding, and to
harness such insights to contribute to more robust
models against adversarial input perturbations.

Limitations

The presented work comes with a number of limi-
tations which will be discussed in this section.

First, our analyses are limited to a single tar-
get dataset (IMDb movie reviews) and based on
the only existing "human word-level adversarial
attacks" dataset. Replicating our experiments on
other datasets, especially those containing different
styles of language use such as formal academic
or journalistic writing, would help to further un-
derstand the behavioural patterns used by humans
when generating adversarial examples. Future
work could also build on the approach of Mozes
et al. (2021a) to collect a larger dataset that would
allow us to learn more about the strategies em-
ployed by humans when crafting adversarial exam-
ples.

Second, additional linguistic and behavioural
patterns could potentially be analysed in the data.
We primarily focused on the central aspects driving
human strategies, yet there are other dimensions
on which the data can be inspected for additional
behavioural patterns (e.g., part-of-speech usage by
human attackers). These are beyond the scope of
this contribution but could in the future inform
better attack and defence models.

Third, the dataset from Mozes et al. (2021a) did
not contain potential moderating variables about
the human crowdworkers. As a consequence, it is
unknown how or whether differences in, for exam-
ple, the language proficiency of participants, experi-
ence with NLP crowdsourcing tasks or even general
cognitive abilities played a role. While the authors
applied some participation requirements (i.e., par-
ticipation in a similar NLP study) and trained the
crowdworkers, the next step would be to under-

stand whether psychological variables potentially
moderate one’s ability to craft valid adversarial
examples.

Finally, the analyses in this work solely focus
on statistical data analysis and do not harness data-
driven machine learning-based methods to iden-
tify behavioural patterns in the data. Neverthe-
less, in this context the dataset size (170 human-
generated sequences) represents a limitation and
is potentially not large enough in size to be useful
for learning-based experiments. Future work with
larger datasets would mitigate that limitation and
possibly help generate more insights about human
strategies in adversarial example generation.
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Difference HUMANADV TEXTFOOLER GENETIC BAE SEMEMEPSO

High

bad → , be → sont one → uno tobanga → i movie → conga
annoying → . like → iove cast → foundry challen → s movie → cancan

of → buttery good → buen action → measurements hansika → s really → sheerly
i → i’am very → vitally time → timeframe modulates → was film → photoshoot

this, → this story → escudos like → adores bahrani → t bad → hardhearted

Low

educational → teaching frostbite → frostbitten counselors → advisors turns → works appearance.the → present.the
makers → producers movie. → flick. wrought → fabricated producers → makers liked → supposed

very → more years.i → year.i humour → mood low → top manages → attempts
bad → great rajasthan → bihar nearly → near match → co promote → cheer
sing → scream supposed → felt dirty → nasty dead → line died → failed

Table 4: The top five pairs of replaced words and adversarial substitutions with the highest and lowest absolute
frequency differences across attacks. Pairs were pre-filtered such that at least one word in a pair has a positive
frequency in the training corpus, to avoid low differences due to both words having a frequency of zero.

Distance HUMANADV TEXTFOOLER GENETIC BAE SEMEMEPSO

High

in → unoriginal like → iove blood → chrissakes earlier → inger movies → jitterbugs
adder → enough story → escudos brett → broadly end → oja box → flagellation
back → askance door → fatma x → tenth played → dermott movie → cancan
guard → kilter link → nol volunteers → boneheads guess → eses series → wisps
jeepers → like camera → salas barbara → barbaric put → udge episode → triviality

Low

could → would eight → six would → could films → film usually → generally
awful → terrible two → three become → becoming dancing → dance ridiculous → laughable
could → might awful → terrible awful → terrible know → tell positive → negative

anything → something test → tests cards → card sort → kind specific → particular
films → film so → too investment → investments unless → if even → however

Table 5: The top five pairs of replaced words and adversarial substitutions with the highest and lowest word
embedding cosine distance across attacks (using the counter-fitted embeddings).

Attack Valid pairs All Succ. Unsucc.

