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Abstract

Most existing approaches for Knowledge Base
Question Answering focus on a specific under-
lying knowledge base either because of inher-
ent assumptions in the approach, or because
evaluating it on a different knowledge base
requires non-trivial changes. However, many
popular knowledge bases share similarities in
their underlying schemas that can be leveraged
to facilitate generalization across knowledge
bases. To achieve this generalization, we in-
troduce a Knowledge Base Question Answer-
ing framework based on a two-stage architec-
ture that explicitly separates semantic parsing
from the knowledge base interaction, facilitat-
ing transfer learning across datasets and knowl-
edge graphs. We show that pretraining on
datasets with a different underlying knowledge
base can nevertheless provide significant per-
formance gains and reduce sample complex-
ity. Our approach, applicable to both weakly-
supervised and strongly-supervised settings,
achieves comparable or state-of-the-art per-
formance for LC-QuAD (DBpedia), WebQSP
(Freebase), SimpleQuestions (Wikidata) and
MetaQA (Wikimovies-KG).

1 Introduction

Knowledge Base Question Answering (KBQA) has
gained significant popularity in recent times due
to its real-world applications, facilitating access to
rich Knowledge Graphs (KGs) without the need for
technical query-syntax. Given a natural language
question, a KBQA system is required to find an
answer based on the facts available in the KG. For
example, given the question “Who is the director of
the film Titanic", a KBQA system should retrieve
the entity corresponding to “James Cameron". This
would be dbr:James_Cameron1 in DBpedia (Auer
et al., 2007), wd:Q425742 in Wikidata (Vrandečić

1dbr: http://dbpedia.org/resource/
2wd: http://www.wikidata.org/entity/

and Krötzsch, 2014), and fb:m.03_gd3 in Free-
base (Bollacker et al., 2008).

KBQA has been evaluated on multiple differ-
ent KGs such as Freebase (Bollacker et al., 2008),
Wikidata (Vrandečić and Krötzsch, 2014), DBpe-
dia (Auer et al., 2007), and MetaQA (Zhang et al.,
2018). Most existing heuristic-based KBQA ap-
proaches such as NSQA (Kapanipathi et al., 2021),
gAnswer (Zou et al., 2014), and QAmp (Vaku-
lenko et al., 2019) are typically tuned for a specific
underlying knowledge base making it non-trivial
to generalize to other KGs. On the other hand,
WDAqua (Diefenbach et al., 2017a), a system with
a focus on being generalizable, ignores question
syntax, thereby showing reduced performance on
datasets with complex multi-hop questions.

Recently, there has been a surge in end-to-end
learning approaches that are not tied to specific
KGs or heuristics, and hence can generalize to mul-
tiple KGs. GrailQA (Gu et al., 2021) in particular
categorized different forms of generalization, such
as novel relation compositionality and zero-shot
generalization. They also demonstrated transfer
across QA datasets, but within the same KG. On
the other hand, GraftNet (Sun et al., 2018) and Em-
bedKGQA (Saxena et al., 2020) demonstrated their
ability to generalize over multiple KGs with state-
of-the-art performance on MetaQA (Wikimovies)
as well as WebQSP (Freebase). The two techniques,
however, are highly sensitive to the training data;
failing to generalize in terms of relation compo-
sitionality within a KG. Their performance drops
(between 23-50%) on relation compositions that
are not seen during training.

In this work, we present a novel generalizable
KBQA approach STaG-QA (Semantic parsing
for Transfer and Generalization) that works seam-
lessly across multiple KGs. We demonstrate this on
KBQA datasets with different underlying KGs. Our
approach attempts to separate aspects of KBQA

3fb: http://rdf.freebase.com/ns/
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systems that are softly tied to the KG but generaliz-
able, from the parts more strongly tied to a specific
KG. Concretely, our approach has two stages: 1)
The first stage is a generative model that predicts a
query skeleton, which includes the query pattern,
the different SPARQL operators in it, as well as par-
tial relations based on label semantics that can be
generic to most knowledge graphs. 2) The second
stage converts the output of the first stage to a final
query that includes entity and relations mapped to
a specific KG to retrieve the final answer.
Our contributions are as follows:

• A simple SEQ2SEQ architecture for KBQA
that separates aspects of the output that are
generalizable across KGs, from those that are
strongly tied to a specific KG.

