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Abstract

We present MCPG: a simple and effective
approach for controllable unsupervised para-
phrase generation, which is also flexible to
adapt to specific domains without extra train-
ing. MCPG is controllable in different lev-
els: local lexicons, global semantics, and uni-
versal styles. The unsupervised paradigm of
MCPG combines factual keywords and diversi-
fied semantic embeddings as local lexical and
global semantic constraints. The semantic em-
beddings are diversified by standard dropout,
which is exploited for the first time to increase
inference diversity by us. Moreover, MCPG
is qualified with good domain adaptability by
adding a transfer vector as a universal style con-
straint, which is refined from the exemplars re-
trieved from the corpus of the target domain in a
training-free way. Extensive experiments show
that MCPG outperforms state-of-the-art unsu-
pervised baselines by a margin. Meanwhile,
our domain-adapted MCPG also achieves com-
petitive performance with strong supervised
baselines even without training.

1 Introduction

Paraphrase generation aims to restate a given sen-
tence in a way that conveys the same semantic
meaning but uses a different expression form. Para-
phrasing results benefit lots of downstream tasks,
such as text classification (Wang et al., 2022; Chen
et al., 2019a), question answering (Dong et al.,
2017; Cheng et al., 2021), and semantic match-
ing (Chen et al., 2022). Traditional approaches
(Prakash et al., 2016; Gupta et al., 2018) require
supervised training on large parallel corpora. How-
ever, it is expensive for manual annotation. Thus,
unsupervised methods are welcomed in the absence
of annotated datasets (Bowman et al., 2016; Wiet-
ing et al., 2017; Miao et al., 2019; Hegde and Patil,
2020; Meng et al., 2021; Shen et al., 2022).

*Corresponding Authors

In this paper, we focus on controllable unsuper-
vised paraphrase generation, which is a promising
direction and some progress has been achieved.
However, most existing works are either limited
by the supervised settings (Iyyer et al., 2018; Chen
et al., 2019b; Kazemnejad et al., 2020; Huang and
Chang, 2021; Bandel et al., 2022) or mainly ex-
plore to control generation from a single perspec-
tive (e.g., syntatic diversity) in the unsupervised
condition (Huang and Chang, 2021). Multi-level
controllable approaches for unsupervised genera-
tion are still not well explored. To this end, we
propose a simple and effective framework for unsu-
pervised paraphrase generation called Multi-level
Controllable Paraphrase Generator (MCPG), as
shown in Figurel. Overall, MCPG is controllable
in three levels, i.e., global semantics, local lexicons,
and universal styles. This approach is motivated by
a commonly observed phenomenon that the human
paraphrasing process is decomposable at different
levels. For example, given a sentence, we first read
it through to capture the general semantic meaning
(global semantics). Then we read over to iden-
tify factual keywords like names of persons and
locations, which should be protected from tamper-
ing (local lexicons). Furthermore, if there are any
exemplars for reference, we may optionally get
inspirations from them regarding word editing or
sentence restructuring (universal styles). Finally,
we rewrite the remaining parts as much as possible
while preserving the original meaning.

Figurel(a) shows the basic paradigm of MCPG
tailored for the unsupervised scenario. We employ
T5 (Raffel et al., 2020) as the Generator backbone
to integrate both global semantic and local lexical
constraints. The whole model is trained by recon-
structing input text, which is compatible with the
denoising objective for pretraining T5.

The global semantics is controlled by the seman-
tic embedding. We show that enabling dropout in-
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i * (dp=0.10) What is it like to study a7z McGill University ?
i * (dp=0.12) What is it like to study , 70 be at McGill University ?

i * (dp=0.16) What does it mean to study like this inside McGill University ? i
e (dp=0.22) What is it like to he @ student in McGill University ? i
-
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Figure 1: Model overview. (a) MCPG-basic is the basic framework tailored for the unsupervised scenario, which
controls the global semantics through the semantic embedding and the local lexicons through the pre-specified
factual keywords. The semantic embedding is disturbed by the dropout mechanism inside the Semantic Encoder
with a probability dp, which controls the output diversity. (b) MCPG-adapt is the refined framework which controls
the universal style through a transfer vector. This version is designed to increase the model’s domain adaptability
when annotated exemplar paraphrases from the target domain are available in a training-free way.

side the Semantic Encoder during inference works
well in creating different semantic embeddings
for the same sentence while keeping the seman-
tic meaning. This provides a helpful guidance for
MCPG to generate paraphrases with various ex-
pression forms. Besides, we can further control the
diversity degree by tuning the dropout probability
and filter bad semantic embeddings according to
the cosine similarity between them and the dropout-
disabled standard embedding of the same input.

