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Abstract

We demonstrate how language can improve
geolocation: the task of predicting the loca-
tion where an image was taken. Here we
study explicit knowledge from human-written
guidebooks that describe the salient and class-
discriminative visual features humans use for
geolocation. We propose the task of Geolo-
cation via Guidebook Grounding that uses
a dataset of StreetView images from a di-
verse set of locations and an associated tex-
tual guidebook for GeoGuessr, a popular in-
teractive geolocation game. Our approach pre-
dicts a country for each image by attending
over the clues automatically extracted from
the guidebook. Supervising attention with
country-level pseudo labels achieves the best
performance. Our approach substantially out-
performs a state-of-the-art image-only geolo-
cation method, with an improvement of over
5% in Top-1 accuracy. Our dataset and code
can be found at https://github.com/g-luo/
geolocation_via_guidebook_grounding.

1 Introduction

Image geolocation plays an important role in many
applications, notably in fact checking and inves-
tigative journalism, as a means of verifying or de-
bunking claims that are illustrated with images.
For example, to verify the authenticity of video
evidence of human rights abuses in Cameroon, an
investigator manually matched the depicted roof
coloring, building architecture, and sign text to
StreetView imagery.1 Given the rising volume of
online mis- and disinformation, it is increasingly
important to develop accurate automated geoloca-
tion methods. Beyond the recent importance of
geolocation in fact-checking, it has also become a
popular pastime in the form of online games like

∗Denotes equal contribution.
1https://www.bellingcat.com/resources/case-

studies/2018/11/21/geolocation-infrastructure-
destruction-cameroon-case-study-kumbo-kumfutu

It is likely 
Sweden! 

Sweden often has 
white dashes on the 
sides of its roads. 

These dashes are 
different from the 
Norwegian dashes as 
they are shorter 
than the space 
between the dashes.

A key point to 
remember in GeoGuessr
is that if you see a red 
house or several red 
houses then you are 
probably in a Nordic 
country (Sweden, 
Norway, Finland, 
Iceland or Denmark).

Guidebook

Figure 1: When asked to guess a country where an im-
age was taken (e.g., Sweden), a person can ground the
knowledge expressed in a guidebook (e.g., red house,
white dashes) to an image to inform their prediction. We
propose the task of Geolocation via Guidebook Ground-
ing, where models are tasked to do the same.

GeoGuessr2 or Pursued.3 Since these games are so
popular, human experts often publish guidebooks
curating the most salient and discriminative cues
for geolocating an image to teach novice players.
For example, a guide might state that Sweden often
has white dashes on the sides of its roads (Figure 1),
knowledge a human can quickly understand and
apply towards all future geolocation attempts. In
contrast, most prior methods rely on training vision

2http://www.geoguessr.com
3https://www.nemesys.hu/Pursued
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models on millions of images paired with GPS lo-
cations in order to learn this task (Kalogerakis et al.,
2009; Weyand et al., 2016; Muller-Budack et al.,
2018; Theiner et al., 2022). Recently, the authors
of CLIP (Radford et al., 2021), a large-scale multi-
modal model, showed that CLIP’s implicit world
knowledge allows it to perform geolocation once a
linear classifier is added, but it does not reach the
state-of-the-art performance.

In this work we explore human-written text
guides as an additional source of knowledge to com-
plement image-based geolocation methods. Our
first contribution is the new task of Geolocation
via Guidebook Grounding that consists of a diverse
dataset of StreetView images and an associated text
guidebook created for the GeoGuessr game. The
goal is to classify images into one of 90 countries,
while leveraging the text clues by grounding them
to the target images. Our second contribution is the
proposed approach, G3, which learns to leverage
the guidebook. Namely, we combine a state-of-
the-art image-only representation with our novel
textual clue representation. To obtain a clue repre-
sentation, we attend over the guidebook sentences
(clues), while weakly supervising attention with
country-specific information. Adding the final at-
tended clue representation substantially improves
performance by more than 5% in Top-1 accuracy
of a state-of-the-art geolocation model.

2 Related Work

Geolocation. One of the first image-based geolo-
cation methods was introduced by Hays and Efros
(2008), who use various handcrafted visual fea-
tures to predict locations. Concretely, they use a
nearest neighbor method against a database of la-
beled images. More recent works use convolutional
neural networks (CNNs) rather than handcrafted
features (Weyand et al., 2016; Muller-Budack et al.,
2018; Theiner et al., 2022). Many works treat ge-
olocation as a classification problem (Kalogerakis
et al., 2009; Weyand et al., 2016; Muller-Budack
et al., 2018; Theiner et al., 2022), which requires
partitioning the world map into discrete cells.

