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Abstract

Scientific action graphs extraction from materi-
als synthesis procedures is important for repro-
ducible research, machine automation, and ma-
terial prediction. But the lack of annotated data
has hindered progress in this field. We demon-
strate an effort to annotate Polycrystalline
Materials Synthesis Procedures (PcMSP) from
305 open access scientific articles for the con-
struction of synthesis action graphs. This is a
new dataset for material science information
extraction that simultaneously contains the syn-
thesis sentences extracted from the experimen-
tal paragraphs, as well as the entity mentions
and intra-sentence relations. A two-step hu-
man annotation and inter-annotator agreement
study guarantee the high quality of the PcMSP
corpus. We introduce four natural language pro-
cessing tasks: sentence classification, named
entity recognition, relation classification, and
joint extraction of entities and relations. Com-
prehensive experiments validate the effective-
ness of several state-of-the-art models for these
challenges while leaving large space for im-
provement. We also perform the error analysis
and point out some unique challenges that re-
quire further investigation. We will release our
annotation scheme, the corpus, and codes to the
research community to alleviate the scarcity of
labeled data in this domain1.

1 Introduction

Synthesis procedural texts are written in instruc-
tional languages (Grishman, 2001; Grishman and
Kittredge, 2014) to represent the step-by-step reac-
tions, but also contain the distinct features in spe-
cific domains, such as the domain notations, writ-
ing styles, and journal requirements. The synthesis
procedures of materials science articles include
valuable information for new materials prediction
(Raccuglia et al., 2016), laboratory automation (Co-
ley et al., 2019) and knowledge graph construction

1https://github.com/Xianjun-Yang/PcMSP

Synthesis Paragraph

Polycrystalline[Descriptor] sample of
composition Sr2CoO4[Material_target]
was synthesized[operation] under
high pressure[Property_pressure] at
high temperature[Property_temperature]. Start-
ing materials of SrO2[Material_recipe]
and Co[Material_recipe] were
well[Descriptor] mixed[operation] in a
molar ratio[Descriptor] of SrO2[Material_recipe]
: Co[Material_recipe]=2 : 1[Value]. The
mixture[Material-intermedium] was sealed[operation]
into a[Value] gold[Descriptor] capsule[Device]. ...
The crystal structure of the polycrystalline sample
was identified by the powder X-ray diffraction
(XRD, Rigaku Smart- lab3), using Cu-Kα radia-
tion (λ=1.54184Å). ...

Table 1: An example of a synthesis paragraph from our
dataset with index srep27712 (Li et al., 2016).

(Mrdjenovich et al., 2020). However, available
datasets are extremely limited, despite the notable
work by (Mysore et al., 2017, 2019; Friedrich et al.,
2020; O’Gorman et al., 2021).

The goal of information extraction from proce-
dures is to construct the action graphs, which refer
to all the steps in a synthesis making up a Directed
Acyclic Graph (DAG) (Mysore et al., 2019; Kulka-
rni et al., 2018) (as can be seen from one example
in Figure 1). This can be further breakdown into
three tasks: sentence classification, named entity
recognition (NER), and relation extraction (RE).
Previous research (Mysore et al., 2017, 2019) ei-
ther annotates the whole synthesis paragraph in
the general inorganic domain, ignoring the non-
synthesis sentences and subdomain discrepancy or
only focuses on entity mentions (Friedrich et al.,
2020; O’Gorman et al., 2021).

To fill this gap, we focus on one important cat-
egory of polycrystalline materials and simultane-
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Figure 1: A synthesis action graph constructed from
Table 1.

ously include all three tasks. The annotation guide-
lines are designed by materials experts after com-
prehensive discussion, and the new dataset is sub-
sequently labeled with a two-round annotation.

The key contributions of this paper include:

• We contribute a new large-scale dataset, as
well as an annotation scheme with high qual-
ity for information extraction in materials sci-
ence.

• We conduct comprehensive experiments on
four tasks, sentence classification, named en-
tity recognition, relation extraction, and joint
extraction to provide baselines.

• We perform error analysis and point out
unique challenges and potential use of this
dataset for future research.

2 Related Work

Scientific information extraction
With the fast-growing volume of scholarly pub-
lications, it is highly demanding to extract struc-
tured information from large-scale scientific liter-
ature in many domains (Augenstein et al., 2017;
Luan et al., 2018; Jiang et al., 2019; Beltagy et al.,
2019; Buscaldi et al., 2019), like biomedical do-
main (Shah et al., 2003; Lai et al., 2021; Zhang
et al., 2021; Lewis et al., 2020; Kulkarni et al.,

2018) and chemistry domain (Rocktäschel et al.,
2012; He et al., 2020). In the field of materials sci-
ence, there have been few attempts in this direction,
leaving many unexplored challenges for research
(Hong et al., 2021). Recent research mainly fo-
cuses on knowledge base construction (Jiang et al.,
2019; Luan et al., 2018), new materials discovery
(Isayev, 2019), and automation of lab procedures
(Vaucher et al., 2020; Tamari et al., 2021; Steiner
et al., 2019). (Beltagy et al., 2019) trained a Bidi-
rectional Encoder Representations from Transform-
ers model (SciBERT) on 1.14M scientific papers
from Semantic Scholar for scientific information
extraction.

