
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 5796–5808
December 7-11, 2022 ©2022 Association for Computational Linguistics

Learning to Detect Noisy Labels Using Model-Based Features

Zhihao Wang∗14, Zongyu Lin∗2, Peiqi Liu3, Guidong Zheng3, Junjie Wen3

Xianxin Chen1, Yujun Chen1, Zhilin Yang†12
1Recurrent AI, 2Tsinghua University, 3China Merchants Bank, 4Meta
lucaswang@meta.com, {linzongy21, zhiliny}@tsinghua.edu.cn,

{liupeiqi,zhengguidong,wenjunjieee@cmbchina.com}
{chenxianxin,chenyujun@rcrai.com}

Abstract

Label noise is ubiquitous in various machine
learning scenarios such as self-labeling with
model predictions and erroneous data annota-
tion. Many existing approaches are based on
heuristics such as sample losses, which might
not be flexible enough to achieve optimal so-
lutions. Meta learning based methods address
this issue by learning a data selection function,
but can be hard to optimize. In light of these
pros and cons, we propose SENT (Selection-
Enhanced Noisy label Training) that does not
rely on meta learning while having the flexibil-
ity of being data-driven. SENT transfers the
noise distribution to a clean set and trains a
model to distinguish noisy labels from clean
ones using model-based features. Empirically,
on a wide range of tasks including text classifi-
cation and speech recognition, SENT improves
performance over strong baselines under the
settings of self-training and label corruption.1

1 Introduction

State-of-the-art deep neural networks require large
amounts of annotated training data. Though the
success of large pre-training models (Devlin et al.,
2018) alleviates such requirements, high-quality
labeled data are still crucial to obtain the best per-
formance on downstream tasks. However, it is ex-
tremely expensive to acquire large-scale annotated
data for every new task.

To overcome the challenge of rigorous data re-
quirements, recent works utilize weak labels for
supervision, including heuristic rules (Augenstein
et al., 2016; Bach et al., 2019; Awasthi et al., 2020),
large-scale datasets with cheap but noisy labels (Li
et al., 2017; Lee et al., 2018);, and self-training

∗The authors have contributed equally to this work. The
work was conducted while the author was an intern at Recur-
rent AI.

† Corresponding Author.
1Code is available at https://github.com/Rafa-zy/SENT

(Park et al., 2020; Wang et al., 2020). In self-
training, one trains a model on a labeled dataset and
then predicts on a large amount of unlabeled data.
Then the clean labeled data and pseudo-labeled
data are combined to further train the model.

The aforementioned sources of supervision share
two important characteristics: First, they are learn-
ing from noisy labels. Second, the noise is depen-
dent on data features. Thus, they could be uni-
fied into the framework of noisy label learning, for
which numerous approaches have been proposed
to reduce the negative impact of noise. However,
there are three problems in prior work on noisy
label learning: First, many existing approaches are
based on heuristics such as sample losses which
are not flexible enough (Han et al., 2018; Yu et al.,
2019; Zhou et al., 2020; Song et al., 2019); Second,
many previous works require prior knowledge of
the noise distribution of the dataset to adjust the
hyperparameters, which is often not available in
real-world applications (Song et al., 2019, 2020).
Third, meta learning based methods avoid previous
problems but suffer from optimization difficulties
(Ren et al., 2018; Zheng et al., 2021) such as longer
training time, heavy hyper-parameter tuning and
an unstable convergence process. To address the
above problems, we propose a simple data-driven
approach which does not rely on meta learning
while being flexible.

Our contributions are summarized as follows:

• We propose a simple yet effective de-noising
approach which avoids the optimization dif-
ficulty of meta learning while enjoying the
flexibility of being data-driven.

• We unify the settings of both self-training and
label corruption into a noisy label learning
framework and demonstrate the effectiveness
of our approach under both settings.

• Our approach improves performance over
state-of-the-art baselines on a wide range of
datasets, including text classification and auto-

5796

https://github.com/Rafa-zy/SENT

matic speech recognition (ASR). Last but not
least, our approach achieves even larger gains
on few-shot learning.

2 Related Work

2.1 Self-training

Self-training is a powerful learning method that
enables models to learn from huge amounts of un-
labeled data by generating weak labels through
either the teacher model predictions or heuristic
rules. Self-training has been shown to be effec-
tive in many scenarios, including image classifi-
cation (Yalniz et al., 2019), text classification (Li
et al., 2019), machine translation (Wu et al., 2019),
etc. However, noise contained in weak labels could
largely hinge the performance of self-training.

Recently, Xie et al. (2020) improved the per-
formance of self-training on image classfication
by injecting noise to the student model, which
is called NoisyStudent. Park et al. (2020) cus-
tomized NoisyStudent on automatic speech recog-
nition. One problem related with self-training is
error propagation (Zou et al., 2019); in other words,
pseudo labelling on unlabeled data might bring
noise to the training set which leads to the degrada-
tion of further training. Most previous work simply
set a fixed threshold to filter samples with low con-
fidence (Sohn et al., 2020; Xie et al., 2020). Wang
et al. (2020) used meta learning for adaptive sam-
ple re-weighting to mitigate error propagation from
noisy pseudo-labels. Zhang et al. (2021) used a
curriculum learning approach to re-weight unla-
beled data according to the model’s learning status.
In our work, we alleviate the error propagation
from another perspective, by learning a selection
model using model-based features based on a clean
dataset.