Kalogerakis et al. (2009) discretize the map into
roughly equal size rectangular bins, and Weyand
et al. (2016) use a hierarchical partitioning via a
Quad tree (Finkel and Bentley, 1974) that splits
cells according to image density in order to ad-
dress data imbalances. (Theiner et al., 2022) uses
a semantic partitioning where the cells have irreg-

ular shapes that are influenced by man-made ge-
ographies (city/country borders) and natural fea-
tures (rivers, mountains, etc) in order to achieve
more interpretable results. Prior works typically
use large datasets of (image; GPS coordinate) pairs
sourced from websites such as Flickr (Hays and
Efros, 2008; Weyand et al., 2016; Kalogerakis et al.,
2009).

Our work differs from these in several key ways.
We are the first to show the usefulness of language
(e.g., in the form of a guidebook) for geolocation.
Moreover, in our problem statement, the task is to
classify images into 90 countries. We believe this is
a practical yet under-explored formulation, which
allows for a more natural connection between target
labels and knowledge expressed in textual form (as
opposed to a somewhat arbitrary cell partitioning).
Finally, our benchmark for Geolocation via Guide-
book Grounding consists of StreetView images, a
more focused domain than Flickr images, which
allows us to leverage the human-written guidebook
for the GeoGuessr game.

Learning with Knowledge. Prior works have
explored using external language knowledge for
various downstream tasks. For example, Yang et al.
(2021) adopt GPT-3 to visual question answering
(VQA) by leveraging the extensive knowledge of
GPT-3 for answering questions given an image cap-
tion as input. Marino et al. (2021) use external
knowledge bases and a graph neural network to
boost VQA performance. Similar to a line of work
in language grounding that condition on informa-
tion from instructive text or game manuals to im-
prove task performance (Eisenstein et al., 2009;
Branavan et al., 2009, 2012; Narasimhan et al.,
2018; Andreas et al., 2018; Zhong et al., 2020), we
leverage a guidebook to improve the performance
of an image-only geolocation model.

Advisable Visual Learning. A related line of
work explores the use of language to advise vi-
sion models. Kim et al. (2020) show how to lever-
age language advice in the form of observation-
action rules to better train an autonomous self-
driving agent. In another work, a reinforcement
learning soccer agent is trained from both the en-
vironment rewards and human-generated advice
(Kuhlmann et al., 2004). Rupprecht et al. (2018)
use inference-time language guidance to improve
a trained CNN’s performance on a segmentation
task. Mu et al. (2020) use captions associated with
images to define an auxiliary loss to improve visual
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GT Location: Thailand Guidebook Clues

Always be sure to look at both sides of Thai 
road markers and remember that Thai drivers 
drive on the left when they see the marker 
information.

Most Thai roads will have some form of 
yellow central line as well as continuous white 
edge lines.

Many Thai houses can also look quite affluent 
and be two-storey and fairly large.

This contrasts the very small circles seen on 
the end of most Thai characters. 

Posts that hold all types of Thai signs are 
unique in the world as they are wooden, 
painted white and importantly they have a 
section painted black on their base.

GT Location: Ghana Guidebook Clues

There are many signs in urban Ghana and the 
shops and houses typically have almost flat, 
corrugated iron roofs.

Northern Ghana has a drier feel which is 
reflected in its lack of grass and desert-like 
brown/reddish soil.

Other cars in Ghana have elongated white 
license plates for their rear and front. 

Some cars in Ghana have elongated yellow 
license plates on their rear and front.

Southern Ghana tends to be green in colour, 
have plentiful grass and have tropical, lush 
vegetation.

Figure 2: Examples from our dataset of StreetView Images and relevant Guidebook Text. Note how some clues
are grounded in the image, for example the image in Thailand depicts cars that drive on the left, a yellow central
line, and a house that is two-storey and fairly large. The image in Ghana depicts houses with flat, corrugated iron
roofs, brown/reddish soil, and a car with elongated white license plates. These relevant clues were found using our
country-based pseudo labels, discussed further in Section 4.

features for few-shot image classification. Here,
we leverage a human-written guidebook during
training, however we do not have any specific in-
structions or advice aligned to individual images;
instead we have a set of textual clues which we
ground to images.