Materials procedures information extraction
In the area of annotation of materials synthesis
procedures, (Mysore et al., 2019) annotate 230
general materials synthesis paragraphs for NER
and RE tasks. Similar work is also undertaken
by (Friedrich et al., 2020), in which 45 open ac-
cess scholarly articles are labeled for experiment-
describing sentence classification, NER, and slot
filling tasks. However, in contrast to our works,
their annotation scheme focuses on the full text
rather than the experimental section. (Kuniyoshi
et al., 2020) annotate the synthesis process of all-
solid-state batteries from the scientific literature,
but their corpus is not publicly available. (Walker
et al., 2021) release MatBERT trained on 50 million
materials science paragraphs to explore the impact
of domain-specific pre-training on NER task. Also
of interest, (O’Gorman et al., 2021) recently create
the largest corpus for entity mentions extraction in
both general domain and subdomain from material
synthesis text, but the relations between entities are
still missing.

Named entity recognition and relation
extraction
Many neural network-based models have been pro-
posed for named entity recognition, for example,
(Huang et al., 2015; Lample et al., 2016; Panchen-
drarajan and Amaresan, 2018). The core idea uses
one encoding layer (e.g. Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997),
BERT) for representation and one additional condi-
tional random fields (CRF (Lafferty et al., 2001))
layer for sequence labeling. Then relations are pre-
dicted based on either gold entities or predicted
entities, and PURE (Zhong and Chen, 2021) de-
signs two separate encoders for joint extraction of
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Figure 2: An annotated PcMSP example on the INCEpTION platform, taken from srep15507 (Man et al., 2015).

entities and relations. We adopt their model for our
tasks due to its super performance.

3 The Selection of Our Dataset

Here we talk about the importance of our selec-
tion and how is it different from other materials
procedural text corpora.

Why do we choose inorganic polycrystalline
materials? There are a number of sub-categories
within solid-state inorganic materials. For exam-
ple, materials can be divided based on function and
properties, such as the battery or thermoelectric
materials. Synthesis within both categories largely
falls within the broader category of solid-state syn-
thesis and even then, there is a high degree of over-
lap with other function categories, such as quantum
and magnetic materials. More importantly, those
materials are usually in the form of polycrys-
talline. Other subcategories relate to form factors,
for instance, single-crystalline synthesis often starts
with a polycrystalline synthesis and therefore has
a high degree of overlap with solid-state synthesis.

Inorganic polycrystal compounds span combina-
tions of the entire periodic table and different chem-
ical bonding schemes, such that their synthesis typi-
cally takes place under extreme conditions, such as
high temperature and pressure. Reaction pathways
are therefore difficult to characterize without spe-
cialized equipment and are not well established for
any given material. In particular, solid-state reac-
tions, which are the main techniques to synthesize
inorganic polycrystalline materials, are particularly
similar to a “black box”, where materials scientists
can only make educated guesses to the procedure
or stability of a new reaction. This presents a prime

opportunity (Mysore et al., 2017, 2019) for compil-
ing published inorganic synthesis data in order to
demystify the black box of solid-state inorganic ma-
terials synthesis and create datasets for future text
mining endeavors. While there have been efforts
within general solid-state materials (Mysore et al.,
2017, 2019; O’Gorman et al., 2021) and battery
materials subcategory (Friedrich et al., 2020), this
work aims to extend the subcategory of inorganic
solid-state synthesis methods in order to address
the frequent overlap and “borrowing” of materials
between subdisciplines of materials science.

Why do we discard characterization sen-
tences? Inorganic reactions typically involve rel-
atively few reactions from a set of precursors and
there are very few purification pathways for solid
materials compared to organic materials or liq-
uids. Therefore, characterizations of solid-state
inorganic reactions are seldom reported in litera-
ture unless they proceed to complete purity within
standard measurement fidelity. This is in contrast
to organic materials where there are a number of
important characterization metrics in a compound,
such as molecular weight in polymers or reaction
yield. Therefore, these standard characterization
measurements do not add valuable information for
a researcher attempting to recreate the reported
synthesis method and we decide to discard these
characterization sentences.

Why do we annotate sentence, entity, and re-
lation simultaneously? A full action graph con-
sists of both entities and relations extracted from
experimental-describing sentences. However, most
previous research either ignores the annotation of
sentence or relation information, making them in-
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complete for action graph construction. To fill this
gap, we aim to annotate all pertinent information
jointly.