2.2 Noisy Label Learning

Learning from noisy labels has long been a research
area. One of the most classical works is to add a
noise adaptation layer on top of the main model
to learn a label transition matrix for label correc-
tion (Goldberger et al., 2017). Bootstrapping (Reed
et al., 2014) introduces the notion of perceptual
consistency that a model predicts correct labels for
noisy samples before overfitting to noisy labels. Co-
Teaching (Han et al., 2018) and Co-Teaching+ (Yu
et al., 2019) train two networks while each network
selects its small-loss samples as clean samples for
its peer network. However, the aforementioned

approaches only deal with class dependent noise
(CDN) and make a strong assumption that noise
distribution is independent of each instance, which
is not flexible enough for many cases.

SEAL (Chen et al., 2020) goes beyond previous
work to consider instance dependent noise (IDN),
which is more realistic and common than CDN on
real world datasets. SELFIE (Song et al., 2019)
uses a hybrid approach that selects refurbishable
samples based on the entropy of model predictions
and then refurbishes the labels with model predic-
tions. RoCL (Zhou et al., 2020) utilizes curriculum
learning that starts with easy and clean samples and
gradually moves to data with pseudo labels pro-
duced by a time-ensemble. However, both SELFIE
and RoCL require prior knowledge of the noise
distribution of the dataset and manual adjustment
for hyperparameters. To avoid such efforts, meta
learning is introduced to learn selection and refur-
bishment.

Learning to Re-weight (Ren et al., 2018) is
a meta learning algorithm that learns to assign
weights to training examples based on their gra-
dient directions. Meta-weight-net (Shu et al., 2019)
parameterizes the reweighting function as a multi-
layer perceptron network. Meta Label Correc-
tion (Zheng et al., 2021) trains the target model
with corrected labels generated by a label correc-
tion model trained on clean validation data which
is jointly trained by solving a bi-level optimization
problem. These meta learning algorithms afford a
large degree of flexibility by directly optimizing a
reliable objective. However, meta learning based
models are known to be sensitive to hyperparame-
ter tuning and the quality of support data (Agarwal
et al., 2021) and suffer from optimization difficul-
ties as they are trained by propagating second-order
gradients (Hospedales et al., 2020).

The major differences between our approach and
previous methods are as follows. Compared with
meta-learning based models, our approach do not
suffer from optimization difficulties. Compared
with models with CDN assumptions, our approach
can handle the IDN settings. Compared with other
state-of-the-art IDN methods such as SELFIE and
RoCL, the selection strategy in our approach is
learnable with model-based features. And our ap-
proach does not require the prior knowledge of
noise distribution. Last but not least, we unify the
settings of self-training and label corruption in the
framework of noisy label learning and conduct ex-

5797

tensive experiments on both settings.

3 Method

Now we present our approach, SENT (Selection
Enhanced Noisy label Training), that learns to se-
lect a subset from a noisy dataset and only uses the
selected subset for training to reduce label noise.
The core idea is to transfer the noise distribution
so that both clean and noisy labels are available
on a data subset. A selection model is trained to
distinguish clean labels from noisy ones and then
applied to selecting a clean subset from a noisy
dataset.

Formally, given a noisy training dataset
Dtrain = {(xi, yi)|1 ≤ i ≤ N} that is corrupted
following some unknown noise distribution P , our
approach is to learn a selection strategy f to se-
lect a clean subset D′

train = {xi|yi = y∗i , i =
1, 2, ..., N} for training. Here (xi, yi) is a train-
ing sample, yi is the noisy label, y∗i is the corre-
sponding unknown true label, and N is the size
of training set. Let model M be our main model
which is trained on the noisy dataset Dtrain and
performs certain tasks such as text classification,
speech recognition and others. We will also have a
selection model S trained on a small clean develop-
ment dataset Dselect. The task of S is to learn the
selection strategy f . There are two main stages in
our approach: noise transfer and selection learning.

3.1 Noise Transfer

Now we describe the noise transfer stage. Given
the corrupted training set Dtrain, we learn the un-
known noise distribution P and transfer the noise to
Dselect. We train a model M on Dtrain till full con-
vergence, which predicts a (noisy) label given a text
input. M is now assumed to have learned to capture
the unknown distribution P by its parameters. Then
we will use the model M to get noisy labels on
Dselect by making predictions. Here we argue that
the noise on Dselect is approximately following the
noise distribution P . Formally, now the develop-
ment set is Dselect = {(xselecti , yselecti , yselect∗i)},
where (xselecti , yselect∗i) is the original clean devel-
opment sample, and yselecti is the noisy label pre-
dicted by M .

3.2 Selection Learning

We model the selection learning stage as a bi-
nary classification task. On Dselect, a model S
is trained to classify whether a label is clean or

noisy. In our approach, the model S is constructed
as a multi-layer perceptron with one hidden layer,
which uses a pre-calculated 5-dimensional feature
vector as the input and outputs a binary classifi-
cation probability. Given a sample from the de-
velopment set (xselecti , yselecti , yselect∗i), the selec-
tion training sample is defined as (sgi, sri), where
sgi is a 5-dimensional feature vector for the i-th
sample. We will discuss how to compute the 5-
dimensional feature in later sections. Meanwhile,
sri is the corresponding true selection result, de-
fined as sri = I[yselecti =yselect∗i]. In other words, if
the i-th sample has a clean label, sri = 1, and oth-
erwise zero. Let Pselect(sri|sgi) denote the prob-
ability given by the selection model S. The loss
function for each sample can be written as:

Lselect
i = − logPselect(sri|sgi) (1)

3.3 Model-Based Features
Now we discuss how to compute the 5-dimensional
feature sgi for each selection sample xselecti .