3 Geolocation via Guidebook Grounding

While prior works (Hays and Efros, 2008; Weyand
et al., 2016; Larson et al., 2017) propose datasets
of paired images and locations, to the best of our
knowledge, none have proposed datasets with im-
ages, locations, and relevant textual knowledge. To
this end, we look to guidebooks for the interac-
tive geolocation game GeoGuessr4 as a source of
knowledge for the specific domain of StreetView
images. For our task of Geolocation via Guidebook
Grounding we put together a new diverse corpus
of StreetView images and an associated text from a
GeoGuessr guidebook (see examples in Figure 2).

Guidebook Text: GeoGuessr is a popular geolo-
cation game where the user is placed into a navi-
gable StreetView scene and must predict either the
GPS coordinates or the country (depending on the
gameplay mode). The game is so popular that peo-
ple have built a community of online forums and
guidebooks where they trade strategies for game-
play. To take advantage of this wealth of human
knowledge, we mine text from a popular guide for
playing the GeoGuessr game.5 Some of the key
features of this guide are that it has a broad country
coverage, is well structured, and has a more “for-
mal” style. The guide is meant to teach novice play-

4https://www.geoguessr.com
5https://somerandomstuff1.wordpress.com/

2019/02/08/geoguessr-the-top-tips-tricks-and-
techniques/

Figure 3: Number of guidebook clues associated with
each visual cue type.

ers visual cues that discriminate various countries,
for example the fact that Dashed white lines on the
edges of roads are quite common in the countries of
Denmark, Norway, Iceland and Sweden. The guide
is organized into sections for specific countries and
specific visual cues, covering 102 countries and
over 13 visual cue types (see Figure 3). For our
final knowledge base, we select sentences from
the guide that mention at least one location. We
use NER tags predicted by spaCy (Honnibal and
Montani, 2017) and filter for sentences with an en-
tity tagged “GPE”, “LOC”, or “NORP”, resulting
in 3,832 sentences, with an average length of 14
words. The clue sentences contain a total of 3,712
unique words and 3,182 unique lemmas.

StreetView Images: We collect a geo-diverse
dataset of StreetView panoramas that covers 90

5843

https://www.geoguessr.com
https://somerandomstuff1.wordpress.com/2019/02/08/geoguessr-the-top-tips-tricks-and-techniques/
https://somerandomstuff1.wordpress.com/2019/02/08/geoguessr-the-top-tips-tricks-and-techniques/
https://somerandomstuff1.wordpress.com/2019/02/08/geoguessr-the-top-tips-tricks-and-techniques/


Figure 4: Locations of 10k random panoramas in our geo-diverse StreetView dataset. Black dots denote locations
present in our dataset, and blue shadings denote locations available in StreetView.

Figure 5: Breakdown of semantic segmentation categories according to what percentage of images they appear in.

Train Validation Test

Count 322,536 3,888 3,600

Table 1: Our StreetView Images dataset statistics. Our
validation set is roughly balanced and our test set is
perfectly balanced with respect to 90 country classes.

countries. The Google StreetView API’s coverage
is fairly skewed, with countries in North America
having some of the most extensive coverage and
countries in Africa having the sparsest coverage
(see Figure 4). We gather at least 426 panoramas
per available country, as seen in Figure 4. We then
randomly split panoramas into training / valida-
tion / test sets. Finally, we “cut” each panorama
into four disjoint images, as our baseline models
were pretrained on images rather than 360-degree

panoramas. See Table 1 for the number of images
in each split of the dataset. Our training set con-
tains all four panorama cuts for a given image, but
our validation and test sets only contain one cut
to enforce independence of the evaluation samples.
While our training set is imbalanced, our validation
and test sets are balanced to ensure that each coun-
try is equally represented in the final classification
performance.

We also collect semantic segmentations to bet-
ter understand the content of our StreetView im-
ages (and for potential use in future work). We
use MaskFormer pretrained on Mapillary Vistas
(Cheng et al., 2021; Neuhold et al., 2017), which
provides segmentations for 66 categories specific to
street scenes. We report the distribution of these cat-
egories present in our StreetView dataset in Figure
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Argentina

Chile

Uruguay

…

Sweden

Netherlands

0.00 Nigeria

𝐿country
Country

Classifier

…

Clue 
Embeddings

Argentina also has plates 
with a blue horizontal line on 
top.