The local lexicons are controlled by the key-
words. Previous works (Zeng et al., 2019; Su et al.,
2021; Yang et al., 2022) pre-specify keywords us-
ing either rule-based or model-based methods, but
neglect the importance of factual entities, which are
actually the unchangeable words we must copy dur-
ing paraphrasing. Towards this, we adopt Named
Entities Recognition tools to identify factual en-
tities like names of persons and locations as key-
words. Fixing this kind of keywords turns out to be
an effective way for improving paraphrase quality.

In Figure 1(b), we offer an alternative option
to constrain the universal style of outputs, which
helps MCPG adapt to the target domain efficiently
without training.

The universal styles are controlled by a transfer
vector, which implicitly encodes the lexical and
structural mapping mode between a pair of exem-
plar paraphrases retrieved from the training set of

target domain. This mode is similar to style transfer
(Riley et al., 2021). We derive the transfer vector
via subtracting the semantic embeddings of two
parallel paraphrases, which requires no extra train-
ing. By adding the transfer vector to the semantic
embedding of the input sentence, our model is in-
spired to paraphrase in a tone more consistent with
the target domain.

Our contributions are to: (1) present a multi-
level controllable framework for unsupervised para-
phrase generation which is flexible for domain
adaptation; (2) propose a dropout-diversified se-
mantic encoding method to control both the global
semantics and output diversity; (3) explore the im-
portance of factual entities to control local lexicons;
(4) use the transfer vector based on target domain
exemplars to control universal styles in an efficient
way that requires no extra training.

2 Related Work

Supervised Approaches Recent works on super-
vised paraphrase generation mainly focus on im-
proving paraphrase quality using neural models
(Prakash et al., 2016). An important direction is
to make the generation process more controllable
either from a single perspective or in a hybrid way.
One approach is to seek guidance from exemplars
(Iyyer et al., 2018; Chen et al., 2019b; Goyal and
Durrett, 2020; Kazemnejad et al., 2020; Yang et al.,
2021). Another approach is to identify keywords to
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control lexicons (Zeng et al., 2019; Su et al., 2021).
Fu et al. (2019) use predicted neighbors of source
words to form target paraphrase. Li et al. (2019)
decompose paraphrasing transformation into dif-
ferent granularity levels. Other hybrid methods
include (Yang et al., 2022; Bandel et al., 2022).
Although these models controlled by various con-
straints demonstrate promising performance, they
require parallel data for training, which is labor-
intensive and inextensible to other domains.

Unsupervised Approaches There are two main
lines for unsupervised paraphrase generation:
optimization-oriented and pivot-based methods.
The goal of optimization-oriented methods (Miao
etal., 2019; Liu et al., 2020; Siddique et al., 2020)
is to find the optimal paraphrase by optimizing
an objective function that considers semantic fi-
delity, expression diversity, language fluency, etc.
Nonetheless, designing reliable metrics to auto-
matically evaluate the quality of paraphrases has
been a long-standing problem. The pivot-based
approaches aim to first represent the input sentence
by some kind of pivot and then reconstruct the in-
put from it (Cai et al., 2021). A popular pivot is
the latent semantic representation learned by a vari-
ational autoencoder (VAE) (Bowman et al., 2016;
Roy and Grangier, 2019), which is mathematically
interpretable but hard to train intrinsically. An-
other method is to use other languages as a pivot
(Wieting et al., 2017; Lapata et al., 2017; Wiet-
ing and Gimpel, 2018; Guo et al., 2019), which
relies on external machine translation systems. The
works most similar to us explore to take advantages
from large-scale language models and adopt cor-
rupted sequences as paraphrasing pivot (Hegde and
Patil, 2020; Niu et al., 2021; Meng et al., 2021).
However, these methods lack a global semantic
guidance due to the absence of the complete input
sentence. In addition to the above methods, Huang
and Chang (2021) take the first step towards syntac-
tically controllable unsupervised paraphrasing by
manipulating the embedding of the potential con-
stituency parse tree. Whereas, it is time-consuming
for constituent parsing, which may increase time
complexity for paraphrase generation.

