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Abstract

Federated learning (FL) can be essential in
knowledge representation, reasoning, and data
mining applications over multi-source knowl-
edge graphs (KGs). A recent study FedE first
proposes an FL framework that shares entity
embeddings of KGs across all clients. However,
entity embedding sharing from FedE would in-
cur a severe privacy leakage. Specifically, the
known entity embedding can be used to infer
whether a specific relation between two enti-
ties exists in a private client. In this paper, we
introduce a novel attack method that aims to re-
cover the original data based on the embedding
information, which is further used to evaluate
the vulnerabilities of FedE. Furthermore, we
propose a Federated learning paradigm with
privacy-preserving Relation embedding aggre-
gation (FEDR) to tackle the privacy issue in
FedE. Besides, relation embedding sharing can
significantly reduce the communication cost
due to its smaller size of queries. We conduct
extensive experiments to evaluate FEDR with
five different KG embedding models and three
datasets. Compared to FedE, FEDR achieves
similar utility and significant improvements re-
garding privacy-preserving effect and commu-
nication efficiency on the link prediction task.

1 Introduction

Knowledge graphs (KGs) are critical data struc-
tures to represent human knowledge and serve as
resources for various real-world applications, such
as recommendation and question answering (Gong
et al., 2021; Liu et al., 2018). However, most KGs
are usually incomplete and naturally distributed to
different clients. Despite each client can explore
the missing links with their own KGs by knowl-
edge graph embedding (KGE) models (Lin et al.,
2015), exchanging knowledge with others can fur-
ther enhance completion performance because the
overlapping elements are usually involved in differ-
ent KGs (Chen et al., 2021; Peng et al., 2021).
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Figure 1: FedE aggregates entity embeddings from
clients while FEDR aggregates relation embeddings.
Since in FEDR, there would be infinite embedding pairs
of head and tail given a relation embedding, the infer-
ence attack would fail.

To exchange knowledge, the first federated learn-
ing (FL) framework for KG — FedE is recently pro-
posed, where each client trains local embeddings
on its KG while the server receives and aggregates
only locally-computed updates of entity embed-
dings instead of collecting triplets directly (Chen
et al., 2021). However, at the very beginning in
FedE, the server should collect the entity sets of
every client for entity alignment, which will lead
to unintentional privacy leakage: 1) entity’s infor-
mation, such as the customer’s name, is usually
sensitive but it is fully exposed to the server; 2)
the relation embedding will be inferred and be ex-
ploited for knowledge graph reconstruction attack
if there exists the malicious server (see Section 3.1).
Therefore, we propose FEDR that adopts relation
embedding aggregation to tackle the privacy issue
in FedE. The major difference is shown in Figure
1. Besides, the number of entities is usually greater
than the number of relations in real-world graph
databases, so sharing relation embedding is more
communication-efficient.

We summarize the following contributions of
our work. 1) We present a KG reconstruction at-
tack method and reveal that FedE suffers a potential
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privacy leakage due to a malicious server and its
colluded clients. 2) We propose FEDR, an efficient
and privacy-preserving FL framework on KGs. Ex-
perimental results demonstrate that FEDR has the
competitive performance compared with FedE, but
gains substantial improvements in terms of privacy-
preserving effect and communication efficiency.

2 Background

Knowledge graph and its embedding. KGisa
directed multi-relational graph whose nodes cor-
respond to entities and edges of the form (head,
relation, tail), which is denoted as a triplet (h, r, t).
KGE model aims to learn low-dimensional rep-
resentations of elements in a KG via maximiz-
ing scoring function f(h,r,t) of all embedding
of triplets. In other words, as depicted in Figure
1, we can infer relation embedding in terms of
r’ = argmax, f(h,r,t) given entity embeddings,
but we cannot obtain t' = argmax f(h,r,t)
merely based on known relation embedding r.