• To the best of our knowledge, our approach
is the first to evaluate on and achieve state-of-
the-art or comparable performance on KBQA
datasets corresponding to four different knowl-
edge graphs, i.e, LC-QuAD (DBpedia), We-
bQSP (Freebase), SimpleQuestions (Wiki-
data) and MetaQA (Wikimovies).

• Our extensive experimental results shows that
the proposed architecture: (a) facilitates trans-
fer with significant performance gains in low-
resource setting; (b) generalizes significantly
better (23-50%) to unseen relation combi-
nations in comparison to state-of-the-art ap-
proaches.

2 Proposed Architecture

The KBQA task involves finding an answer for
a natural language question from a given KG.
Following the semantic parsing techniques for
KBQA (Chen et al., 2021; Kapanipathi et al., 2021;
Yih et al., 2015), we attempt to solve this task by
predicting the correct structured SPARQL query that
can retrieve the required answer(s) from the KG, i.e,
by estimating a probability distribution over pos-
sible SPARQL queries given the natural language
question.

In this work, we aim to design a model archi-
tecture that generalises across different KGs such
as DBpedia, Wikidata, and Freebase. In order to
achieve this goal, we have a two-stage approach
as shown in Figure 1, where we separate generic
SPARQL query-sketch learning from KG-specific
mapping of concepts. Specifically, the following
two-stages are:

KG Query Graph Structure

DBpedia ?var <director> <entity>
?var <language> ?ans

Wikimovies ?var <directed by> <entity>
?var <In language> ?ans

Wikidata
?var <director> <entity>
?var <original language

of film> ?ans

Table 1: Query sketch for the question “The films di-
rected by John Krasinski are in which language?"

Softly-tied query sketch: This is the first stage of
our approach where we learn aspects of the SPARQL

query generation that are generic to any KG. Specif-
ically, we observe the following: (i) multi-hop pat-
terns are mostly generic to question answering over
KGs. (ii) across many KGs, analogous relations
have semantic or lexical overlap. Therefore, we
focus on two sub-tasks in this stage, query skeleton
generation and partial relation linking. We call the
output of this stage a softly-tied semantic parse,
because the exact output is partially dependent on
the specific KG in use, but our choice of represen-
tations and architecture ensures that transfer across
KGs is a natural consequence.

KG alignment: Here we introduce all vocab-
ulary specific to the KG in order to generate an
executable SPARQL query. To do so, we bind the
softy-tied semantic parse strongly to the KG to find
the answer by (i) resolving the textual relations to
KG relations, (ii) introducing KG specific entities
into the SPARQL skeleton, and (iii) rank the ob-
tained SPARQL queries based on its groundings in
the KG.

2.1 Softly-tied Query Sketch

As mentioned above, the goal is to create a repre-
sentation and architecture that can generalize easily
not only across examples within a dataset, but also
across KGs. To accomplish this, we define two
subtasks: (a) Skeleton Generation, and (b) Partial
relation linking.
Skeleton Generation: A SPARQL’s skeleton cap-
tures the operators needed to answer the question;
i.e. ASK, SELECT, COUNT or FILTER, as well as
the query graph structure, with placeholder nodes
for entities (e.g. :ent0), relations (e.g. :prop0)
and variables (e.g. ?var0). For many questions,
the generated SPARQL skeletons across different
KGs are similar, if not identical. The skeleton
structures unique to a KG, e.g. reification (present
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The films directed by John Krasinski are in which language?