The first feature is called the instant loss. Given a
sample (xi, yi), let P̂ (yi|xi) be the predicted prob-
ability from the main model M . The instant loss
(IL) for the sample is defined as:

ILi = −logP̂ (yi|xi) (2)

Intuitively, a larger instant loss indicates a possi-
bly noisier sample, because the model M has low
confidence in predicting the label. However, as
training proceeds, the model will overfit some of
the noisy labels. As a result, the instant loss will
decrease for noisy samples as well. To address this
issue, following Zhou et al. (2020), we additionally
use an exponential moving average (EMA) loss to
better differentiate noisy and clean samples. In the
t-th training epoch, the EMA loss (EMAL) for the
i-th sample is defined as follows:

EMALt
i =

{
γEMALt−1

i + (1− γ)ILi, t ≥ 1
ILi, t = 0

(3)

where γ ∈ [0, 1] is a discounting factor. Intuitively,
a larger EMAL represents a possibly noisier sample
as the model has lower confidence in the training
history.

Song et al. (2019) has shown that the entropy
of model prediction is a strong indicator to differ-
entiate noisy and clean samples as noisy samples
tend to have a larger entropy. Here we adopt two
entropy signals as additional features: Instant En-
tropy (IE) and History Entropy (HE). The calcula-
tion of IE follows Song et al. (2019). Let ŷit be

5798

Figure 1: The pipeline of our general framework. Firstly, we are given a noisy training set and a small clean set for
selection (also as development set). Secondly, we transfer the noise from the training set to the selection set. Thirdly,
we compute predefined signals on both sets and train our selection model S using the selection set. Fourthly, We
apply the trained selection model on the training set to distinguish clean samples for training model M. Finally, we
repeat step 3 and 4.

the predicted label of the i-th sample at epoch t
and let Hi(t) = {ŷi0, ŷi1,, ŷit} be the predic-
tion history of first t epochs. Then we formulate an
empirical distribution

P̃ (y|xi, t) =
1

t

∑

y′∈Hi(t)

I[y=y′]

which equals the ratio of prediction y in the first
t epochs. The IH feature at the t-th epoch is com-
puted as

IEi = (1/τ)×−P̃ (ŷti |xi, t) log P̃ (ŷti |xi, t) (4)

where τ = − log(1/k) is a normalizing factor with
k being the number of labels. The HE feature at
the t-th epoch is computed as

HEi = (1/τ)×
∑

y

−P̃ (y|xi, t) log P̃ (y|xi, t)

(5)
We explore another informative feature inspired

by (Han et al., 2019) who discovered that distances
between low level features and high level features
in a convolution model are larger on noisy sam-
ples than on clean samples. We find this holds for

transformer models. Thus, we adopt the cosine sim-
ilarity between the hidden states of the first layer
and the last layer as another feature. Formally, FLS
(First Last Similarity) is defined as:

FLSi = normalize


∑

j

cos(hF
ij ,h

L
ij)


 (6)

where hF
ij and hL

ij represent the hidden states of the
j-th token in the first and last layers respectively,
and cos refers to cosine similarity. We normalize
the FLS feature into the range of [0, 1].

Finally, we concatenate the above all features to
be the input for the selection model S as follows,

sgi = [EMALi, ILi,HEi, IEi,FLSi] (7)

where [,] denotes concatenation.

3.4 Overall Training Procedure
Now we show the training procedure with

pseudo code in Algorithm 1 and illustrations in
Figure 1. In the first box of Figure 1, we clarify our
data setting, where a clean set Dselect and a cor-
rupted set Dtrain are the input to our method. In
the second box, we learn the noise distribution P of

5799

Algorithm 1 SENT
1: Initialization: M ;S;Dtrain;Dselect; total_epochs; pre-

train_epochs
2: Train M on Dtrain. {Learn noise distribution P}
3: Infer on Dselect using M . {Noise Transfer}
4: epoch = 0; Reinitialize M;
5: Pretrain M for pretrain_epochs;
6: while epoch < total_epochs do
7: Infer signals [IL,EMAL,HE, IE, FLS] on Dtrain and

Dselect using M ;
8: while not early stopping S do
9: Train S on Dselect;

10: end while
11: Select a clean subset D′

train out of Dtrain using S;
12: Train M on D′

train;
13: end while
Output: M

the training set by fitting model M on Dtrain and
then transfer P to Dselect. After this step, we will
have both noisy and clean labels on Dselect. This
box corresponds to lines 2 to 4 in Algorithm 1.

Next, we will move on to the repeated training
stage for model S and model M , which is shown
in box 3 and 4 of the figure. First, as illustrated in
box 3, we use model M to infer the aforementioned
signals on Dtrain and Dselect. Then we will use the
signals on Dselect as the input to train the selection
model S. Since Dselect has both clean and noisy
labels, we can easily get the training targets sr as
mentioned in Section 3.2 for the selection model S.
Once we are done with selection learning, given the
inferred signals on Dtrain, we can use S to predict
and select clean samples from Dtrain to get D′

train.
Then we will train M on the clean subset D′

train

and repeat above steps. D′
train is not guaranteed to

be entirely clean but is expected to be cleaner than
Dtrain. This repeated training phase corresponds
to the code from lines 6 to lines 13 in Algorithm 1.

3.5 Adaptation to Self-Training

Our above framework can be directly applied to
learning scenarios with noisy labels. In this section,
we will further discuss how to adapt this method
to self-training, a classic semi-supervised learning
paradigm. Generally, it trains the teacher model
on labeled data to infer pseudo labels on unlabeled
data and add them back to the original training set.
Then a student model is trained on the combined
data. After that, the student becomes a new teacher
model and the above process is repeated. Obvi-
ously, the process of pseudo labelling will bring
noise since it cannot ensure 100% accuracy on the
predicted labels. Therefore, it fits the nature of our
proposed framework. Specifically, the noise dis-

tribution P in self-training is known because the
source of noise is the teacher model. Thus, it is
natural to directly leverage the teacher model to
infer noisy labels on Dselect.