Federated learning and FedE. FL allows differ-
ent clients to collaboratively learn a global model
without sharing their local data (McMahan et al.,
2017). In particular, the aim is to minimize:
min,, f(w) = Eg[Fx(w)], where Fi(w) is the
local objective that measures the local empirical
risk of k-th client. Compared to model sharing
in vanilla FL , FedE introduces a new mechanism
that aggregates only entity embedding. More con-
cretely, the server maintains a complete table in-
cluding entity embeddings and the corresponding
entity IDs, and the server can identify if an entity
exists in a client for entity alignment.

3 Methodology

3.1 Knowledge Graph Reconstruction

The purpose of knowledge graph reconstruction
attack is to recover original entities and relations in
a KG given traitor’s information including parital
or all triplets and the corresponding embeddings,
namely element-embedding pairs. The attack pro-
cedure for FedE is summarized as follows (suppose
there is a malicious server and one traitor):

1) The server colludes with one client C1 to ob-
tain its element-embedding pairs ((E, e), (R, r)).

2) Infer the target client’s relation embedding by
calculating ' = argmax, f(h,r,t).

3) Measure the discrepancy between the inferred
element embedding such as relation embedding r’

30% 50% 100%
ERR TRR ERR TRR ERR TRR

C2 0.2904 0.0607 0.4835 0.1951 0.9690 0.7378
C3 02906 0.0616 0.4846 0.1956 0.9685 0.7390

LR

Table 1: Privacy leakage on FB15k-237 with TransE.

and all known r with cosine similarity.

4) Infer the relation R’ as R, E' as I with corre-
sponding largest similarity scores. Then the target
client’s KG/triplet can be reconstructed. More de-
tials are included in Appendix A.

Privacy leakage quantization in FedE. We
define two metrics: Triplet Reconstruction Rate
(TRR) and Entity Reconstruction Rate (ERR) to
measure the ratio of corretly reconstructed triplets
and entities to the relevant whole number of ele-
ments, respectively. We let the server owns 30%,
50%, 100% trained element-embedding pairs from
C1, the traitor, to reconstruct entities and triplets of
others. The results of privacy leakage on FB15k-
237 (Toutanova et al., 2015) over three clients are
summarized in Table 1. LR in the table denotes in-
formation (element-embedding pairs) leakage ratio
from C1. It is clear that the server only needs to
collude with one client to obtain most of the infor-
mation of KGs on other clients. In a word, FedE is
not privacy-preserving.

Algorithm 1: FEDR Framework.

Input :local datasets 7, number of clients C,
number of local epochs F, learning rate n

Server excutes:
collect relations from clients via PSU
initialize relation table with relation embedding Ej
for round ¢t = 0,1, ... do
Send the relation table to all clients
Sample a set of clients Ct
for c € C; do in parallel
| Epjf, v < Update(c, E)

- Y N N

Ct Cy
8 Ei (12> v ® > Ejf viaSecAgg
=1 c=1

c

Client excutes Update(c, E):

9 for each local epoche = 1,2, ..., E do

10 for each batch b = (h,r, t) of 7° do

1 | E <« E—nVL, where E := {E“°,E"“}
2| Mask relation embedding: E™¢ < M"™¢ @ E™¢

13 return E"¢ € E,v¢:=M"°

3.2 FEDR

The overall procedure of FEDR framework is de-
scribed in Algorithm 1. Before aggregation works,
the server acquires all IDs of the unique relations
from local clients and maintains a relation table
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Dataset