4 Description of the Annotation

4.1 Selection of synthesis procedures for
annotation

We begin by harvesting the polycrystalline materi-
als synthesis-related open access publications from
the main journal publishers by searching keywords
(e.g. ’polycrystalline+synthesis’). The journals
that we used include Physical Review Journals2,
Nature journals3, Science journals4, Journal of the
American Chemical Society5, Advanced Materi-
als6, Journal of Physics Condensed Matter7, Chem-
istry of Materials8 and ArXiv9. After the collection
of 305 publications, each portable document for-
mat (PDF) document is converted into a plain text
file by pdfminer10. The experimental paragraphs
usually appear in the experimental section within
an article and are selected by one materials expert.
To improve the data quality, the selected paragraphs
are double-checked by another annotator to ensure
their correctness. And some missing sentences
caused by the conversion process are also added.
Finally, the collected paragraphs are prepared for
the next step of annotations.

4.2 Sentence annotation

Based on the selected paragraphs from the afore-
mentioned step, each document is annotated on the
semantic annotation platform INCEpTION (Klie
et al., 2018), and the sentence segmentation is car-
ried out automatically11. Each line represents all
tokens of one sentence, and the annotation is done
on the token level. In practice, only the synthesis-
related sentences are annotated for NER and RC.
The resulting unlabeled sentences automatically
obtain non-synthesis labels. This process resulted
in 1497 synthesis-related sentences and 971 non-
related sentences. It is worthwhile to point out

2https://journals.aps.org/
3https://www.nature.com/
4https://www.science.org/journals
5https://pubs.acs.org/journal/jacsat
6https://onlinelibrary.wiley.com/journal/15214095
7https://iopscience.iop.org/journal/0953-8984
8https://pubs.acs.org/journal/cmatex
9https://arxiv.org/

10https://pdfminersix.readthedocs.io/en/latest/
11InCeption uses Java’s built-in sentence segmentation al-

gorithm with US locale.

that several selected paragraphs also contain sin-
gle crystal synthesis (this occurs < 1%), but we
do not take those as synthesis-related sentences so
as to focus purely on polycrystalline synthesis. In
general, most non-synthesis sentences are relevant
to the characterization of materials, description of
devices, etc. While synthesis sentences typically
describe the synthesis actions conducted in the ex-
periments. For example, in Table 1, the first two
sentences are synthesis-related while the remaining
sentences are not.

4.3 Entity type annotation

We defined 13 entity types to include the most
useful entity mentions, which are decided by
the materials experts. Each span of continuous
words is labeled as a certain kind of entity
type. There are five general categories of labels,
namely Material: Material-target, Material-
recipe, Material-intermedium and Material-others,
Property: Property-time, Property-temperature,
Property-rate and Property-pressure, Operation,
Item: Value, Brand, Device and Descriptor. Every
general coarse-grained category can further be
divided into one or several fine-grained types. The
full definitions of these labels can be found in the
following.
Material-target: final material (or products) of
the material synthesis process, usually refers to
only one target in a typical procedural paragraph,
but can appear as multiple target materials (this
occurs less than 1%).
Material-recipe: raw material used to synthesize
the final product, can be fundamental elements(like
Si), compounds(like SrO2), or precursors of other
polycrystalline materials.
Material-intermedium: an intermediate material
produced during the synthesis process that is
subsequently used as participants in the following
reactions.
Material-others: materials that are not compo-
sitionally related to the final material or used
as solvents (like water) to provide reaction
conditions.
Operation: an individual action performed by
the experimenters, which is often represented by
verbs or a particular overall synthesis method, like
Solid− state− reaction.
Property-time: a time condition associated
with an operation, which is usually composed of
numerical values and time units.
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Dataset Domain Procedure only Documents Sentence type Sentences Entity type Entities Relation type Relations

MSPT General % 230 % 2112 21 20849 16 18402
SOFC-Exp Subdomain % 45 2 853 16 5095 % %

SC-CoMIcs Subdomain % 1000 % 6639 7 42337 % %

MS-MENTIONS General - 595 % 7980 14 44295 % %

Our PcMSP Subdomain ! 305 2 2468 13 14592 8 13968

Table 2: Corpus statistics of our PcMSP and previous datasets for materials science. %denotes that no such
information is contained in the corresponding corpus. - denotes that the corpus has not been released yet.

Property-temperature: a temperature condition
associated with an operation, which is usually
composed of numerical values and temperature
units.
Property-rate: a rate condition associated with an
operation, which is usually composed of numerical
values and rate units. The rates can be rotation
speed, cooling, or heating rates, etc.
Property-pressure: a pressure condition associ-
ated with an operation, which is not only in the
form of value and units but also can be a certain
condition like vacuum, helium, or air.
Value: numerical values and their corresponding
units. In addition, we include specifications like
"around", "over", “more than” or “between” in the
annotation span (e.g., “around 250 g,” and “over
20 mol”). We do not include time, temperature,
pressure, or rate in this category, as they are
already included in properties.
Device: mentions of the type of device used in the
corresponding operation, which can contain the
device name and serial number.
Brand: the brand name or source laboratory
associated with the equipment or material.
Descriptor: description of an operation or a
material or a value that does not apply to properties
but is necessarily included for clear descriptions.