Figure 2: The pipeline of our general system applied to
the classical self-training paradigm.

The whole pipeline of adapting our framework
to classic self-training is displayed in Figure 2,
and the corresponding algorithm is shown in Al-
gorithm 2 in Appendix. After training the teacher
model on labeled data L, we use the teacher model
to infer on the unlabeled data U and the dev set
Dselect. This is followed by training the selection
model based on the signals of Dselect. Then, we
utilize the selection model to predict on the un-
labeled data U to judge whether to choose each
pseudo-labeled sample or not. Then, we train the
student model on the combination of original la-
beled data and selected samples from unlabeled
data. The above procedure is repeated as in classi-
cal self-training.

4 Experiments

4.1 Experimental Setup

4.1.1 Overview
To verify the effectiveness of SENT, we conduct
extensive experiments on text classification and
automatic speech recognition (ASR) benchmarks.

We use text classification tasks to evaluate the
self-training setting. We perform finetuning based
on the BERT (Devlin et al., 2018) model. We use
ASR tasks to evaluate the label corruption setting.
Our approach and other baselines are built on top
of an encoder-decoder transformer network. De-
tails of model configuration can be found in Ap-

5800

IMDB SMS SMS* TREC TREC* YOUTUBE AGNEWS

Train 250 69 61 68 60 77 60
Test 25000 500 392 500 500 392 7600

Unlabeled 24500 4502 4948 4965 5409 1409 11876
Dev_eval 126 250 31 251 30 40 32

Dev_select 124 250 31 249 32 38 32

Table 1: Statistics of text classifcation datasets.

Method TREC TREC* SMS SMS* AGNEWS IMDB YOUTUBE

Supervised 83.4 84.2 97.8 97.5 78.1 85.1 92.9
Co-teaching+ 81.8 79.0 98.2 98.4 82.8 86.8 92.1

L2R 80.8 86.0 98.6 97.2 84.2 84.7 92.9
SELF 81.0 81.2 98.4 98.6 82.4 83.5 92.9

Self-train 84.0 84.8 97.9 98.4 82.4 87.0 93.6
Self-train (thres) 84.2 87.8 97.9 98.4 83.3 85.6 93.1
Noisy Student 85.0 88.6 98.4 99.0 85.0 87.7 93.9

Ours 85.0 86.6 99.0 99.2 83.4 88.3 94.4
Ours + noisy 85.0 89.2 99.0 99.2 86.0 89.0 95.2

Table 2: Results for text classification in the self-training setting. We compare our approach with baselines under
the BERT-based models.

pendix A.2.

4.1.2 Datasets
For text classification in the self-training setting,
we evaluate our framework on the following five
benchmark datasets: question classification TREC-
6 (Li and Roth, 2002), spam classification of SMS
messages (Almeida et al., 2011), spam classifica-
tion of YouTube comments (Alberto et al., 2015),
AG’s news topic classification dataset (Zhang et al.,
2015), and sentiment classification on IMDB movie
reviews (Maas et al., 2011). Our data splits follow
previous work (Karamanolakis et al., 2021). Re-
lated details are shown in Table 1. For the SMS and
TREC datasets, we consider two separate versions.
The datasets with ∗ have smaller development sets
Deval and Dselect while the ones without ∗ have
larger developments. Smaller development sets are
more challenging for noisy label learning because
selection learning has to perform on a smaller clean
set. We use these two separate versions to test the
robustness of our approach.

For ASR in the label corruption learning set-
ting, we use AISHELL-1 (Bu et al., 2017) as the
benchmark. Following prior work, we model IDN
using DNNs’ prediction error (Du and Cai, 2015;

Menon et al., 2018). Specifically, we train three
small transformer models to corrupt the training set
to different corruption levels: hard, medium, easy.
The higher the error rate, the harder the corrupted
dataset. In the following experiments of SENT, the
prior noise information (i.e. how the training set
is corrupted) is assumed to be unknown. Related
statistics are shown in Table 8 in Appendix.

4.1.3 Evaluation
For text classification, we report micro F1 for SMS
and accuracy for the rest of the datasets. For ASR,
we follow Bu et al. (2017) to use the character error
rate (CER) for evaluation.

Since our approach relies on an additional clean
set Dselect, we split the normal development set
into two halves. We use one half as Dselect for
selection learning and the other half Deval for stan-
dard model tuning, so as to set up fair comparison
with the baselines.

4.1.4 Baselines
For text classification, we compare with the fol-
lowing baselines: (a) “Supervised” refers to su-
pervised learning using only labeled data; (b)
“self-train” is standard self training that utilizes
both labeled and unlabeled data for iterative train-

5801

Model Hard Medium Easy

Vanilla 32.63 21.82 16.10
Co-Teaching+ 32.08 21.67 15.11

L2R 30.43 20.07 15.15
RoCL 27.16 17.87 14.95

SELFIE 27.31 19.10 13.98
Ours 26.91 17.67 13.47

Table 3: Comparison with baselines on AISHELL-1 test
set in the label corruption setting. We use CER as the
metric of performance. A lower CER indicates a better
model.

ing; (c) “self-train (thres)” means self-training
that uses the development set to select a thresh-
old of confidence score for filtering pseudo-labeled
data; (d) “noisy student” (Xie et al., 2020) adds
dropout noise to the student model in self train-
ing; (e) “co-teaching+” (Yu et al., 2019) uses two
neural networks to select small-loss samples for
each other and applies a disagreement strategy; (f)
“L2R” (Ren et al., 2018) learns to re-weight noisy
labels via meta-learning (g) “SELF” (Nguyen et al.,
2019) utilizes self-ensemble predictions to progres-
sively remove noisy labels. We also evaluate the
performance when combining noisy student and
our method, denoted as “ours + noisy”.