HUMANADV 1109/1303 0.46 (0.21) 0.49 (0.21) 0.45 (0.21)
TEXTFOOLER 1542/1805 0.56 (0.20) 0.57 (0.20) 0.52 (0.17)
GENETIC 2020/2437 0.44 (0.19) 0.45 (0.19) 0.44 (0.19)
BAE 1319/1623 0.71 (0.30) 0.73 (0.29) 0.71 (0.31)
SEMEMEPSO 787/946 0.64 (0.18) 0.64 (0.18) –

Table 6: The mean (and standard deviation) cosine dis-
tances (GLOVE embeddings) between replaced words
and corresponding substitutions for the five attacks
across all perturbed sequences, divided into all, as well
as successful and unsuccessful sequences.

A Word similarities

We repeat the experiments in Section 3 for word
similarities with regular GLOVE embeddings,
rather than the counter-fitted ones. The mean
(standard deviation) distances can be found in Ta-
ble 6. We here also conduct a 5 (attacks) by 2 (suc-
cess) ANOVA, yielding significant effects for at-
tack, F (4, 6768) = 371.37, p < .001, and success,
F (1, 6768) = 11.27, p < .001, but not for their
interaction. To disentangle this effect for success,
a subsequent test on an aggregation of successful
and unsuccessful word pairs across attacks reveals
significant differences (p < .001) between both
samples. Comparing HUMANADV to all other at-
tacks, we observe statistically significant (p < .01)
differences between all comparisons for the suc-

Attack All Succ. Unsucc.

HUMANADV 0.035 (0.050) 0.043 (0.061) 0.031 (0.042)
TEXTFOOLER 0.064 (0.065) 0.063 (0.064) 0.177 (0.000)
GENETICa 0.063 (0.052) 0.034 (0.036) 0.076 (0.053)
BAEa 0.044 (0.036) 0.022 (0.018) 0.056 (0.039)
SEMEMEPSO 0.056 (0.071) 0.056 (0.071) –

Table 7: The mean (SD) cosine distances of USE rep-
resentations between unperturbed and adversarial se-
quences. a indicates significant differences with HU-
MANADV for unsuccessful pairs.

cessful portion of the data. For the unsuccessful
ones, only the comparison between HUMANADV

and BAE yields significant differences.

B Sentence similarities

Word similarities may only provide a limited pic-
ture as they lack context. We therefore also analyse
the sentence similarity among adversarial exam-
ples. We utilise universal sentence encoder (USE,
Cer et al., 2018) representations for our analysis.
Table 7 shows the cosine distances for each at-
tack type. Conducting a 5 (attack) by 2 (success)
ANOVA, we observe significant effects between
attacks, F (4, 627) = 6.46, p < .001, success,
F (1, 627) = 16.41, p < .001 as well as their inter-
action, F (3, 627) = 5.77, p < .001.9

9The results of subsequent t-tests are indicated in Table 7.
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Sentiment increase HUMANADV TEXTFOOLER GENETIC BAE SEMEMEPSO

Smallest

best → worst comedic → travesty comedy → travesty enjoyed → cut positive → negative
love → hate comedy → ridicule excited → agitated reaches → lies amazing → horrid

enjoyed → hated funny → odd intense → violent great → good great → terrible
excellent → horrible comedy → farce enlightening → sobering brilliant → worthy amazing → terrible
fantastic → bad wonderful → funky kiss → screwing fantastic → good wonderfully → suspiciously

Largest

worst → best worst → greatest odd → curious bad → good awful → awesome
bad → great worse → greatest strangely → surprisingly ridiculous → good terrible → terrific

idiotic → excellent annoys → excites cruel → ferocious dead → hard awful → terrific
poor → great disappointments → excitements fine → beautiful low → top awful → thrilling
fail → excellent dullest → neatest worst → gravest worth → worthy hard → great

Table 8: The top five pairs of replaced words and adversarial substitutions with the largest increases and decreases
in sentiment value across attacks (based on the NLTK sentiment lexicon).

6126