In the above image, there are 
vertical yellow and black 
stripes on the utility pole 
which are Japanese.

Swedish directional signs 
are blue with white 
lettering…

Guidebook Clues

0.98

0.01

0.01

…

0.00

0.00

Text
Encoder

0.76

0.08

0.00

Attention Layer

…
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age

Encoder

Figure 6: Overview of our G3 approach: We compute image embeddings for the query image, and a weakly
supervised attention layer computes a weighted average over the clue embeddings to generate an image-relevant
textual clue representation. During training the attention layer is weakly supervised with positive examples of clues
that match the image’s ground truth country. The image embedding is then concatenated with the clue representation
before being passed to a classifier.

5. As expected, most images contain “vegetation”,
“sky”, “road”, many contain “cars” and “lane mark-
ings”, and fewer contain “people”, “billboards”,
“mailboxes”, “fire hydrants” etc.

4 Approach

Our multimodal approach, G3, improves upon tra-
ditional image-only methods for geolocation with
the help of guidebook text. We concatenate the
visual representation of an image-only geolocation
model with a relevant textual clue representation
derived from our guidebook, and use it in a linear
country classification layer, see Figure 6.

Textual Clue Representation: Given an input
image to geolocate, we use a soft attention layer to
compute attention scores over each sentence (clue)
extracted from our guidebook to indicate its rele-
vance. We opt to use the location-based attention
mechanism of Luong et al. (2015) as other attention
mechanisms would take significantly more mem-
ory and time to train for a guidebook the size of
ours. Our soft attention layer takes an image query
d, encodes it with a frozen CLIP RN50x16 im-
age encoder fCLIP , and passes it through a fully
connected layer with a ReLU activation to obtain

attention logits for each clue in our guidebook:

fattn(d) = ReLU(W · fCLIP (d) + b). (1)

We precompute clue representations by applying
a frozen RoBERTa Base model (Liu et al., 2019)
to each clue in our guidebook.6 We then take the
weighted average of these clue representations to
obtain Ĝ, an image-specific summary textual clue
representation:

Ĝ =
1

|G|

|G|∑

i=1

σ(fattni(d))×Gi, (2)

where we apply a sigmoid activation to the attention
logits fattn(d) and take the i-th score to scale Gi,
the i-th clue representation.

Guiding Attention with Pseudo Labels: Given
the large number of clues in our dataset, we use
weak supervision to guide the attention mechanism
during training. We create pseudo labels associ-
ating clues to images using country information.
Specifically, we geoparse the clues via country
demonyms and lexical matching,7 mapping the

6For each sentence, we use the RoBERTa representation
of the CLS token.

7We also tried the neural geoparser Mordecai
(https://github.com/openeventdata/mordecai) but
found that lexical matching had higher precision and recall.
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named entities (as predicted by spaCy, see Sec-
tion 3) in the clues to country labels, and therefore
associated images. For example, a clue that men-
tions “Japanese” would be associated with images
where Japan is the ground truth label. On average
each image is matched to 76 country-relevant clues
(2% of all guidebook clues).

We then supervise the attention mechanism over
clues with these pseudo labels. We add a binary
cross entropy loss on our attention logits, where the
label is a one-hot vector for each clue in our guide-
book, defined by whether the clue mentions the
country of the input image. Our final loss function
is as follows:

(1− α)× Lcountry + α× Lattn (3)

where Lcountry is the cross entropy loss for our
country classification objective and α = 0.75 is the
weighting factor for our attention loss, determined
using grid search on our validation set. Since each
image is only associated with a handful of clues
(i.e. there are significantly more negatives than pos-
itives, or clues we do not want to attend over), we
also upweight the loss of positive pseudo labels.8

In summary, our pseudo labels map clues (e.g.
Argentina’s license plates are ...) to countries (e.g.
Argentina). At training time, we encourage the
model to attend to the clues relevant to the image’s
ground-truth country via the auxiliary loss Lattn.
At test time, given an input image, G3 predicts
attention weights over all guidebook clues without
any access to the ground-truth information.