In the experiments of ASR, we include the fol-
lowing baselines: Vanilla (a naive encoder-decoder
transformer network), Co-Teaching+ (Yu et al.,
2019), L2R (Ren et al., 2018), RoCL (Zhou et al.,
2020) and SELFIE (Song et al., 2019). The details
of these baselines can be found in Appendix A.1.1.

4.2 Experimental Results

4.2.1 Results in Text Classification.
As shown in Table 2, the self-training baseline im-
proves text classification performance. In com-
parison, our selection approach can stably lift the
performance, which shows that our selection model
has learned an informative selection strategy. Last,
although using SENT alone outperforms self-train
and noisy student, our approach can be combined
with the noisy student approach to achieve even
better performance. Overall, this combined ap-
proach achieves the best performance among all
the datasets we consider.

4.2.2 Results in ASR
Table 3 shows that Co-Teaching+ is not able to han-
dle our setting as it only achieves similar result to

Data Method Pse-Acc. Sel-Pre. Sel-Rec. #Selected

IMDB

Self-train 85.7 85.7 100.0 24500
Self-train (thres) 85.2 94.3 58.1 12870

Ours 88.1 97.9 47.5 7742

YOUTUBE

Self-train 95.0 95.0 100.0 1409
Self-train (thres) 95.7 96.1 98.7 1386

Ours 94.6 96.9 94.1 1294

SMS*

Self-train 98.1 98.1 100.0 4948
Self-train (thres) 96.0 96.0 98.6 4880

Ours 98.3 98.3 100.0 4897

TREC*

Self-train 77.4 77.4 100.0 4965
Self-train (thres) 77.2 77.2 99.8 4944

Ours 78.3 81.2 67.1 4897

AGNEWS

Self-train 84.4 84.4 100.0 11876
Self-train (thres) 83.4 83.6 99.7 11826

Ours 84.3 88.0 85.6 9728

Table 4: The key metrics of pseudo labeling and sam-
ple selection during the self-training. We report the
accuracy of pseudo labeling, the precision and recall of
sample selection, and the number of selected samples.

the vanilla model. L2R is effective on our prob-
lem setting with improved performance. However,
meta learning based L2R underperforms RoCL and
SELFIE. Compared with above baselines, our ap-
proach consistently excels on all error levels, which
demonstrates the effectiveness of our approach.

4.3 Empirical Analysis

Case Study: Key Metrics During Self-Training
In order to gain a deeper understanding of how our
method improves over the traditional self-training
methods, we investigate some of the key metrics
regarding pseudo labelling and selection perfor-
mance. We consider self-train, self-train (thres),
and our model. Specifically, we display the ac-
curacy of the pseudo labelling on unlabeled data
(Pse-Acc.), the precision of sample selection (Sel-
Pre.), the recall of sample selection (Sel-Rec.) and
the number of selected samples in the best round
(i.e., the training round that achieves the best per-
formance in the repeated self-training process). As
can be seen in Table 4, our approach achieves a bet-
ter pseudo labeling accuracy. This is because our
approach obtains a more balanced tradeoff between
selection precision and selection recall compared
to self training. Because of a more rigorous se-
lection model, our approach tends to only select
samples with a higher probability of having clean
labels; i.e., increasing the selection precision. This
is also reflected in small decrease in the number
of selected samples. We believe this is crucial for
mitigating error propagation (Xie et al., 2020) and
thus for better performance.

5802

Method TREC SMS YOUTUBE

Supervised 66.5 93.3 91.0
Co-teaching+ 66.8 98.3 93.3

L2R 66.4 98.0 93.3
SELF 66.3 98.1 92.3

Self-train 71.1 95.1 92.5
Self-train (thres) 70.1 98.1 92.1
Noisy Student 68.9 98.1 92.1

Ours 70.3 98.2 93.3
Ours+Noisy 70.0 98.4 93.4

Table 5: Comparison with baselines under the MLP
models.

Signal Hard Medium Easy

All 26.91 17.67 13.47
-EMAL 27.31 17.95 13.85

-IL 28.56 19.32 14.94
-HE 29.32 19.88 15.01

Table 6: Ablation experiments for features on
AISHELL-1. ’All’ is all features. Each line removes
one feature based on the last line.

Ablation Study: Substituting with Simpler Mod-
els To further test the robustness of our approach,
we substitute the base model from BERT to simple
multi-layer percetrons (MLPs) without pretraining.
As show in Table 5, the performance will decrease
after applying simpler MLPs. However, our ap-
proach remains effective compared to the other
baselines. The relative gain and absolute improve-
ment from “Supervised” to our approach is still
significant.

Ablation Study: Features We study the effects
of the model-based features we introduced in Sec-
tion 3.3 with an ablation. Note that we did not use
FLS for ASR because the the first layer and the last
layer have different lengths. As shown in Table 6
and Table 7, all of the features contribute to the
final performance. Among the features, adding the
instant loss (IL) feature results in the most relative
gain for performance.

Also, we do similar experiments on text clas-
sification tasks. As seen in Table 7, we can do
basic search on feature engineering to improve the
final performance. Among all signals, IL leads to
the greatest relative gain of the performance. But
across all the datasets, each signal has its own role
and contributes to our final performance.

Signal IMDB YT TREC TREC* SMS SMS* AG

All 85.9 95.2 85.0 89.2 99.0 99.2 85.1
-FLS 88.2 92.9 83.6 82.0 99.0 99.0 84.1

-EMAL 89.0 92.1 84.2 86.8 99.0 99.0 86.0
-IL 87.8 92.6 83.4 85.8 99.0 98.8 82.5
-HE 88.0 93.4 82.6 79.8 98.4 98.0 79.6

Table 7: Ablation experiments for features on text clas-
sification. ’All’ is all signals. Each line removes one
feature from the previous line. YT represents YouTube
dataset, and AG represents AG News dataset.