4.4 Relation type annotation

The previous two steps provide us with the labeled
entity mentions within each sentence. We then con-
nect each entity pair by a relation type when there
is a believed necessary connection, according to the
definition of agreement study. The full descriptions
of relation labels are listed in the following.
Participant-material: materials that are involved
in one operation process, and we also mark the tar-
get material and its synthesis action as this label.
Device-of-operation: a device used in an opera-
tion.
Condition-of: indicates the conditions of an opera-
tion (such as the temperature, time, and pressure)

for performing an operation.
Value-of: expresses the relationships between par-
ticipated material and their weight, mass, volume,
or purity, and also represents the relationship be-
tween the device and its serial number.
Next-operation: represents the order of an opera-
tion sequence that one operation that happens fol-
lowing the previous operation. Note that we as-
sume the linear sequence of synthesis operations
happens sentence by sentence, which is true for
most cases.
Brand-of: expresses the relationships between a
raw material or device and its manufacturer name
or source laboratory.
Descriptor-of: the descriptor for the material, de-
vice, or operation that can not be covered by other
labels.
Coreference: represents the same material or oper-
ation in the same sentence.

Besides, according to the largest Document-level
relation extraction dataset (Yao et al., 2019), around
40% of relations exist across multiple sentences.
But cross-sentence relation is out of our scope for
current work and we leave it for future investiga-
tion.

5 Inter-annotator Agreement Study

We perform a two-round agreement study to ensure
that our corpus has a high quality of annotation.
Before undertaking the formal annotation, all four
annotators participate in a discussion of the formu-
lation rules and discuss the necessary entity and
relation types. In the warm-up exercise, all anno-
tators annotate the same documents individually
and then compare and discuss the results together
to achieve better agreement on annotation. After
the agreements are formulated, in the first-round
annotation four annotators are randomly assigned
different documents to work on. It takes around
twenty to thirty minutes to annotate one document
on average for all annotators. When all of the an-
notations are finished, two of the four annotators
select several typical examples for analysis and
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Round Sen. En1. En2. Re1. Re2.
First-round 80.13 56.41 92.8 48.51 90.2

Second-round 85.06 69.81 93.44 53.63 91.03

Table 3: Two-round inter-annotator agreement study
measured by Fleiss’ Kappa.

eventually set more rules for annotating the most
debatable parts. In the second round of annotation,
two lead annotators individually re-annotate half
of the documents, guaranteeing that there are no
significant differences or mistakes. It takes around
500 hours for our material expert team in total to
create this corpus to guarantee high quality.

We use Fleiss’ Kappa to measure the agreement
scores between our four annotators. The result is
shown in Table 3, with substantially high agree-
ment scores. We can see obvious improvements
in all aspects from the first to second round an-
notation, demonstrating the effectiveness of our
annotation pipeline. We use five metrics to mea-
sure the agreement score: Sen. refers to sentence
agreement, En1. means span boundaries and type
are both correct, En2. means matched type on same
spans, Re1. represents complete relation triple with
correct entities and Re2. stands for correct relation
type on same entities. More details are discussed
in Appendix D.

6 Statistics of Corpus and Problem
Formulation

In this section, we describe the statistics of this new
dataset, the comparison with precious corpora, and
formulated tasks.

6.1 PcMSP corpus
We outline the main material science corpus in
Table 2, including Materials Science Procedural
Text (MSPT) (Mysore et al., 2019), SC-CoMIcs
(Yamaguchi et al., 2020), SOFC-exp (Friedrich
et al., 2020) and MS-MENTIONS (O’Gorman
et al., 2021), as well as our PcMSP corpus. Among
those corpora, MSPT focuses on general solid-
state compounds and is most similar to ours. But
MSPT contains annotation for all sentences in syn-
thesis procedural paragraphs, even though many
of those sentences are actually describing mate-
rial characteristic methods rather than synthesis
procedures. On the other hand, the SC-CoMIcs
and MS-MENTIONS only contain entity mentions,
without any sentence or relation labels. In addi-
tion, the SOFC-exp corpus focuses on the whole

Item Train Validation Test
Synthesis procedures 243 31 31

Sentences 1972 275 221
Avg. sentence length 27.24 26.22 27.21
Avg. sentences/Doc 8.12 8.87 7.13

Entities 11585 1507 1516
Entity types 13 13 13

Relations 11176 1376 1435
Relation types 8 8 8

Tokens 53720 7210 6014

Table 4: Statistics of our annotated dataset.

articles rather than the procedural text and does not
contain full annotation of entity-to-entity relations.
The provided relations in the original SOFC-exp
dataset are constructed by only linking slot fillers to
the syntactically closest EXPERIMENT mention.

Our new PcMSP dataset simultaneously contains
the sentence, entity, and relation annotation from
305 polycrystalline synthesis-related open access
publications. Among the 2468 sentences extracted
from the synthesis paragraphs, 1497 sentences are
identified as the synthesis description involved in
an experiment. A total of 14608 entity mentions
with 13 entity types and 13987 relations with 8
relation types are labeled by materials experts. We
further show more corpus statistics for the training,
validation, and test set in Table 4. We provide the
train/validation/test split for potential use in the
future.