5 Experiments

Baseline Models: For our baseline models we
use ISN, a unimodal model consisting of a visual
encoder and linear classification layer trained to
predict a hierarchical cell on Earth given an image
(Muller-Budack et al., 2018), and CLIP, a multi-
modal model consisting of a visual and text en-
coder trained to maximize the cosine similarity
of matched image-text pairs via contrastive learn-
ing (Radford et al., 2021). We adapt the ISN
ResNet50 model pretrained on millions of Flickr
images (Muller-Budack et al., 2018; Choi et al.,
2014) by modifying the output size of the final clas-
sification layer from the number of cells on Earth

8We also tried supervising our attention with MIL-NCE
(Miech et al., 2020) but observed that our approach empirically
outperformed MIL-NCE in early experiments.

to the number of countries in our dataset and fur-
ther fine-tune the model on our StreetView images.
While CLIP was not trained specifically for the ge-
olocation task, Radford et al. (2021) demonstrate
reasonable performance on a number of geoloca-
tion benchmarks such as Countries211 (Radford
et al., 2021) and Im2GPS (Hays and Efros, 2008)
via nearest neighbors regression, zero-shot predic-
tion, and/or linear probing. We adapt the CLIP
RN50x16 model pretrained on a large-scale web
image-text dataset (Radford et al., 2021) by taking
a frozen representation from its visual encoder and
feeding it to a linear classification layer (denoted by
‘CLIP Linear Probe’). We also include the nearest
neighbor version (CLIP Nearest Neighbor).

Implementation Details: In our experiments,
we either use the ISN visual representation alone
or concatenated with the CLIP visual embedding
(“ISN + CLIP”). We do this to study the comple-
mentarity of CLIP’s world knowledge to ISN.

Experimental Setup: We train our visual en-
coder and linear classifier at a learning rate of 1e-2
and attention layer at a learning rate of 1e-3 using
an SGD optimizer (following Muller-Budack et al.
2018), and batch size of 128 for 15 epochs. We
upweight the loss for countries that appear more
infrequently in our training data to account for its
distributional imbalance. We also apply batch nor-
malization on the inputs to the attention and linear
classifier layers.

Main Results: We report country classification
accuracy on the test set of our StreetView dataset
in Table 2 (we report the mean and standard devia-
tion over five seeds). Prior approaches such as ISN
and CLIP demonstrate competitive performance,
with 61% and 65% top-1 performance respectively.
CLIP Linear Probe provides a significant boost
of 17% over the nearest neighbor prediction. Fi-
nally, we observe the best performance from our
full method, G3, while using both the ISN and
CLIP visual representations along with the domain-
specific clue representations from our guidebooks,
achieving a 70% Top-1 classification accuracy.

Ablations: We further ablate the effect of the dif-
ferent components of our approach in Table 3.9

For both ISN and ISN + CLIP as visual repre-
sentations we report the effects of using no text,

9We report the respective ablations on the validation set in
the Appendix.
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Model Top-1 Top-5 Top-10

CLIP Nearest Neighbor 0.4336 0.6858 0.7806
CLIP Linear Probe 0.6081 ± 0.001 0.8789 ± 0.003 0.9417 ± 0.001
ISN 0.6527 ± 0.015 0.8817 ± 0.004 0.9379 ± 0.004
G3 (Ours) 0.7031 ± 0.002 0.9178 ± 0.004 0.9618 ± 0.002

Table 2: StreetView Image Country Classification Accuracy (Test)

Model Attn Supervision Top-1 Top-5 Top-10

ISN N/A 0.6527 ± 0.015 0.8817 ± 0.004 0.9379 ± 0.004
ISN + Random Text N/A 0.6559 ± 0.027 0.8840 ± 0.012 0.9403 ± 0.010
ISN + Guidebook No 0.6733 ± 0.011 0.8927 ± 0.008 0.9449 ± 0.005
ISN + Guidebook Yes 0.6972 ± 0.006 0.9115 ± 0.001 0.9561 ± 0.002

ISN + CLIP N/A 0.6448 ± 0.030 0.8908 ± 0.011 0.9470 ± 0.006
ISN + CLIP + Random Text N/A 0.6037 ± 0.035 0.8571 ± 0.017 0.9232 ± 0.010
ISN + CLIP + Guidebook No 0.6364 ± 0.037 0.8716 ± 0.018 0.9328 ± 0.013
G3= ISN + CLIP + Guidebook Yes 0.7031 ± 0.002 0.9178 ± 0.004 0.9618 ± 0.002