3 Model

3.1 Overview

Figurel illustrates the overall architecture of
MCPG. The basic framework in Figurel(a) de-

noted as MCPG-basic is built for the unsupervised
condition, which consists of three modules, i.e.,
Dropout-enabled Semantic Encoder, Factual Key-
word Selector and Controllable Generator. Given a
source sentence, we first encode its semantic mean-
ing into a dense vector x via the Semantic Encoder,
which performs the dropout operation internally to
obtain diverse semantic embeddings. In addition to
using the dropout disturbed embedding as a global
semantic constraint, we also provide the Genera-
tor with a few keywords W = {w;}22, as a local
lexical constraint to ensure that factual entities are
preserved. Figurel(b) shows how to further con-
trol the universal expression style with the adapted
framework MCPG-adapt when annotated samples
from the target domain are available. We seek guid-
ance from the transfer vector v based on parallel
exemplars, which are retrieved by the Exemplar
Provider from the training set of target domain. By
adding the semantic embedding x with the trans-
fer vector v, the Generator is allowed to produce
paraphrases that are more adaptive with the target
domain. Note, the style constraint based on anno-
tated exemplars is not involved during training. We
only use it to increase the model’s domain adapt-
ability in a plug-and-play way.

3.2 Global Semantic Constraint

The Semantic Encoder is responsible for deriving
an embedding for the input sentence, which is help-
ful for both preserving global semantics of the orig-
inal sentence and increasing expression diversity.

SimCSE (Gao et al., 2021) has been proved to
be effective for sentence representation. We follow
them to perform unsupervised contrastive learn-
ing upon BERT and use it as the backbone for our
Semantic Encoder. The last-layer [CLS] represen-
tation is taken as the semantic embedding. Note,
the semantic similarity between two sentences can
be measured by the cosine distance of their embed-
dings. This is helpful for filtering bad semantic
embeddings (see the last paragraph of this section)
and retrieving exemplar (see Sec 5.1).

Dropout is a useful technique for deep network
regularization. Conventionally, we only turn it
on during training and disable it during inference.
Here, we show that enabling dropout during in-
ference is helpful for producing embeddings with
subtle difference for the same input while keeping
the semantics, thus guiding the model to generate
more diverse paraphrases.
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Given an input sentence, we obtain the semantic
embedding « from the Semantic Encoder by

@« = SemEncoder(z, dp, drop = True), (1)

where dp denotes the dropout probability and
drop = True means the we enable dropout dur-
ing inference. On the other hand, the conventional
standard embedding & of the same input is derived
without dropout by setting drop = False. We only
use the build-in dropout mechanism inside BERT
and do not add any additional dropout operations.
We assume that the standard embedding & con-
veys the full semantic meaning of input sentence
without losing any information about the original
expression form. Whereas, x is continuously dis-
turbed by the dropout operation that acts on the
intermediate layers of the encoder. Generally, the
higher the dropout probability dp, the further away
the disturbed embedding & from the standard em-
bedding &, and the more diverse the generated texts.
Along this line, we can tune dp to achieve a trade-
off between semantic preservation and expression
diversity. Besides, we further control the dropout
behaviour by checking the similarity between
and . Only the semantic embeddings « with a
cosine similarity larger than a threshold A(= 0.75)
will be used for generating paraphrase candidates.

3.3 Local Lexical Constraint

Dense embeddings are effective for encoding
global semantics of sentences. However, like many
previous models, totally relying on a dense seman-
tic embedding for paraphrasing may fail to retain
important keywords, such as factual entities (e.g.,
persons and locations), which we do not hope to
change during paraphrase generation. Besides, us-
ing a few words as local clues tends to be helpful
for producing semantically consistent paraphrases
when the input text is long. Therefore, we utilize
entity-based keywords to make the model more
controllable in the lexical level.