6.2 Task definition
The PcMSP corpus labels every sentence with en-
tity mentions and relations among entity pairs.
Formally, given a sentence of n words s =
{w1, ..., wn} with the labeled sentence type, entity
set E and relation set R, four information extrac-
tion tasks are introduced:

1) SC: classification of the sentence as an exper-
imental procedure sentence or irrelevant sentences,
2) NER: recognition of all named entities men-
tions in E , 3) RE: identification of the entity pair
relations in R and 4) Joint: joint extraction of all
entities and relations.

7 Results and Analysis

We present the main experimental results in this sec-
tion, and more modeling details are included in Ap-
pendix B. PURE refers to the advanced joint extrac-
tion model by (Zhong and Chen, 2021). For all the
experiments, we use the bert-base-uncased (Devlin
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Dev Test
Model F1 P R F1(%)

BERT-base 87.84 89.43 85.92 87.20
SciBERT 88.38 89.84 88.12 88.85
MatBERT 89.44 91.71 89.13 90.16

Human evaluation - 90.74 90.62 90.62

Table 5: Experiment-describing sentence classification
results in terms of F1 score on the test set. Scores are
reported on macro average.

Dev Test
Model F1 P R F1(%)

BERT + PURE 77.06 79.23 77.24 78.23
MatBERT + PURE 76.98 79.56 79.36 79.46
SciBERT + PcMSP 79.46 77.32 78.91 78.84

+ MS-Mentions 91.55 - - 91.47
+ MSPT 82.8 - - 78.15

+ SOFC-Exp 73 - - 78.57
Human evaluation - 90.05 89.26 89.46

Table 6: Named entity recognition results in terms of F1
score on the PcMSP test set.

et al., 2019), scibert-scivocab-uncased (Beltagy
et al., 2019), and matbert-base-uncased (Walker
et al., 2021) as encoders. Generally, BERT with
domain-specific pretraining considerably improves
the performance.

7.1 Sentence classification

We summarize the results for the experiment-
describing sentence detection in Table 5. For
this binary classification task, we fine-tune the
BERT, SciBERT, and MatBERT (Walker et al.,
2021) models, resulting in an F1 score of 87.20,
88.85, and 90.16%, respectively. The best re-
sult is achieved by MatBERT, demonstrating the
usefulness of domain-specific pretraining. The
close-human performance of sentence classifica-
tion stems from the obvious difference in expres-
sion between synthesis-describing sentences and
others. Generally, synthesis-describing sentences
contain 1) the material’s chemical formulas, 2) the
operations (usually certain verbs), and 3) experi-
mental conditions. In contrast, other sentences of-
ten describe the characterization approaches which
are totally different. In conclusion, synthesis sen-
tence detection is the foundation for other down-
stream tasks and the high detection accuracy guar-
antees the success of our workflow for other down-
stream tasks.

Entity Label Number P R F1
Brand 21 66.67 80.00 72.73

Descriptor 324 61.34 74.30 67.20
Device 79 66.67 79.37 72.46

Material − intermedium 96 55.68 50.52 52.97
Material − others 27 1.00 16.67 28.57
Material − recipe 150 70.66 75.16 72.84
Material − target 65 67.74 68.85 68.29

Operation 329 82.30 84.51 83.39
Property − pressure 41 62.22 70.00 65.88

Property − rate 15 92.31 92.31 92.31
Property − temperature 77 76.74 79.52 78.11

Property − time 72 83.08 85.71 84.38
V alue 187 76.63 87.58 81.74
Overall 1483 77.32 78.91 78.84

Human evaluation - 90.05 89.26 89.46

Table 7: NER per label performance on the PcMSP test
set by SciBERT.

7.2 Named entity recognition

In Table 6, we present the NER results obtained
from different models. Based on the synthesis
procedure sentences detected earlier, we train the
models only on the experiment-describing sen-
tences, ignoring irrelevant sentences. The SciB-
ERT model is trained with one CRF layer for se-
quence labeling and the MatBERT is stacked with
one additional forward layer for span-based tag-
ging. The MatBERT model with PURE achieves
the best F1 result of 79.46%, although a large
gap of 10 points still exists compared with the hu-
man agreement score. When looking at all the
label performance from Table 7, recognizing the
labels such as Property−rate, Property−time
and Operation achieves good scores of 92.31%,
84.38%, and 83.39%, respectively. On the con-
trary, the recognition is still difficult for labels like
Material− others,Material− interdium, etc.
One possible reason might be those mentions re-
quire cross-sentence reasoning, while the current
model is only trained on single sentences. We
also report SciBERT results on other previously
mentioned materials procedural datasets and the
overall sentence-level results are very consistent.
Thus, a promising direction for improving the re-
sults is to include paragraph-level context or use
cross-domain transfer learning and we leave this
for future work.