Table 3: Ablated StreetView Image Country Classification Accuracy (Test)

attending over random text, attending over guide-
book text, and including weak country supervision
for the latter. Our location-based attention mech-
anism introduces additional parameters into the
prediction network. To disentangle the degree to
which the improvements of our full method are due
to its use of the guidebook text versus this addi-
tional parameterization, we perform an experiment
that replaces guidebook sentences with the same
amount of sentences from the news domain (Biten
et al., 2019) (“Random Text”). For the ISN model,
we see that attending over random text maintains
the same performance as the image-only method
while guidebook text boosts the performance by
2%. For the ISN + CLIP model, random text sig-
nificantly hurts performance while guidebook text
maintains similar performance within 1%, which
implies that random text can have an adverse ef-
fect and guidebook text can be redundant when
combined with CLIP embeddings. However, when
we use guidebook text and weakly-supervise the
attention mechanism to encourage it to correctly
select country-relevant clues, we obtain the best
performance for both feature classes: 69.7% Top-1
for ISN, and 70.3% Top-1 for ISN+CLIP.

6 Analysis

Here we discuss qualitative success and failure
cases of G3 and the top clues attended over as well
as comparisons with baseline image-only methods.

Success Cases: In Figure 7, we show a quali-
tative example where baseline methods such as

ISN and ISN + CLIP incorrectly predict Kenya
and the UAE when the ground truth location is
Botswana. Both incorrect predictions are plausible
— Kenya is geographically close to Botswana, and
the UAE is also covered in desert. On the other
hand G3 correctly predicts Botswana, and we vi-
sualize the Top-10 clues retrieved by our attention
mechanism. G3 retrieves clues that mention its
final prediction, Botswana, that describe how the
roads are a blend of desert and savanna and in ex-
cellent condition. It also retrieves clues relevant
to the countries it did not predict, such as the fact
that the UAE often has skyscrapers in the back-
ground and sandy desert or Kenya often has soil
that is red. As such, our guidebook demonstrates
how language can efficiently communicate what
locations are commonly confused (i.e. through the
co-occurence of two countries in text) and key vi-
sual cues that remedy this confusion (i.e. a country
may be distinct because the soil is typically not as
red as its neighbors).

Failure Cases: In Figure 8, we show a failure
case where all three methods — ISN, ISN + CLIP,
and G3, are unable to predict the ground truth loca-
tion Hungary. Interestingly, while ISN and ISN +
CLIP predict the same country — Italy — G3 in-
stead predicts Bulgaria. In fact, most of our at-
tention mechanism’s top clue retrievals mention
countries within the Balkan Peninsula, including
Croatia, Albania, Turkey, Greece, North Macedo-
nia, and finally Bulgaria. Many of the clues re-
trieved also mention objects that can be grounded
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Guidebook Clues

0.9410

As large amounts of the UAE Street 
View coverage centres around Dubai, 
you may be able to see the city’s 
skyscrapers in the background.

0.9230
Occasionally there will be no car 
visible if you pan down in the UAE 
although this is fairly uncommon.

0.9332 There is a sandy desert almost 
everywhere you look in the UAE. 0.9216 The first letter of local roads can 

indicate where in the UAE you are.

0.9302
The yellow continuous roads lines are 
also abundant in Botswana, like these 
aforementioned places.

0.9211
Botswana typically has high quality 
main roads and the environment is a 
blend of desert and savanna.

0.9278 The UAE landscape consists of a sandy 
desert and fair-coloured buildings. 0.9204

Botswana’s main roads are in 
excellent condition, looking almost 
brand new.

0.9244
Directional information in the UAE is 
sometimes provided on green signs with 
white lettering.

0.9173 The soil is typically not as red as the 
Ugandan and Kenyan soils.

GT Location: Botswana
ISN Prediction: Kenya
ISN + CLIP Prediction: UAE

Prediction: Botswana

Figure 7: An example success case from our StreetView test set. Note how ISN and ISN + CLIP make incorrect
predictions, while G3 correctly predicts Botswana. We also depict the Top-10 clues attended over by G3, many of
which mention relevant countries and can be grounded in the image.

Guidebook Clues

0.8926 Croatian is spoken in Croatia as well as Bosnia and 
Herzegovina. 0.8722 The front of Greek bollards have a 

thick red rectangle.

0.8830
This is thinner than the blue stripe on Albanian and 
Italian plates. 0.8634

Some parts of Bulgaria have rolling 
hills and trees with green leaves.

0.8823
The easiest way to identify Israel is arguably via its 
distinctive yellow license plates which feature on 
the front and rear of their cars.