We use the Keyword Selector to extract key-
words. We first adopt the high-accuracy version
of TexSmart fine-grained NER tool (Zhang et al.,
2020; Liu et al., 2021) to recognize a set of named
entities ¥V, from the input sentence. Then we re-
move the stop words and randomly sample the re-
maining non-entity keywords Wy every 3 ~ 10
words. W; and W, are combined to form the fi-
nal keyword set W = {wz}f\i 1- The subscripts :
corresponds to the order in which the specific key-
word appears in the input sequence. Note that the

selected keywords only account for a small propor-
tion of the whole sentence, which does not hurt the
output diversity too much.

3.4 Paraphrase Generator

We employ T5 (Raffel et al., 2020) as the Generator
backbone, which is based on an encoder-decoder
structure and shows strong performance in the text-
infilling task (Gao et al., 2022). We follow the
standard denoising objective used in the pretraining
stage of T5 to reconstruct the input sentence from
a list of keywords W. The only difference is that
we introduce the semantic embedding x as a global

semantic constraint. The generation function is
defined as

y = GenDecoder(x @ GenEncoder(W)). (2)

where GenEncoder and GenDecoder denote the
encoder and decoder of the T5-based Generator
respectively and & denotes concatenation.

To construct the input sequence for the GenEn-
coder, we separate the keywords WV by sentinel
tokens [BLANK_i], each of which stands for a con-
secutive span of missing content. For example in
Figure 1(a), the keywords only include “McGill
University”, thus the input sequence should be

“[BLANK_0@] McGill University [BLANK_1] "~

Denote the last layer hidden states of the GenEn-
coder as [hi, ho, ..., hg], where h; € R and S
is the input sequence length. We concatenate the
semantic embedding = € R¥ with them to form
[€,h1,...,hyN]. These vectors are then attended
by the Generator decoder in each layer as memory
vectors to guide paraphrase generation.

The goal of the GenDecoder is to fill in the
blanks (e.g., [BLANK_@] and [BLANK_1] in the ex-
ample input). That is, the decoder only predicts
the missing contexts and the output positions for
the given keywords, which are indicated by place-
holders [KEY_i]. For the above example input, the
target sequence should be

“What is it like to study [KEY_@] ? ”

where [KEY_0] indicates the input keyword
“McGill University”. By replacing the placeholders
[KEY_i] with corresponding keywords, we finally
obtain the paraphrase sentence .

Training Objective The whole model is trained
in an unsupervised way, where the target sentence
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y is exactly the input sentence z itself. The loss
function over the whole corpus D is defined as

L=— Z logp(x | &, W). 3)

z€D

3.5 Universal Style Constraint

MCPG-basic trained on the non-parallel corpus is
already qualified for paraphrase generation. In this
section, we refine it to MCPG-adapt with an addi-
tional style constraint when annotated exemplars
from target domain are accessible in a training-free
way, as shown in Figure 1(b).

Given an input z, we first retrieve the K most
similar paraphrase pairs {py, qx }=_, from the train-
ing corpus, where py and g, denote the parallel
paraphrases. The selection criterion is based on
the cosine similarity between the standard seman-
tic embedding of = and the average embedding of
{pk, qx} derived from the Semantic Encoder (3.2).
The selected pairs are taken as exemplars to guide
paraphrase generation.

Denote the semantic embeddings for a pair of
exemplar paraphrases p, ¢ as p, g € RY | and the
input sentence z as * € R¥. We model the dif-
ference of universal style between p and ¢ by a
transfer vector

we 4 _ P @
lall ll»]
where || - || denotes L2 norm. Note that, we assume

p is more syntactically similar to = than ¢ based on
the Levenshtein distance between corresponding
POS tag sequences. Otherwise we just swap p
and q in Equation (4). Then we transfer x to the
paraphrase embedding y by

T
y= (7 +v) x|z ()
]|
Finally, we decode the paraphrase sequence y by

y = GenDecoder(y, GenEncoder(W)),  (6)

where we just replace the semantic embedding
in Equation (2) with the transferred embedding y.