7.3 Relation classification

In this section, the modeling is performed on gold
entities to investigate individual modeling capabil-
ity. The relation classification results are provided
in Table 8. For entity pairs without any relation,
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Relation Label Number P R F1
Brand− of 25 85.19 92.00 88.46

Condition− of 212 90.73 87.74 89.21
Coreference 140 72.79 70.71 71.74

Descriptor − of 349 83.92 88.25 86.03
Device− of − operation 87 86.59 81.61 84.02

Next− operation 109 84.62 90.83 87.61
Participant−material 296 80.74 80.74 80.74

V alue− of 217 87.67 88.48 88.07
NA 7102 97.62 97.42 97.52

Overall 8534 85.54 86.42 85.93
Human evaluation - 96.82 97.69 97.37

Table 8: RE per label performance on the PcMSP test
set.

a ‘NA’ label is given for modeling. Here, the hu-
man agreement score is calculated by treating one
annotation as gold and another one as predictions.
Among all of the relation modeling results in Ta-
ble 8, we can see that the F1 score is almost al-
ways above 80%, demonstrating promising predic-
tion results on all label levels. In particular, the
Condition − of and Brand − of relation pre-
dictions achieve a high F1 score of 89.21% and
88.46%, respectively. But Coreference predic-
tion is more difficult, achieving only 71.74 points.
Overall, the RE modeling achieves comparable re-
sults to those of human annotators, although leav-
ing more than 10% points for improvement. Sim-
ilarly, we believe cross-sentence information can
further improve the results and leave it for further
investigation.

7.4 Joint entity and relation extraction

Previous sections consider entity and relation ex-
traction separately, but the practical scenario in-
volves joint extraction of entities and relations.
Here we use the super performing joint extraction
PURE (Zhong and Chen, 2021) model to evaluate
the joint extraction performance. The PURE model
first produces all the possible entities and then uses
these predicted entities for relation extraction. Fol-
lowing their work, the evaluation is conducted on
three metrics: (1) Ent: a predicted entity is correct
only if the predicted span boundaries and entity
type are both correct. (2) Rel: a predicted relation
type is correct given the correct boundaries of two
spans. (3) Rel+: in addition to the boundaries re-
quirements, the predicted entity must conserve the
correct type.

As can be seen from Table 9, the joint model
demonstrates a 79.46% F1 score in terms of the
entity prediction. As for the relation prediction, a
much lower F1 score is observed for both Rel and

Joint P R F1 (%)

Ent 79.56 79.35 79.46
Rel 67.55 65.85 66.69

Rel+ 63.33 61.74 62.53

Table 9: Joint entity and relation extraction results on
test set.

Rel+, with 66.69% and 62.53% respectively. This
is not unexpected since the RE relies on the previ-
ous entity prediction result and the error inevitably
propagates. Compared with previous individual
extraction, the joint extraction achieves lower re-
sults and leaves a large margin for improvement.
Considering the goal of action graphs extraction
from procedures is the joint extraction of all entities
and relations, we encourage more research towards
better modeling. Also of notice, the current joint
evaluation is on a single sentence, while more re-
alistic end-to-end extraction is conducted on the
whole paragraph. And cross-sentence relations will
also preserve in such a scenario, but this is out of
the scope of this work.

8 Conclusion

In summary, we contribute a new dataset PcMSP
collected from 305 open access scholarly publica-
tions for action graphs construction from material
synthesis procedures. The two-round human ex-
pert’s annotations guarantee the high quality of the
dataset, which is evident by the agreement study.
Based on this new dataset, we perform sentence
classification, named entity recognition, and rela-
tion extraction tasks. We also experiment with the
joint extraction of entities and relations. Several
good-performing neural models are utilized to pro-
vide competitive baselines, although leaving a big
gap compared with the human upper bound. To
alleviate the data scarcity of this domain, we will
make our dataset publicly available.

Some future directions would be to investigate
incorporating cross-sentence context, improving
the joint extraction results, performing paragraph-
level end-to-end extraction, as well as using our
PcMSP to investigate domain adaptation. For ex-
ample, pre-training with distant supervision in the
materials domain might also help improve the re-
sults. Considering the high labeling cost, how to
efficiently transfer knowledge into other domains
to reduce human annotations is also of great impor-
tance.
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Limitations

Even though we try our best to guarantee high anno-
tation quality, inaccurate labels may still exist. We
are not responsible for any products derived from
our dataset. Also, the real-world end-to-end actions
graphs construction involves the whole pipeline
and will inevitably face the error propagation prob-
lem.

Ethics Statement
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access publications and we make our dataset pub-
licly available, but further use might also fall into
potential limitations required by certain journals.
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tors are paid as research assistants following the
campus policy.
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A Background on Polycrystalline
Materials

Polycrystalline materials are solids composed of
small randomly oriented crystallites, also called
grains, with the size varying from a few nanome-
ters to several millimeters. Most of the inorganic
solid materials available in macroscopic quantities
are in fact polycrystals, including common met-
als, ceramics, and rocks. They provide versatility
in numerous applications such as superconductors,
batteries, photovoltaic cells, and shape memory al-
loys (Husain et al., 2018; Peng et al., 2018, 2017;
Biswal and Mohanta, 2021).