0.8613 Israel has yellow license plates, both 
front and back.

0.8803 Albania also has rifts in seemingly random positions 
throughout the country. 0.8611 Turkey uses either blue or green 

coloured directional signs.

0.8768 

Chevron’s are most common in Turkey (red arrows 
on white background), the Austrian alps (yellow 
and red or white and red) as well as the 
mountainous parts of the Balkans, which vary in 
colour depending on the country.

0.8585
Many small, North Macedonian signs 
have a black rear.

GT Location: Hungary
ISN Prediction: Italy
ISN + CLIP Prediction: Italy

Prediction: Bulgaria

Figure 8: An example failure case from our StreetView test set. Note how G3 incorrectly predicts Bulgaria, and
how its Top-10 attended clues mention many countries in the Balkan Peninsula.

in the image, including license plates, mountain-
ous parts, and green leaves. The plausibility of
many of the retrieved clues also indicates how in
some cases, the geolocation task is incredibly dif-
ficult with a single image and how many different
countries can all be plausible given the same visual
cues. Many failure cases can be attributed to this
fact, and it seems to suggest reducing the remain-
ing errors of existing models on the geolocation
task requires a setting closer to that of GeoGuessr,
where a scene may be navigable and grant access
to multiple views of the same location. Although
this setting is less realistic in the context of real-
world geolocation tasks that often involve a single
social media image, this potential future evaluation
setting is particularly interesting because it gives
rise to methods that can model uncertainty or enu-
merate the additional visual cues needed for it to
be more confident in its prediction.

7 Conclusion

We presented Geolocation via Guidebook Ground-
ing, a new multimodal task that includes a geo-
diverse dataset of images from StreetView and text
from a guidebook for the GeoGuessr game. We
demonstrated that adding clues from guidebooks
via our approach, G3, substantially outperforms
past state-of-the-art image-only geolocation mod-
els on our task, with an absolute improvement of
5% to reach 70% in Top-1 country classification.

At the same time, there is still significant room
left for improvement, and we hope that other prac-
titioners will find this task interesting and relevant.
The unique feature of our dataset is that the guide-
book contains references to many nuanced and de-
tailed characteristics of the visual scenes, posing
challenging grounding problems. From recogniz-
ing specific road markings and reasoning about the
scene geography, to recognizing flags, languages
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and other symbols, there are many skills necessary
to solve the task. The focused domain of street
scenes enables us to study this problem, while still
being conceptually rich and capturing a multitude
of diverse geographic locations.
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trial alliance programs.

8 Limitations, Ethics, and Broader
Impacts

Dataset: The copyright and usage rights of the
StreetView dataset are subject to that of Google.
Unlike prior works that train and evaluate on
datasets of user uploaded data, which are often
skewed towards Western and industrialized coun-
tries, we take measures to collect a minimum num-
ber of samples from a diverse set of countries and
reward performance on each country equally dur-
ing evaluation. That being said, our findings are
limited to the 90 countries in our dataset since there
exist countries that do not have Google StreetView
coverage due to legal or resource reasons. How-
ever, we hope that our work contributes to a broader
discussion of collecting geo-diverse data, which is
important for building systems that work equally
well for diverse sets of populations.

While our collection of clues used to encode
human-written knowledge discusses an extensive
set of countries, we note that the clues are from
a guidebook with a single author and are there-
fore limited to the experiences of one person. We
encourage future work to also consider commu-
nity forums such as https://www.reddit.com/
r/geoguessr/ which includes discussion from a
broader range of players but contains noisier data.

Approach: Since we build upon pretrained mod-
els such as ISN (Muller-Budack et al., 2018) and
CLIP (Radford et al., 2021) for our visual represen-
tations, our approach is subject to the pre-existing
biases learned by these models. For example, CLIP
has demonstrated biases w.r.t. race and gender
when classifying images of individuals (Radford
et al., 2021). Our final model G3 is 27.9M total
trainable parameters and its training takes on av-
erage 5 hours on one NVIDIA GeForce Titan X
GPU, which is estimated to be 0.54 kgCO2eq in
total emissions (Lacoste et al., 2019).