Figure 3: Evaluation on SMS under the few-shot setting.

Performance Under Few-shot Setting LST (Li
et al., 2019) has shown that self-training paradigm
can be customized on few-shot classification. Here,
we also investigate the effectiveness of our method
when applying to the few-shot setting. Specifically,
we evaluate on selected text classification datasets
(i.e., YOUTUBE, SMS and IMDB). Figure 5 show-
cases that generally self-train performs better than
“Supervised” (using only labeled data), while our
model achieves the best performance in most cases,
indicating the robustness of our method. More
results are displayed in Appendix A.3.2.

5 Conclusions

In this paper, we propose SENT to address the prob-
lem of label noises. Compared with meta learning
based models, our selection model is trained with
full supervision using cross entropy loss which fa-
cilitates the convergence process. In the meantime,
we model IDN noise without the prior knowledge
of noise distribution. We also unify the setting of
self-training and label corruption in the framework
of noisy label learning and conduct extensive ex-
periments on both settings.

6 Limitations

Although our framework has been proved to be ef-
fective under the setting of self-training and label
corruption on text classification and speech recogni-
tion tasks, adapting our approach to more sequence-

5803

level tasks such as named entity recognition (NER)
and machine translation will also be interesting.
Besides, the selection model in our framework is
feature-based. These features are very informative
but might be limited in terms of expressivity. This
reserves the space for further improvement to learn
more data-driven features under our framework.

References
Mayank Agarwal, Mikhail Yurochkin, and Yuekai Sun.

2021. On sensitivity of meta-learning to support data.
Advances in Neural Information Processing Systems,
34.

Túlio C Alberto, Johannes V Lochter, and Tiago A
Almeida. 2015. Tubespam: Comment spam filtering
on youtube. In 2015 IEEE 14th International confer-
ence on machine learning and applications (ICMLA),
pages 138–143. IEEE.

Tiago A Almeida, José María G Hidalgo, and Akebo
Yamakami. 2011. Contributions to the study of sms
spam filtering: new collection and results. In Pro-
ceedings of the 11th ACM symposium on Document
engineering, pages 259–262.

Isabelle Augenstein, Tim Rocktäschel, Andreas Vla-
chos, and Kalina Bontcheva. 2016. Stance detec-
tion with bidirectional conditional encoding. arXiv
preprint arXiv:1606.05464.

Abhijeet Awasthi, Sabyasachi Ghosh, Rasna Goyal, and
Sunita Sarawagi. 2020. Learning from rules general-
izing labeled exemplars.

Stephen H Bach, Daniel Rodriguez, Yintao Liu, Chong
Luo, Haidong Shao, Cassandra Xia, Souvik Sen,
Alex Ratner, Braden Hancock, Houman Alborzi, et al.
2019. Snorkel drybell: A case study in deploying
weak supervision at industrial scale. In Proceedings
of the 2019 International Conference on Management
of Data, pages 362–375.

Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao
Zheng. 2017. Aishell-1: An open-source mandarin
speech corpus and a speech recognition baseline. In
2017 20th Conference of the Oriental Chapter of
the International Coordinating Committee on Speech
Databases and Speech I/O Systems and Assessment
(O-COCOSDA), pages 1–5. IEEE.

Pengfei Chen, Junjie Ye, Guangyong Chen, Jingwei
Zhao, and Pheng-Ann Heng. 2020. Beyond class-
conditional assumption: A primary attempt to com-
bat instance-dependent label noise. arXiv preprint
arXiv:2012.05458.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jun Du and Zhihua Cai. 2015. Modelling class noise
with symmetric and asymmetric distributions. In
Twenty-Ninth AAAI Conference on Artificial Intelli-
gence.

J Goldberger, E Ben-Reuven, et al. 2017. Deep neu-
ral—networks using a noise adaptation layer. In Proc.
5th Int. Conf. Learn. Represent.(ICLR) Conf. Track,
2014, pages 1–9.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
2018. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. arXiv preprint
arXiv:1804.06872.

Jiangfan Han, Ping Luo, and Xiaogang Wang. 2019.
Deep self-learning from noisy labels. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 5138–5147.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli,
and Amos Storkey. 2020. Meta-learning in neural net-
works: A survey. arXiv preprint arXiv:2004.05439.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016. Harnessing deep
neural networks with logic rules. arXiv preprint
arXiv:1603.06318.

Giannis Karamanolakis, Subhabrata Mukherjee, Guo-
qing Zheng, and Ahmed Hassan Awadallah. 2021.
Self-training with weak supervision. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 845–863, On-
line. Association for Computational Linguistics.

Kuang-Huei Lee, Xiaodong He, Lei Zhang, and Linjun
Yang. 2018. Cleannet: Transfer learning for scalable
image classifier training with label noise. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 5447–5456.

Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and
Luc Van Gool. 2017. Webvision database: Visual
learning and understanding from web data. arXiv
preprint arXiv:1708.02862.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibao
Zheng, Tat-Seng Chua, and Bernt Schiele. 2019.
Learning to self-train for semi-supervised few-shot
classification. Advances in Neural Information Pro-
cessing Systems, 32:10276–10286.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

5804

http://arxiv.org/abs/2004.06025
http://arxiv.org/abs/2004.06025
https://doi.org/10.18653/v1/2021.naacl-main.66
https://aclanthology.org/P11-1015

Aditya Krishna Menon, Brendan Van Rooyen, and Na-
garajan Natarajan. 2018. Learning from binary labels
with instance-dependent noise. Machine Learning,
107(8):1561–1595.