DDB14

WN18RR

FB15k-237

Model

Setting

C=5

C=10

C=15

C=20

C=5

C=10

C=15

C=20

C=5

C=10

C=15

C=20

TransE

Local
FedE
FEDR

0.4206
0.4572
0.4461

0.2998
0.3493
0.3289

0.2464
0.3076
0.2842

0.2043
0.2962
0.2761

0.0655
0.1359
0.0859

0.0319
0.1263
0.0779

0.0378
0.1204
0.0722

0.0285
0.1419
0.0668

0.2174
0.2588
0.2520

0.1255
0.2230
0.2052

0.1087
0.2065
0.1867

0.0874
0.1892
0.1701

RotatE

Local
FedE
FEDR

0.4187
0.4667
0.4477

0.2842
0.3635
0.3184

0.2411
0.3244
0.2765

0.2020
0.3031
0.2681

0.1201
0.2741
0.1372

0.0649
0.1936
0.1271

0.0513
0.1287
0.1074

0.0155
0.0902
0.0912

0.2424
0.2682
0.2510

0.1991
0.2278
0.2080

0.1526
0.2199
0.1854

0.0860
0.1827
0.1586

DistMult

Local
FedE
FEDR

0.2248
0.3037
0.4219

0.1145
0.2485
0.3146

0.0764
0.2315
0.2685

0.0652
0.1877
0.2577

0.0654
0.1137
0.1350

0.0517
0.0946
0.1202

0.0548
0.0766
0.1198

0.0374
0.0670
0.0898

0.1133
0.1718
0.1670

0.0773
0.1129
0.0999

0.0765
0.0901
0.0884

0.0689
0.0753
0.0814

ComplEx

Local
FedE
FEDR

0.3406
0.3595
0.4287

0.2025
0.2838
0.3235

0.1506
0.2411
0.2747

0.1247
0.1946
0.2611

0.0035
0.0153
0.0203

0.0033
0.0115
0.0152

0.0033
0.0108
0.0152

0.0022
0.0122
0.0166

0.1241
0.1603
0.1716

0.0694
0.1161
0.1174

0.0571
0.0944
0.1075

0.0541
0.0751
0.0993

NoGE

Local
FedE
FEDR

0.3178
0.3193
0.4312

0.2298
0.3171
0.3127

0.1822
0.2678
0.2604

0.1580
0.2659
0.2452

0.0534
0.0789
0.0669

0.0474
0.0697
0.0543

0.0371
0.0632
0.0530

0.0372
0.0533
0.0499

0.2315
0.2412
0.2432

0.1642
0.1954
0.1822

0.1246
0.1730
0.1448

0.1042
0.1637
0.1282

Table 2: Link prediction results (MRR). Bold number denotes FEDR performs better than or close to (within 3%
performance decrease) FedE. Underline number denotes the better result between FEDR and Local.

via Private Set Union (PSU), which computes the
union of relations, without revealing anything else,
for relation alignment (Kolesnikov et al., 2019).
Hence, the server does not know the relations each
client holds. The constructed relation table is then
distributed to each client, and in each communica-
tion round, partial clients are selected to perform
local training (see Appendix B.2) to update ele-
ment embeddings E¢ that will be masked by the
masking indicator M"™¢ and uploaded to the server
later. Here M = 1 indicates the i-th entry in the
relation table exists in client c. Considering that
the server can retrive relations from each client by
detecting if the embedidng is a vector of 0, we ex-
ploit Secure Aggregation technique (SecAgg, see
Appendix C) in the aggregation phase as described
in line 8 in Algorithm 1, where @ is element-wide
division, ® is element-wide multiplication, and 1
is an all-one vector. The fundamental idea behind
SecAgg is to mask the uploaded embeddings such
that the server cannot obtain the actual ones from
each client. However, the sum of masks can be
canceled out, so we still have the correct aggrega-
tion results (Bonawitz et al., 2017). Specifically,
in FEDR, the server cannot access correct mask-

ing vectors v¢ and embeddings E;’’; but only ac-

cess the correct sum of them, namely, th ve¢

c=1
and 5| E}f|, respectively. At the end of round
t, the aggregated Ef, | will be sent back to each

client ¢ € C} for next-round update.
4 Experiments

We carry out several experiments to explore
FEDR'’s performance in link prediction, in which
the tail ¢ is predicted given head h and relation .

Datasets. We evaluate our framework through ex-
periments on three public datasets, FB15k-237,
WNI18RR (Dettmers et al., 2018) and a disease
database — DDB14 (Wang et al., 2021). To build
federated datasets, we randomly split triplets to
each client without replacement. Note that, ran-
dom split makes data heterogeneous among all the
clients, and ensures fair comparison between FedE
and FedR.