Broader Impacts: We acknowledge that ap-
proaches for the domain of geolocation can be
misused in applications such as surveillance. How-
ever, we would also like to highlight that our work
specifically focuses on the more coarse-level task
of country classification to better align our mod-
eling with our problem statement of language and
grounding. As such, our work is less useful for fine-
grained surveillance, which usually searches for lo-
cations on a city or street level. We caution against
these unintended use cases, and we also emphasize
that geolocation has many other positive applica-
tions in disaster response (e.g. interpreting social
media imagery and appropriately directing disaster
resources), arts and culture (e.g. understanding key
identifying features of different locations around
the world to produce more inclusive animations
and films), and fact checking (e.g. determining the
provenance of an image in journalism and content
moderation).
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A Appendix

In Section A.1 we discuss results on our StreetView
validation set. In Section A.2 we show example
predictions along with the attended clues. In Sec-
tion A.3 we provide details about the guidebook
clues.

A.1 Validation Set Results

In Tables 4 and 5 we present experimental results
on our Validation set corresponding to the Test
set results from Tables 2 and 3 of Section 5. The
trends observed here are similar to those discussed
previously on our Test set.

A.2 Example Predictions with Attended
Guidebook Clues

Figure 9 shows an example where ISN and ISN
+ CLIP both make the correct prediction but our
method G3 makes an incorrect prediction, which
occurs 2% of the time in our test set (whereas the
inverse, where only G3 predicts correctly, occurs
4% of the time). G3 attends to clues mentioning
both the ground truth country (Albania) and its
incorrect prediction (Turkey). In fact, some clues
that mention Turkey can be grounded in the image,
for example the [wide] roads and blue or green
coloured directional signs. In many such failure
cases, the ground truth country is mentioned in the
retrieved clues but lacks visual cues that can be
related to the given image.

Figure 10 shows examples of random images
drawn from our StreetView test set, the predic-
tions of our model G3, and the Top-5 most relevant
guidebook clues according to the model’s attention
scores. In the top left example the model correctly
predicts Palestinian Territory and four of the five
top clues are related to Palestine. In the top right
example the prediction is again correct (Taiwan),
and while none of the clues mention Taiwan, they
are all related to nearby geographic regions in Asia.
In contrast, the bottom left example shows an in-
correct prediction, though the clues relate to an
overall correct geographic region. In the bottom

right the photo shows few visual cues (i.e., only
vegetation is depicted) and thus the clues mention
a wide spread of countries.

A.3 Guidebook Clues
Figure 11 shows a breakdown of clue counts by
country. Some clues are not matched to a country,
as in the example Birch trees are only found north
of the 40th parallel, because the clue applies to a
broader geographical area rather than a country.
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Model Top-1 Top-5 Top-10

CLIP Nearest Neighbor 0.4313 0.6826 0.7832
CLIP Linear Probe 0.6238 ± 0.001 0.8860 ± 0.003 0.9473 ± 0.002
ISN 0.6548 ± 0.013 0.8852 ± 0.006 0.9442 ± 0.005
G3 (Ours) 0.7020 ± 0.005 0.9224 ± 0.003 0.9661 ± 0.002

Table 4: StreetView Image Country Classification Accuracy (Val)

Model Attn Supervision Top-1 Top-5 Top-10

ISN N/A 0.6548 ± 0.013 0.8852 ± 0.006 0.9442 ± 0.005
ISN + Random Text N/A 0.6615 ± 0.024 0.8932 ± 0.012 0.9471 ± 0.008
ISN + Guidebook No 0.6776 ± 0.013 0.9007 ± 0.007 0.9521 ± 0.005
ISN + Guidebook Yes 0.6966 ± 0.003 0.9193 ± 0.003 0.9634 ± 0.003

ISN + CLIP N/A 0.6576 ± 0.027 0.9000 ± 0.010 0.9549 ± 0.004
ISN + CLIP + Random Text N/A 0.6131 ± 0.029 0.8633 ± 0.012 0.9315 ± 0.010
ISN + CLIP + Guidebook No 0.6434 ± 0.036 0.8800 ± 0.019 0.9392 ± 0.013
G3= ISN + CLIP + Guidebook Yes 0.7020 ± 0.005 0.9224 ± 0.003 0.9661 ± 0.002

Table 5: Ablated StreetView Image Country Classification Accuracy (Val)

Figure 9: Sample from our StreetView test dataset where ISN, ISN + CLIP predict correctly but G3 predicts
incorrectly. Note how G3 incorrectly predicts Turkey, and how its Top-10 attended clues mention either Turkey or
the ground truth country Albania.

Figure 10: Random samples from our StreetView test dataset and the Top-5 guidebook sentences attended to by G3.
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Figure 11: A histogram of the number of clues for each country.
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