Duc Tam Nguyen, Chaithanya Kumar Mummadi, Thi
Phuong Nhung Ngo, Thi Hoai Phuong Nguyen,
Laura Beggel, and Thomas Brox. 2019. Self: Learn-
ing to filter noisy labels with self-ensembling. arXiv
preprint arXiv:1910.01842.

Daniel S Park, Yu Zhang, Ye Jia, Wei Han, Chung-
Cheng Chiu, Bo Li, Yonghui Wu, and Quoc V
Le. 2020. Improved noisy student training for
automatic speech recognition. arXiv preprint
arXiv:2005.09629.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. In Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases,
volume 11, page 269. NIH Public Access.

Scott Reed, Honglak Lee, Dragomir Anguelov, Chris-
tian Szegedy, Dumitru Erhan, and Andrew Rabi-
novich. 2014. Training deep neural networks on
noisy labels with bootstrapping. arXiv preprint
arXiv:1412.6596.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel
Urtasun. 2018. Learning to reweight examples for
robust deep learning. In International Conference on
Machine Learning, pages 4334–4343. PMLR.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou,
Zongben Xu, and Deyu Meng. 2019. Meta-weight-
net: Learning an explicit mapping for sample weight-
ing. arXiv preprint arXiv:1902.07379.

Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao
Zhang, Nicholas Carlini, Ekin D Cubuk, Alex
Kurakin, Han Zhang, and Colin Raffel. 2020.
Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. arXiv preprint
arXiv:2001.07685.

Hwanjun Song, Minseok Kim, and Jae-Gil Lee. 2019.
Selfie: Refurbishing unclean samples for robust deep
learning. In International Conference on Machine
Learning, pages 5907–5915. PMLR.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju
Shin, and Jae-Gil Lee. 2020. Learning from noisy
labels with deep neural networks: A survey. arXiv
preprint arXiv:2007.08199.

Yaqing Wang, Subhabrata Mukherjee, Haoda Chu,
Yuancheng Tu, Ming Wu, Jing Gao, and Ahmed Has-
san Awadallah. 2020. Adaptive self-training for
few-shot neural sequence labeling. arXiv preprint
arXiv:2010.03680.

Lijun Wu, Yiren Wang, Yingce Xia, Tao Qin, Jianhuang
Lai, and Tie-Yan Liu. 2019. Exploiting monolin-
gual data at scale for neural machine translation. In

Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4207–4216.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and
Quoc V Le. 2020. Self-training with noisy student
improves imagenet classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10687–10698.

I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri,
and Dhruv Mahajan. 2019. Billion-scale semi-
supervised learning for image classification. arXiv
preprint arXiv:1905.00546.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W.
Tsang, and Masashi Sugiyama. 2019. How does
disagreement help generalization against label cor-
ruption?

Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu,
Jindong Wang, Manabu Okumura, and Takahiro Shi-
nozaki. 2021. Flexmatch: Boosting semi-supervised
learning with curriculum pseudo labeling. arXiv
preprint arXiv:2110.08263.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28:649–657.

Guoqing Zheng, Ahmed Hassan Awadallah, and Susan
Dumais. 2021. Meta label correction for noisy label
learning. In Proceedings of the 35th AAAI Confer-
ence on Artificial Intelligence.

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. 2020.
Robust curriculum learning: From clean label detec-
tion to noisy label self-correction. In International
Conference on Learning Representations.

Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar,
and Jinsong Wang. 2019. Confidence regularized
self-training. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages
5982–5991.

5805

http://arxiv.org/abs/1901.04215
http://arxiv.org/abs/1901.04215
http://arxiv.org/abs/1901.04215

A Appendix

We provide details of our datasets (Section A.1)
and experimental results (Section A.2).

A.1 Details of Implementation

Algorithm 2 Adaptation of SENT on classical self-
training.
1: Initialization:Labeled data L, Unlabeled data U , total dev

data Dtotal, dev_select data Dselect;
2: Initialize selected_train_set Lchosen = L;
3: Initialize the teacher model Mteacher , selection model S;
4: Train the teacher model Mteacher on Lchosen;
5: Infer on U,Dselect using Mteacher;
6: Infer signals sg = [IL,EMAL,HE, IE, FLS]

on U,Dselect using Mteacher and get signals
sgunlabeled, sgselect;

7: Train S on Dselect;
8: Pselect = S(U, sgunlabeled);
9: sr = argmax(Pselect);

10: Lchosen = L ∪ U [sr];
11: Train the student model Mstudent on Lchosen;
12: Make the student a teacher and go back to step 5 and

repeat.

A.1.1 Baselines
In the first experiment of text classification, we also
take the same baselines which consider rules and
report the same results as utilized in ASTRA (Kara-
manolakis et al. (2021)). (a) Majority predicts the
majority vote of the rules with ties resolved by pre-
dicting a random class. (b) Snorkel+Labeled (Rat-
ner et al. (2017)) trains classifiers using weakly-
labeled data with a generative model. . (c) L2R
(Ren et al. (2018)) learns to re-weight noisy la-
bels from rules by meta learning. (d) PosteriorReg
(Hu et al. (2016)) uses rules as soft constraints for
training by posterior regularization. (e) ImplyLoss
(Awasthi et al. (2020)) learns both instance-specific
and rule specific weights by minimizing an implica-
tion loss (h) ASTRA (Karamanolakis et al. (2021))
introduces an rule attention network to leverage
multiple sources of weak supervision with trainable
weights to compute soft weak labels for unlabeled
data.