4 Experimental Setup
4.1 Datasets

There are two variants of our proposed model, i.e.,
the unsupervised MCPG-basic and the domain-
adapted MCPG-adapt. We evaluate MCPG-basic

on three widely-used datasets: Quora', MSCOCO
(Lin et al., 2014) and Twitter (Lan et al., 2017)
under the unsupervised setting following in Meng
et al. (2021). For MCPG-adapt, we compare it with
supervised baselines on both Quora and MSCOCO
datasets follow the supervised evaluation protocol
in Su et al. (2021). The details are as follows.

Quora is grounded from the duplicated question
pairs sharing the same answers in the Quora forum.
We use 30k instances for testing in the unsuper-
vised experiments. To validate the domain-adapted
performance, the size of training, validation and
test sets are 100k, 4k and 20k.

MSCOCO was originally constructed for image
caption, which contains 5 different captions for
each image. We randomly pick one of them as
source sentence and the rest as targets. We use 20k
test instances under the unsupervised setting. For
supervised experiments, we split the dataset into
93k, 4k and 20k for training, validation and testing.

Twitter was built from linked tweets sharing
URLs. There are both automatically and human
annotated sentence pairs. We only use the pairs
that are manually labeled as “paraphrases”, which
results in 566 instances for unsupervised testing.

4.2 Baselines and Evaluation Metrics

We compare MCPG-basic and MCPG-adapt with
unsupervised and supervised models respectively.

The unsupervised baselines include (1) VAE
(Bowman et al., 2016); (2) Lag VAE (He et al.,
2019); (3) CGMH (Miao et al., 2019); (4) UPSA
(Liu et al., 2020); (5) BT (Wieting et al., 2017); (6)
Corruption (Hegde and Patil, 2020); (7) ConRPG
(Meng et al., 2021). Results for the unsupervised
baselines are cited from Meng et al. (2021).

The supervised baselines include (1) ResidualL-
STM (Prakash et al., 2016); 5-VAE (Higgins et al.,
2017); (2) Transformer (Vaswani et al., 2017); (3)
DNPG (Li et al., 2019); (4) LBOW-Topk (Fu et al.,
2019); (5) LBOW-Gumbel (Fu et al., 2019); (6)
IANet+X (Su et al., 2021); (7)IANet+S (Su et al.,
2021). Results for the supervised baselines are
cited from Su et al. (2021).

We evaluate all models by several automatic met-
rics: BLEU (Papineni et al., 2002), iBLEU (Sun
and Zhou, 2012), and ROUGE (Lin, 2004). The

"https://www.kaggle.com/c/ quora-question-pairs
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4-gram BLEU and ROUGE scores of both 1 and 2
grams are reported. The iBLEU score is included
to penalize trivial outputs which simply repeat the
input sentence. We further calculate SelfBleu (Zhu
et al., 2018) to measure output diversity in Sec 6.1.
Lower SelfBleu score indicates better diverity.

4.3 Implementation Details

We implement the Generator of MCPG based on
the huggin-face T5-base checkpoint? on a subset of
CommonCrawl containing 243 million sentences.
To speed up training, we directly use the open-
source checkpoint of SimCSE® as our Semantic
Encoder and only update the parameters of Gener-
ator. During training, we set the learning rate to
le-3 and the batch size to 1024. During inference,
MCPG-basic first increases the dropout probabil-
ity dp from 0.1 to 0.2 to create different semantic
embeddings for the same input and then uses top-
k sampling to generate 1-best paraphrase based
on each embedding. Following Hegde and Patil
(2020), we eliminate the ones that are the same as
the input and obtain 10 distinct candidates. The
unsupervised results in Table 1 are reported on the
best candidates that achieve the top sentence-level
iBleu scores. Similarly, MCPG-adapt produces
K outputs conditioned on different exemplars re-
trieved from the training set. Table 2 shows the
results using 10, 15 and 20 exemplars respectively.