KGE Algorithms. Four commonly-used KGE al-
gorithms — TransE (Bordes et al., 2013), RotatE
(Sun et al., 2019), DisMult (Yang et al., 2015) and
ComplEx (Trouillon et al., 2016) are utilized in
the paper. We also implement federated NoGE
(Nguyen et al., 2022), a GNN-based algorithm.

4.1 Effectiveness Analysis

The commonly-used metric for link prediction,
mean reciprocal rank (MRR), is exploited to evalu-
ate FEDR’s performance. We take FedE and Local,
where embeddings are trained only on each client’s
local KG, as the baselines. Table 2 shows the
link prediction results under settings of different
number of clients C. We observe that FEDR com-
prehensively surpasses Local under all settings of
the number of clients, which indicates that rela-
tion aggregation makes sense for learning better
embeddings in FL. Take NoGE as an example,
FEDR gains 29.64 +0.037%, 22.13+0.065%, and
11.84 4+ 0.051% average improvement in MRR on
three dataset. Compared with FedE, FEDR usu-
ally presents the better or similar results with the
KGE models of DistMult and its extensive version
ComplEx on all datasets. We also observe that both
entity and relation aggregations succeed in beating
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Figure 2: Experimental results of hit rates on three datasets.

Local setting but gain marginal improvement with
DistMul and ComplEx on DDB14 and WN18RR
datasets. Specially, KGE models fails to obtain
reasonable results in federated with ComplEx. A
potential reason could be that the averaging ag-
gregation is not suitable for complex domains es-
pecially on the extremely unbalanced data (w.r.¢
number of unique entities and relations in a KG).
Although FedE performs better than FEDR with
TranE and RotatE, the absolute performance reduc-
tions between FedE and FEDR are mostly (13/16
= 81%) within 0.03 in MRR on both DDB14 and
FB15k-237, which illustrates that FEDR is still ef-
fective. The theoretical explanations behind these
results w.r.t data heterogeneity, and characteristics
of FL. and KGE models need further studies.

To further assess relation aggregation strategy,
we compare performance of different KGE mod-
els regarding Hit Rates, which is shown in Figure
2. Similar to MRR, Hit Rates drop with the in-
creasing number of clients because of the more
sparse knowledge distribution. All KGE models
behave well and consistently on DDB14 dataset
while there are large deviations of performance be-
tween each model on WN18RR and FB15k-237.
This phenomenon is attributed to the biased local
knowledge distribution, which is implicitly shown
by the number of local entities.

4.2 Privacy Leakage Analysis

Compared with entity aggregation, additional
knowledge is required to perform reconstruction
attack in FEDR because it is almost impossible to
infer any entity or triplet from relation embeddings
only. Therefore, we assume the server can access
all entity embeddings without entity’s IDs from
clients. For simplicity, we let the server holds all
information from C1, which is the same as the at-
tack in Section 3.1 (LR=100%). The difference of
adversary knowledge in FedE and FEDR is outlined
in Table 3. Besides, for fair comparison of FedE

and FEDR, PSU and SecAgg are not considered.

GEE LEE GRE LRE

FedE ¢ v X X
FedR X v v v

Table 3: Summary of adversary knowledge. “G” repre-
sents “Global”, “L” represents “Local”. “EE” and “RE”
represent entity and relation embeddings, respectively.

Table 4 presents the privacy leakage quantization
in FEDR over three clients. The results shows that
relation aggregation can protect both entity-level
and graph-level privacy well even if providing addi-
tional local entity embeddings without considering
encryption techniques. In addition, we observe that
despite the relation embedding can be exploited
directly in FEDR instead of inference, the privacy
leakage rates in FEDR are still substantially lower
than the ones in FedE. For example, according to
Table 1, for C2, FEDR obtains relative reduction of
98.50% and 99.52% in ERR and TRR, respectively.
Note that once PSU and SecAgg are applied, FEDR
can successfully defense against KG reconstruction
attack and gain NO privacy leakage.