Figure 3: Material classification based on the degree
of atomic order: (a) single-crystal, (b) amorphous, (c)
polycrystalline.

The structure of a single crystal or monocrys-
tal (Figure 3a) is continuous and highly ordered,
while an amorphous phase (non-crystal) (Figure 3b)
such as glass does not display any structures, as the
constituent atoms are not arranged in an ordered
manner. In-between these two extremes, a polycrys-
tal (Figure 3c) exists, which is made up of many
crystallites, also referred to as grains. During the
solidification of polycrystalline materials, small nu-
clei first form at different spots of the liquid sample
and subsequently absorb atoms from the surround-
ing liquid to grow into larger grains. These grains
vary in size from nanometers to millimeters and
are randomly oriented with no preferred direction
in the structure. Therefore, a large enough volume
of polycrystalline material can be approximately
considered isotropic. Compared to single crystals,
polycrystalline materials also require less sophis-
ticated techniques to make, significantly lowering
the cost of production. As most real-world solids
are polycrystalline materials, it is critical to syn-
thesize and understand polycrystalline materials.
A substantial number of studies have been done
by researchers across the world to discover new
materials. This work exacts knowledge from those
synthesis processes and aims to guide the synthesis
efforts toward the unexplored space.
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B Modeling

We mainly use PURE (Zhong and Chen, 2021) as
backbones for our tasks.

B.1 Sentence classification

Sentence classification is a binary text classification
problem. We build one additional layer on top of
the BERT and fine-tune it for another 10 epochs.

B.2 Named entity recognition

For the SciBERT model, we stack another condi-
tional random field (CRF) (Tseng et al., 2005) layer
on top of SciBERT for sequence labeling following
the traditional BIO notation. For the MatBERT re-
sult, we follow the span-based approach in (Zhong
and Chen, 2021) to obtain the contextualized rep-
resentation for any span and feed it into another
forward layer to predict the entity type.

B.3 Relation classification

We utilize the span representations of entity men-
tions for relation prediction with typed entity mark-
ers as proposed by the relation model in (Zhong
and Chen, 2021).

B.4 Joint extraction

Following (Zhong and Chen, 2021), the predicted
entities are fed into another encoder for relation
prediction. And we adopt two different encoders
for the joint extraction of entities and relations.

C Experimental settings

We select the best combination of hyperparame-
ters from the development set by random search.
Three random seeds are chosen for all models, and
we report the results based on the median perfor-
mance. The standard macro-average precision(P),
recall(R), and F1 scores are calculated.

The Adam optimizer (Kingma and Ba, 2015) is
used for all models. Other parameters are selected
within a range of values, for example learning rate
ranges from [1e-4, 5e-5, 1e-6] and batch size of 8
or 16. The models are implemented in PyTorch12,
and a Tesla P40 with 24GB RAM is used for all ex-
periments. The model takes around half-hour, one
hour, and three hours for the training of sentence,
entity, and relation tasks for 10 to 50 epochs.

12https://pytorch.org

Sentence Label Number P R F1
Synthesis 153 89.57 95.42 92.41

Non-synthesis 103 92.47 83.50 87.76
Overall 256 90.74 90.62 90.62

Table 10: Human agreement score on experiment-
describing sentences.

C.1 Data preprocessing

Each plain text document containing the synthesis
paragraphs is imported into the INCEpTION plat-
form, which also performs the sentence segmenta-
tion and word tokenization by its built-in algorithm.
After tokenization, each sentence is mapped with
the corresponding entity mentions and relations,
which includes the named entity type, position, to-
ken information, and the relations type, as well as
left and right position information.

D Inter-annotator Agreement Study

Despite from Fleiss’ kappa for measuring agree-
ments in Table 3, we describe more details in this
section.

D.1 Sentences annotation

Given a paragraph selected from a scientific pub-
lication, we first examine the synthesis-related
sentences. In practice, the annotators only label
synthesis-related sentences for the entity and re-
lation information. All other sentences without
labeling are considered non-synthesis sentences.
To compare the model’s performance with human
annotation, 32 documents are labeled by two main
annotators in the second round individually. Then
one annotation is regarded as the ground truth and
the other is treated as a prediction. A micro-average
F1 score of 90.62% is calculated between the two
annotators. Additional details about the precision,
recall, and F1 score is shown in Table 10. In gen-
eral, the main annotator selects 153 of the 256
sentences to label as synthesis-related sentences,
while the second annotator chose 163 to be labeled
as target sentences. The overall result demonstrates
high-quality annotations and can serve as a human
agreement score for further baseline.