5 Experiments

5.1 Main Results

Unsupervised Performance From Table 1, we
see that our MCPG-basic significantly outperforms
most baselines across all three datasets. It is no-
ticeable that our model improves the Bleu scores
by a large margin, with 6.53 on Quora, 3.56 on
MSCOCO and 6.59 on Twitter respectively. This
is because most factual entities appear both in the
source and target sentences, which demonstrates
the effectiveness of our simple keyword selection
strategy in the unsupervised scenario. Directly
copying keywords from the source sentence may
hurt the diversity of generated paraphrases. Never-
theless, MCPG-basic still shows its superiority in
terms of the iBleu score, which considers both the
fidelity to reference and the difference from input.

*https://huggingface.co/t5-base
3https://huggingface.co/princeton-nlp/unsup-simcse-bert-
base-uncased

Model iBleu Bleu R-1 R-2
Quora
VAE 8.16 1396 4455 22.64
Lag VAE 873 1552 4920 26.07
CGMH 9.94 1573 4873 26.12
UPSA 12.03 1821 59.51 32.63
BT 11.64 1159 5820 32.04
Corruption 1232 1797 59.14 3244
ConRPG 12.68 1831 59.62 33.10
MCPG-basic  13.58 24.84 60.19 36.04
7777777777 mscoco
VAE 748 11.09 31.78 8.66
Lag VAE 7.69 11.63 3220 8.71
CGMH 7.84 1145 3219 8.67
UPSA 9.26 14.16 37.18 11.21
BT 9.72 1436 37.64 11.81
Corruption 10.32  15.60 38.12 12.40
ConRPG 11.17 1698 3942 13.50
MCPG-basic 1199 20.54 3845 13.64
T Twitter
VAE 2.92 346  15.13  3.40
Lag VAE 3.15 374 1720  3.79
CGMH 4.18 532 1996 544
UPSA 4.93 6.87 2834 853
BT 5.11 6.99 29.11 895
Corruption 5.32 7.11  29.80 9.32
ConRPG 5.83 7.32  30.81 10.08
MCPG-basic  7.66 1391 37.68 14.84

Table 1: Unsupervised performance.

Domain-adapted Performance Table 2 com-
pares the results of our domain-adapted model and
the supervised baselines, where the annotated par-
allel corpus from the target domain is accessible.
Note that, our model requires no extra training
on the annotated data, whose parameters stay the
same with the unsupervised MCPG-basic. Even
s0, MCPG-adapt achieves competitive performance
compared with the baselines which need supervised
training. Besides, the models’s performance im-
proves as the number of used exemplars increases.
Combined with Table 1, we find that, with the
help of transfer vectors, MCPG-adapt outperforms
MCPG-basic on both datasets. The improvement
on Quora is more significant than MSCOCO. A pos-
sible reason is the difference of data distribution.
During experiments we observe that, in Quora, the
retrieved exemplars from the training set are more
similar to the input sentence than MSCOCO, which
makes the derived transfer vectors more accurate
for paraphrasing guidance in Quora.

5.2 Human Evaluation

To further verify the performance of the proposed
model, we conduct human evaluation under the
unsupervised setting. We randomly sample 100
instances from the Quora test set and ask three an-
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Quora MSCOCO

Model iBlew Blew R-1 R2 | iBleu Blew R-1 R-=2
ResidualLSTM 1593 2369 55.10 3386 | 1872 23.66 41.07 1526
B-VAE, B=10"% | 1028 1973 47.62 2549 | 1834 2254 40.72 1475
Transformer 1798 2501 57.82 3258 | 19.81 2468 4149 15.84
DNPG 1801 2503 63.73 3775 | - - . .
LBOW-Topk 19.03 26.17 5879 3457 | 21.07 2527 4208 16.13
LBOW-Gumbel 18.97 26.14 5860 3447 | 2092 2498 4212 16.05
IANet+X 19.62 2652 5933 3501 | 2128 2606 4381 1635
IANet+S 2011 27.09 5998 36.02 | 22.03 2690 44.66 17.13
MCPG-adapt@10 | 21.08 33.58 66.78 4554 | 1456 23.06 40.03 14.67
MCPG-adapt@15 | 22.88 3588 68.14 47.79 | 1601 2475 4052 1538
MCPG-adapt@20 | 2393 3722 6891 49.11 | 17.12 26.13 4083 1581

Table 2: Domain-adapted performance. MCPG-adapt@K denotes the model variation using K exemplars.