FB15k-237 WNI18RR DDB14
Dataset

ERR TRR ERR TRR ERR TRR
C2wlo 14543 3504 22.00 9.89 19.39 10.10
C3w/o 129.77 22.01 1844 923 887 5.05
2w 0 0 0 0 o o
C3w 0 0 0 0 0 0

Table 4: Privacy leakage in FEDR with TransE (x107%).
w and w/o represent encryptions are applied or not.

4.3 Communication Efficiency Analysis

In this section, the product of data sizes and com-
munication rounds is calculated to measure the
communication cost. Considering the performance
difference between FEDR and FedE, for fair com-
parison of communication efficiency, we count the
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Figure 3: Number of communication rounds to reach a
target MRR for FedE and FEDR with a fixed C' = 5.

rounds when the model reaches a pre-defined MRR
target on the validation dataset. Specifically, we set
two different MRR targets: 0.2 and 0.4. Since all
models perform well on DDB14, we take the set-
ting with C' = 5 on DDB14 as an example in this
section. The required rounds for each model are de-
picted in Figure 3. We observe that FEDR reaches
the target with much less rounds compared with
FedE. For instance, FEDR-DistMult reaches the tar-
get MRR = 0.4 within 10 rounds while FedE uses
45 rounds. Also, according to statistics of feder-
ated datasets in Table 5, the average of the number
of unique entities in FedE and unique relations in
FEDR are 4462.2 and 12.8, respectively. We use
the number of entities/relations to reflect data size,
and by using relation aggregation, 99.89 + 0.029%
of cost is reduced in average for all clients when
the target MRR is 0.2, while 99.90 + 0.042% of
cost is reduced in average when the target MRR is
0.4. These results demonstrate that our proposed
framework is more communication-efficient.

4.4 Convergence Analysis

The convergence curves considering four KGE
models and three dataset are shown in Figure 4.
The solid and dashed lines represent curves w.r.t
FEDR and FedE, respectively. We do not show the
curves of NoGE because the aggregated embed-
dings does not influence local training. We observe
that FEDR usually converge faster than FedE. Some
lines are incomplete over communication rounds
because early-stop technique in terms of validation
MRR is used in the experiments.

5 Conclusion and Future Work

In this paper, we conduct the first empirical quan-
tization of privacy leakage to federated learning
on knowledge graphs, which reveals that recent
work, FedE, is susceptible to reconstruction attack
based on shared element-embedding pairs when
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Figure 4: Training loss versus communication (C' = 5).

there are dishonest server and clients. Then we pro-
pose FEDR, a privacy-preserving FL. framework
on KGs with relation embedding aggregation that
defenses against reconstruction attack effectively.
Experimental results show that FEDR outperforms
FedE w.r.t data privacy and communication effi-
ciency and also maintains similar utility.

In real-world applications, different organiza-
tions may use different KGE models, which may
influence overall performance by embedding aggre-
gation, how to design an effective FL framework
in this case and how to perform KG reconstruction
attack/defense are our future research directions.

6 Limitations

Both FEDR and FedE are sensitive to data distribu-
tion. For example, if we build subgraphs in terms
of relations, FEDR may not effective because of
less overlapping relations among clients. It is still
an open question that how to develop an FL archi-
tecture over arbitrarily non-iid KGs.
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A Knowledge Graph Reconstruction

We summarize the knowledge graph reconstruction
attack in Algorithm 2. Note that in the algorithm,
1) and ii) refer to different operations, and only one
will be performed in FedE or FEDR.

Algorithm 2: Knowledge graph reconstruction in-
cluding attack in FEDE/FEDR.

Adversary knowledge: Local entity embeddings —
LEE, local relation embeddings — LRE,
element-embedding paris from a client - EEP, type
of the used KGE model.