D.2 Named entity annotation

Following the previous step, all of the entity men-
tion boundaries are first recognized by the annota-
tors and then one entity label is chosen from the
predefined entity labels to represent the entity type.
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Entity_Label Number P R F1
Brand 21 94.74 85.71 90.00

Descriptor 324 83.49 82.72 93.10
Device 79 93.67 93.67 93.67

Material − intermedium 96 87.37 86.46 86.91
Material − others 27 74.19 85.19 79.31
Material − recipe 150 86.84 88.00 87.42
Material − target 65 96.83 93.85 95.31

Operation 329 94.08 91.79 92.92
Property − pressure 41 90.00 87.80 88.89

Property − rate 15 92.86 86.67 89.66
Property − temperature 77 86.59 92.21 89.31

Property − time 72 95.71 93.06 94.37
V alue 187 91.57 87.17 89.32
Overall 1483 90.05 89.26 89.46

Table 11: Human agreement score on NER.

Entity_Label Number P R F1
Brand− of 18 100.0 100.0 100.0

Condition− of 174 100.0 97.13 98.54
Coreference 69 81.43 82.61 82.01

Descriptor − of 256 93.94 96.88 95.38
Device− of − operation 69 98.48 94.20 96.30

Next− operation 99 98.97 96.97 97.96
Participant−material 229 94.35 94.76 94.55

V alue− of 162 97.53 97.53 97.53
Overall 1076 96.82 97.69 97.37

Table 12: Human agreement score on RC.

Among the recognized overlap of 143 experiment-
describing sentences from the previous step by both
annotators, one annotator recognizes 1483 named
entities while the second annotator considers 1345
entity mentions as necessary to be labeled. The
agreement metric is calculated by treating one re-
sult as the true value, while the second result is
used as a predictive value. The overall P, R, and
F1 scores are given in Table 11 in terms of per
label performance. As can be seen from the re-
sults, two of the annotators agreed on the majority
of the labels, while in some circumstances (like
Material − others), the score is relatively lower,
due possibly to a different understanding of those
entity mentions.

D.3 Relation annotation

Here we focus on relation annotation based on a
given entity pair. When both annotators first agree
on the same entity pair, the agreement F1 score
is 97.37%, demonstrating the high quality of the
annotation.

Figure 4 shows the confusion matrix of relations
between the two lead annotators.

Journal Train Validation Test
Elsevier 46 6 4
ArXiv 81 5 8

Nature family 71 13 13
ACS family 13 4 2
APS family 28 3 4

Others 4 0 0

Table 13: Document distribution among main journals:
ACS: American Chemistry Society, APS: American
Physical Society, and others refers to other journals not
included here.

Figure 4: Confusion matrix over relations between the
two lead annotators.

E Document Distribution Among
Journals

Table 13 demonstrates that the source of our col-
lected documents is distributed among different
journals. Considering that the writing style and
publication requirements of different journals vary
a lot, we aim to include documents from a range of
sources to make the dataset more diverse.

F Annotation Examples and Statistics

Common examples of entity mentions and relation
triples are shown in Table 14 and Table 15, respec-
tively. The relation triple has the form of ri: (ei,
ej), where ri is one relation label, while ei and ej
denote the entity mention within one sentence.
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Entity Label Count Frequent mentions Percentage
Descriptor 2450 Polycrystalline, quartz, polycrystalline 21.15

Material − target 442 Ca2CeCr2TiO9, powder, sample 3.82
Brand 317 Alfa Aesar, Aldrich, Sigma-Aldrich 2.74
Device 662 tube, crucible, glove box 5.71

Material − intermedium 772 pellets, mixture, samples 6.66
Material − others 158 water, distilled water, oxygen 1.36
Material − recipe 1270 Fe, As, materials, Fe2O3 10.96

Operation 2439 heated, sealed, mixed 21.05
Property − pressure 401 air, argon atmosphere, vacuum 3.46

Property − rate 126 heating rate, cooling rate, 1 K/min 1.09
Property − temperature 664 room temperature, temperature, 900 °C 5.73

Property − time 506 24 h, 30 min, 2 days 4.37
V alue 1378 >99.9%, stoichiometric amounts, 10 mg 11.89
Overall 11585 100.0

Table 14: Annotated entity mention statistics in the training set.

Relation Label Count Frequent mentions Percentage
Descriptor − of 2796 (purity, 99.6%), (Polycrystalline, materials) 25.02

Participant−material 2147 (Pb, melting), (SrCO3, sealed) 19.21
Coreference 1171 (OsO2, powder), (CuO, mixture) 10.48
V alue− of 1737 (99.99%, Bi2O3), (50 mg, I2) 15.54

Condition− of 1547 (800 °C, heated), (10 hours, held) 13.84
Next− operation 805 (kept, heated), (sealed, evacuated) 7.20

Device− of − operation 637 (glove box, grinding), (calcined, ground) 5.70
Brand− of 336 (Aldrich, (TPrA)Br), (Alfa Aesar, ZrO2, ) 3.01

Overall 11176 100.0

Table 15: Annotated relation pair statistics in the training set.
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