Models Mean Rank  Agreement
UPSA 3.31 90%
Corruption 2.87 70%
MCPG-basic 2.07 96%
Reference 1.78 82%

Table 3: Human evaluation results.

notators to evaluate the output results from UPSA,
Corruption, MCPG-basic as well as the reference
4. Each model is given a rank from 1 (best) to 4
(worst) for each input sentence by comparing their
overall output quality w.r.t. semantic fidelity, lan-
guage fluency and surface-form diversity following
(Li et al., 2019). We report the mean rank of three
annotators over all the evaluation instances in Ta-
ble 3. Lower ranks are better. The agreement is the
rate that at least two out of three annotators give the
same rank to each model. The average Spearman’s
correlation coefficient between any two annotators
is 0.488. It is observed that MCPG-adapt reaches
the highest rank compared with UPSA and Corrup-
tion with high agreement, which demonstrates the
effectiveness of our method.

6 Detailed Analysis

6.1 Analysis of Semantic Constraint

During inference, we tune the dropout probability
of the Semantic Encoder to control the global se-
mantics and increase generation diversity (Sec 3.2).
We provide both qualitative and quantitative analy-
sis about how this works in Figure 2 and Figure 3.
In Figure 2, as the dropout probability dp increases
from 0.10 to 0.28, the input and output sentences
generally become more and more different. When
dp gets moderately larger (e.g., less than or equal to
0.18), the model produces paraphrases with more

4Since ConRPG (Meng et al., 2021) do not release their
code, we do not include it for human evaluation.

Input: you just lived through the hottest year on our
planet ever recorded.

you just lived the hottest year on our planet ever.
you just lived the hottest year we have ever had.
you just lived through the hottest year on earth
so far recorded.

you guys can live by the hottest year ever
recorded on #4is planet.

we just lived the hottest year you can ever feel
on the planet.

you lived through the year we just registered the
hottest 7ime on the planet.

you recorded us for the hottest era ever lived.
you just sweltered the hottest we have ever
recorded year of our lives.

in any case we recorded ‘the hottest planet ever

0.10
0.12
0.14

0.16

0.18

0.20

0.22
0.24

0.26

lived 'right now.
you got the record of the year through the
smallest possible time in our planet.

0.28

Figure 2: Example outputs of MCPG-basic conditioned
on different dropout probabilities (ranging from 0.10 to
0.28). Purple parts are new lexical expressions that do
not show up in the input sentence. Orange parts are old
words in the input but are used in a different way in the
output sentences.

181

—=— SelfBleu
Bleu

161 —— iBleu

14
124

101

0.10

0.18 0.22 0.26

Dropout Probability

0.14

Figure 3: Effect of the dropout probability.

diverse surface forms without losing the original se-
mantic meaning. However, if dp keeps increasing,
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Figure 4: Effect of the parallel data size.

it may slightly hurt the fluency of output sentences.
Besides, when dp becomes too large, the output
sentence may fail to keep the core semantics of the
input. The same trend can be statistically demon-
strated by Figure 3. We plot the metrics (SelfBleu,
Bleu, and iBleu) of MCPG-basic with different
dropout probabilities on Twitter. SelfBleu is used
to measure the similarity between input and out-
put. The smaller the SelfBleu, the more diverse the
output sentence. The results showcase that dropout
enables a new way to control paraphrase genera-
tion, where we can tune the dropout probability
to strike a balance between semantic fidelity and
output diversity.

6.2 Analysis of Style Constraint

In Sec 5.1, we have proven that, retrieving exem-
plars from the annotated parallel corpus as a univer-
sal style constraint is helpful for domain adaptation,
where our model achieves competitive results with
the supervised models even without training. Here,
we show that our model is also more robust to the
size of annotated corpus than the traditional su-
pervised models. Since IANet+S (Su et al., 2021)
does not release codes, we reimplement LBOW-
Topk (Fu et al., 2019) and compare our model with
them on different parallel data sizes.