Entity reconstruction:
1 for entity embedding é € LEE do
2 for entity-embedding (E, e) € EEP do
3 L Calculate similarity between e and é
4

Update the inferred entity E = E with the
greatest similarity score

5 return the reconstructed entity set {E}

Triple reconstruction:

only one of i) and ii) will be implemented
6 i) for entity embeddings (h, ) € LEE do
7 Calculate relation embedding 7 based on the
scoring function of used KGE model, e.g.
# = £ — h with TransE
8 for relation-embedding(R, r) € EEP do
9 L Calculate similarity between r and 7

Update the inferred relation R = R with the
greatest similarity score

10

11 return the reconstructed relation set {R}

12 ii) for relation embedding 7 € LRE do
13 for relation-embedding(R, ) € EEP do
14 Calculate similarity between r and 7

15 Update the inferred relation R = R with the
greatest similarity score

16 return the reconstructed relation set { R}

17 Utilize { £} and { R} to reconstruct triples.

B Implementation Details

For TransE, RotatE, DistMult, and ComplEx, we
follow the same setting as FedE (Chen et al., 2021).
Specifically, the number of negative sampling, mar-
gin v and the negative sampling temperature «
are set as 256, 10 and 1, respectively. Note that,
we adopt a more conservative strategy for embed-
ding aggregation where local non-existent entities
will not be taken as negative samples compared to
FedE. For NoGE, we use GCN (Kipf and Welling,
2017) as encoder and QuatE (Zhang et al., 2019)
as decoder. Once local training is done in a com-
munciation round, the embeddings are aggregated
and the triplet is scored by the decoder. The hidden
size of 1 hidden layer in NoGE is 128.

Dataset #C #Entity #Relation
S 4462201101000  12.8010.84
10 318260166850 12605070
DDBI4 15 553386140547  12.501074
20 21155988556 12355075
5 21293.20463.11 11.0040.00
10 13112.20+46.70 11.00+0.00
WNISRR 15 053733.4545  11.0050.00
20 7501.65+31.72 11.00+0.00
S 133592040755 237.0040.00
10 11913.00591 56 237.0050.00
FBISK-237 15 107058715605  236.8710.5
20 97059514410  236.80:0.41

Table 5: Statistics of federated datasets. The subscripts
denote standard deviation. # denotes “number of™.

If not specified, the local update epoch is 3, the
embedding dimension of entities and relation is
128. Early stopping is utilized in experiments. The
patience, namely the number of epochs with no im-
provement in MRR on validation data after which
training will be stopped, is set as 5. We use Adam
with learning rate 0.001 for local model update.
All models are trained using one Nvidia 2080 GPU
with 300 communication rounds at maximum.

B.1 Statistics of Datasets

To build federated datasets, we randomly split
triples to each client without replacement, then
divide the local triples into the train, valid, and
test sets with a ratio of 80/10/10. The statistics of
datasets after split is described in Table 5.

B.2 Client Update

The client update, or loca knowledge graph em-
bedding update, corresponds to Update(c, E) in
Algorithm 1 starting from line 9, which learns both
embeddings of entities and relations.

For a triplet (h, r, t) in client ¢, we adopt the self-
adversarial nagative sampling (Sun et al., 2019) for
effectively optimizing non-GNN KGE models:

ﬁ(hv Ty t) = loga('y - fr(h7t))

= plh,r,t}) log o (fr(h,t7) —7),
=1

where 7 is a predefined margin, o is the sigmoid
function, f is the scoring function that varies as
shown in Table 6, and (h, r, t}) is the i-th negative
triplet, which can be sampled from the following

distribution:
exp af,(h,t]
Pl (i, mist)}) = (bt,)

> expaf(ht))
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where « is the temperature of sampling. There
would be E epoches of traning on the client at a
round to update local-view embeddings E includ-
ing entity and relation embeddings, but only local
relation embeddings {E"“} will be sent to server.
For NoGE, we follow its plain design by mini-
mizing the binary cross-entryopy loss function:

L=- Z (L(nrp) log (sigmoid(f(h,r,t)))
(hyr,t)

+ (1 — l(hﬂ.’t)) log (1 — sigmoid(f(h,r,t)))

. 1 for (h,rt) €G
in which, l(h,?”,t) - {0 for (h, T, t) el

where G and G’ are collections of valid and invalid
triplets, respectively.