For ASR baselines, Vanilla is a naive encoder-
decoder transformer network without any denois-
ing moduels. All following baselines and our ap-
proache are build on top of the vanilla model. (b)
Co-Teaching+ trains two networks with each net-
work selecting its small-loss samples as clean sam-
ples for its peer network. (c) L2R is the same as
mentioned before. (d) RoCL starts learning with
easy and clean samples and gradually moves to

learn noisy-labeled data with pseudo labels pro-
duced by a time-ensemble of the model and data
augmentations.(e) SELFIE selects refurbishable
samples based on the entropy of model predictions
and refurbs the samples with model predictions.

A.2 Details of Experiments

For ASR models, the transformer model contains
12 layers of encoder and 6 layers of decoder. For
each transformer block, the number of heads in the
multiheadattention module is 4. The dimension
of the encoder and decoder input is 256. The di-
mension of the feedforward network is 2048. We
use 80-dimensional filter bank coefficient as input
features. The hyper parameter for training is show
in Table 9. Batch_size_in_s2 means the maximum
allowed length of audio in seconds in one batch.
History_length represents the maximum allowed
length for stored history predicted labels. These
history predictions are used to calculate entropy.

It should be noted that in both text classification
as ASR tasks, we split the total development set
into dev_select and dev_eval, where dev_select is
used to train the selection model and dev_eval is
used to evaluate the selection model.

There are three details worth to noice in ASR:
a) we perform an additional correction module
for ASR. The correction module has the same ar-
chitecture as the selection module. Correction
module takes the same signal as selection mod-
ule, and it outputs three weights which sum to
one. The weights are assigned to the noisy la-
bels (NL), model predicted probabilities (Pred),
accumulated corrected labels respectively. The cor-
rected label(CL) at T-th epoch is:

CLT = w1∗NL+w2∗Pred+w3∗CLT−1 (8)

after correction, we will perform the normal se-
lection module to select clean labels from corrected
labels. b) Since ASR is sequence level problem, we
can not correct and select each token independently
which would ignore the word dependencies. We
first align the predicted word sequence to the noisy
target sequence accoding to their longest common
sequence. Then we will correct and select the to-
ken that are not common in both sequence. c) As
ASR is a generation problem and the length of in-
put and output is different, we do not extract FSL
as a feature for our approach.

5806

Stats OriginalTrain HardTrain MediumTrain EasyTrain OriginalDev OriginalTest

CER NA 37.11 26.19 16.14 NA NA
MaxLen 44 82 89 44 35 37
AvgLen 14.41 14.30 14.35 14.41 14.33 14.60

Num 120098 120098 120098 120098 14326 7176

Table 8: Statistics of AISHELL-1. ‘Worse’,’Normal’,’Better’ are three notation we use to represent different error
levels. ’NA’ means not char error rate because original datasets are assumed to be clean. ’Num’ represents the data
volume of each set.

HP HardTrain MediumTrain EasyTrain

Max_LR 5e-4 3e-4 3e-4
Min_LR 5e-6 1e-6 1e-6

Warmup_step 20000 20000 20000
Max_steps 80000 50000 50000
Batch_size 300 300 300

Batch_size_in_s2 500 500 500
History_length 18 12 12

Table 9: Hyperparameter for SENT on ASR. HP means
hyperparameters.

Model Hard Medium Easy

Vanilla 30.06 20.21 14.42
Co-Teaching+ 29.67 20.02 13.71

L2R 27.79 19.08 14.12
RoCL 24.50 16.34 13.22
Selfie 24.40 17.22 13.01
ours 23.97 16.01 11.96

Table 10: Comparison with other baselines on dev set
of AISHELL-1

A.3 Details of Ablation Study

A.3.1 The Influence of Selection Threshold
On The Final Performance

In practice, we find that choosing a proper thresh-
old for selection model might have some influence
on the final performance. In detail, we choose
FX-score as the target to choose the threshold
which yields best FX-score on the dev_eval set,
and use this threshold to select the samples from
the unlabeled data based on the output of the se-
lection model. We investigate the influence on
final performance by changing the X of FX-score
on YOUTUBE and SMS. The computation of this
metric is displayed as follow:

FX − score =
(1 +X2) ∗ precision ∗ recall

X2 ∗ preision+ recall
(9)

Noted that this metric becomes F1-score if we set X
as 1. The X measures the preference of precision to
recall. If X approaches 0, it becomes precision. If
X approaches infinite, it becomes recall. As shown
in Figure 4, the performance gradually decreases
as the X grows, which implicitly indicates that
precision matters more than recall when we are
going to select samples from unlabeled data.

Figure 4: The influence of X of FX-score as the selec-
tion threshold on the final performance.

A.3.2 The Performance Under The Few-shot
Setting

We also investigate the performance of IMDB and
YOUTUBE under the few-shot learning setting.
The results are shown in Figure 5.

A.3.3 Case Study: Signal Difference On Train
and Development Sets.

We show the difference of signals on training and
development sets in Figure 6, 7, 8. We can see
that the all signals show close statistics on both
sets. This indicates that our noise transfer approach
holds and has a good performance. This phenom-
ena exists in all three error levels.

5807

(a) YOUTUBE

(b) IMDB

Figure 5: Evaluation on Youtube, SMS and IMDB under
the few-shot setting.

A.3.4 Influence of Signals On AISHELL-1
Dev

We show the influence of different signals on
AISHELL-1 development set in Table 11. We can
see that the tendency is same as the tendency on
the test set.

Signal Hard Medium Easy

All 23.97 16.01 11.96
-EMAL 24.35 16.43 12.45

-IL 25.48 17.55 13.71
-HE 25.89 18.01 13.99

Table 11: Ablation experiments for signals on dev set
of AISHELL-1. Each line is removing one signal from
previous line.

Figure 6: Mean of signals on hard level training and
development set

Figure 7: Mean of signals on medium level training and
development set

Figure 8: Mean of signals on easy level training and
development set

5808