Figure 4 shows a dramatic drop in the Bleu score
of LBOW-Topk as the size of Quora parallel cor-
pus decreases from 100K to 500. On the contrary,
the Bleu score of MCPG-adapt@ 10 still remains
above 25.00 when there are only 500 candidates for
retrieval. One reason is that our model only uses
the retrieved exemplars from the parallel corpus as
an assistant for paraphrase generation, but does not
rely on them to update model parameters. The other
reason is that, although the retrieved exemplars may

Input: what is the best way to improve your chess skills ?

p: what is the best way to teach chess to children ?
q: what is the best way and right age to introduce chess to a child ?
y: what is the best way to improve your chess skills and the right

age to enter ?

p: which age is the best to start teaching my little son to play
chess ?

q: what are the benefits of teaching children to play chess and
what is a good age to start ?

y: what are the benefits of playing chess and what is a good way
to improve your skills ?

: what is the best method of learning to speak a language ?
: which are the best methods to learn a language ?
1 which are the best methods to help you improve your skills ?

: what is the best thing we learn in business school ?
: what is the most important thing to learn in a business school ?
: what is the most important way to improve your skills in chess ?

T <€ Qe T |Kas

: what do you think is the most difficult language for anyone to
learn ?

q: which language do you think is the most difficult all over the
world ?

y: which way is the best way to improve your chess skills around
the world ?

Figure 5: Example outputs of MCPG-adapt conditioned
on different exemplars. Purple parts are new expressions
in the output y inspired by the exemplar pair (p, q).
Orange parts are old expressions that both appear in the
input and output sentences.

Metrics Quora MSCOCO Twitter
iBleu 1184 (-1.74) 11.29(-0.70) 4.80(-2.86)
Bleu  21.31(-3.53) 17.75(-2.79)  8.05(-5.86)

R-1 55.27 (-4.92) 3592 (-2.53) 28.74 (-8.94)
R-2 31.29 (-5.35)  12.02(-1.62) 12.02(-2.82)

Table 4: Performance of MCPG-basic with random
keywords. The ‘blue’ parts indicate the performance
degradation compared with the results in Table 1.

become less similar to the input sentence in the se-
mantic level when the annotated data size shrinks,
our model can still benefit from mimicking the uni-
versal style mapping mode of exemplars through
the transfer vector. Figure 5 lists some example
outputs guided by different exemplars. The similar-
ity between the input sentence and the exemplars
decreases from top to bottom. Nevertheless, our
model is able to generate reasonable paraphrases
under different conditions.

6.3 Analysis of Lexical Constraint

Table 4 reveals the importance of using factual key-
words as a local lexical constraint. Replacing the
factual entities with random keywords negatively
affects the results on three datasets in different de-
grees. This effect is most significant on Twitter,
where many sentences are about politics and are
more likely to contain the names of politicians,
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countries, etc. Nonetheless, this effect is less ob-
vious on MSCOCO, since image captions tend to
describe images in a more general way regardless
of the specific names of objects.

7 Conclusion

In this paper, we propose a simple and effective
model MCPG for more controllable unsupervised
paraphrase generation which is also flexible for
domain adaptation. MCPG decomposes the gen-
eration constraints into multiple levels: the global
semantics, the local lexicons, and the universal
styles in a human-like manner. Particularly, we
manipulate a transfer vector derived from the se-
mantic embeddings of exemplars to control output
styles, which provides a new possibility for domain
adaptation with annotated samples in a training-
free way. In future works, we will explore to (1)
control the model from more perspectives such as
the syntactic structure, (2) generate paraphrases
with higher quality than the input, i.e., to polish the
input texts.

Limitations

In this work, we investigate a multi-level con-
trollable approach for unsupervised and domain-
adaptive paraphrase generation. Despite the
promising experimental results, there are still some
limitations of our work:

* We use a default dropout probability during
training but tune it during inference, which
may cause a little inconsistency.

* We do not shuffle the factual keywords and
force the model to copy them, which may
slightly hurt the output diversity.

* We use the transfer vector based on parallel
exemplars to help the model in domain adap-
tation. Although the whole process is training-
free, it would be better if we could obtain
exemplar sentences without a parallel corpus.
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