B.3 Scoring Function

Model Scoring Function

TransE —||h+r—t|

RotatE —|lhor—t]
DistMult h' diag(r)t
ComplEx Re (h' diag(r)t)

NoGE  (aj, ar) + (b, bi) + (¢, cr) + (dp, i)
KB-GAT (||%:1 ReLU ([E G, ﬁj] X wm)) W

Table 6: A list of scoring functions for KGE models
implemented in this paper. The scoring function used in
NoGE comes from QuatE (Zhang et al., 2019).

C Secure Aggregation in FEDR

In this section, we illustrate how SecAgg works in
FEDR through a simple exmaple including three
clients with two relations. Mathematically, we as-
sume the distribution of relation embeddings as
R; = {r1},R2 = {ro} and R3 = {r1}, respec-
tively. After PSU, the server will obtain a set of re-
lations R = {r1, 2 }. Besides, we denote the corre-
sponding masking vectors as My = (1,0), My =
(0,1) and M3 = (1,0).

In one communication round, once all clients
complete local training and prepare for the aggre-
gation phase, via Diffie-Hellman secret sharing
(Bonawitz et al., 2017), each client u generates s, ,,
randomly for every other client, and they agree on
the large prime number /. Then each party v com-
pute the masked value ¢,, for its secret vector s,,,
where s, := {Ry, M, }, shown as below:

ty = Sy + Z Sup — Z Sy (modl),

u<v u>v

where s, , = sy, for a specific condition, e.g.
51,2 = s2.1. Therefore, each client holds its masked
matrix as follows:

t1=s1+ 512+ 513 (modl),
to =52+ S23— 521 (modl),
t3 = 83 — 83,1 — 53,2 (mod l),

Next, these masked matrices are uploaded to the
server. Now the server cannot obtain the actual in-
formation from clietns but could extract the correct
aggregated value via:

i
-

tu

i
L

I
E

<3u + Z Su,v — Z Sv,u)

1 u<v u>v

S
]
I

I
qu

Sy (mod )
1

D Additional Results

2
Il

In this section, we introduce additional experimen-
tal results of KB-GAT in a federated manner for
link prediction.

D.1 Experiment result with KB-GAT

Since the aggregated information is not exploited
in the local training in NoGE, we also implement
KB-GAT (Nathani et al., 2019), the other GNN
model but it can take advantages of both graph
structure learning and global-view information ag-
gregation. However, Fed-KB-GAT is memory-
consuming. For KB-GAT, we use GAT (Velickovi¢
et al., 2018) as encoder and ConvKB (Nguyen et al.,
2018) as decoder. Although the input to KB-GAT
is the triple embedding, this model update neural
network weights to obtain the final entity and rela-
tion embeddings. In each communication, we let
the aggregated embeddings be the new input to KB-
GAT, we find using small local epoches lead to bad
performance because the model is not fully trained
to produce high-quality embeddings. Therefore,
we set local epoch of GAT layers as 500, while
local epoch of convlutional layers as 150. Embed-
ding size is 50 instead of 128 like others since we
suffers memory problem using this model.

We conduct KB-GAT with both entity aggre-
gation and relation aggregation on DDB14 with
C = 3 as shown in Table 7. Due to the good perfor-
mance of RotatE, we also compare KB-GAT with
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Model  Setting

MRR

Hit@1

Hit@3

Hit@10

Local
RotatE FedE
FEDR

0.5347
0.6087
0.5834

0.5311
0.5070
0.5583

0.5459
0.6774
0.5852

0.5912
0.7916
0.6326

Local
KB-GAT FedE
FEDR

0.4467
0.5622
0.5034

0.4369
0.5471
0.4861

0.4620
0.5634
0.5301

0.4755
0.5887
0.5644

Table 7: Extensive experimental resutls on DDB14 with
C' = 3. Bold number denotes the best result in FedE and

underline number denotes the best result in FEDR.

RotatE. Hit@N is also utilized in the evaluation.
From the table, KB-GAT beats RotatE in regard
of all evaluation metrics in both FedE and FedR
setting. However, how to implement federated KB-
GAT in a memory-efficient way is still an open

problem.
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