Question Encoder

Decoder

“Author” 
“Directed by”
“In Language”
……
“Location”

SELECT ?var0 WHERE { 
?var1 dbo:director dbr:John_Krasinski. 
?var1 dbo:language ?var0 .

}

Softly-tied Query Sketch

KG Integration

SELECT ?var0 WHERE { ?var1 ?prop0 ?ent0 . ?var1 ?prop1 ?var0 }

“Directed by” :  [dbo:director, dbp:director]
“In Language”:  [dbo:language]

Relation Text to KG relations

Candidate 1: SELECT ?var0 where { 
?var1 dbp:director dbr:John_Krasinski.  
?var1 dbo:language ?var0. }

KG subgraph-based ranking

Relation Encoder

Textualized
Relations

Input Question

… …

SPARQL Output

“?ent0”: dbr:John_Krasinski

dbr:John_KrasinskiEntity Linker

Candidate 2: SELECT ?var0 where  { 
?var1 dbo:director dbr:John_Krasinski.  
?var1 dbo:language ?var0. }

Entity placeholder resolution

Skeleton Generation

Partial Relation Linking

Figure 1: Two-stage system architecture that comprises of: (a) On the left: Softly-tied semantic parse generation
that takes an input question return a KG-agnostic parse, and (b) On the right: Knowledge Graph Integration process
to eventually return the SPARQL query.

in Wikidata but not DBpedia), can be learnt when
fine-tuning on a dataset with that underlying KG.
An example of a SPARQL skeleton for our running
example in Figure 1 “The films directed by John
Krasinski are in which language?" is:

SELECT ?var0 WHERE

{ ?var1 :prop0 :ent0 .

?var1 :prop1 ?var0 . }

As shown in Figure 1, the question is passed
through a transformer-based SEQ2SEQ model
which is trained to produce the SPARQL skeleton
corresponding to the question text. We use a BERT-
base (Devlin et al., 2018) encoder, while the de-
coder has a similar architecture to BERT-base but
with added cross-attention layers.

Given a question text, we tokenize it using BERT
tokenizer and add special [CLS] and [SEP] symbols
in the beginning and the end of the question, re-
spectively. This tokenized input is passed through
a transformer encoder, producing encoder hidden
states for each token at each layer. The encoder
is initialized with pretrained BERT model (Devlin
et al., 2018), which helps generalization with re-
spect to different question syntax. We then use a
transformer decoder with cross attention mecha-
nism. At each time step i, the decoder considers
the encoder states via cross-attention and previ-
ous decoder states via self attention. It produces a

distribution over possible skeleton output tokens.
The decoding process employs beam-search, with
a beam size of 3. The decoder output vocabulary
V comprises of entity place holder tokens Ve, rela-
tion place holder tokens Vr and SPARQL operators
Vo; each of these is a small closed set of tokens.
The output of each decoding step is a softmax over
possible tokens si ∈ V . Unlike the encoder, no
pre-trained model is used for the decoder, and pa-
rameters are initialized randomly.

Consider a question answering dataset Q with
question-SPARQL pairs (q, s); let the tokenized
form be (s1, s2...st). Then the skeleton generation
loss is given by:

L1(Q) = −
∑

(q,s)∈Q

1

t

t∑

i=1

logPΘ1(si|q, s1..s(i−1))

(1)
Partial Relation Linking: For each relation

placeholder in the SPARQL skeleton (:prop0, :prop1,
etc), we need to identify the appropriate relation
that can replace the placeholder to produce the cor-
rect semantic representation of the query. We have
noted previously that relations across KGs share
lexical and semantic similarities. For example, in
Table 1 the three KGs (DBpedia, Wikimovies, and
Wikidata) represent the relationship “Directed by"
with very similar lexical terms “Director" and “Di-
rected by". We can thus leverage large pre-trained
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language models to allow generalization and trans-
fer of such relations across KGs. In each KG, we
first map the relations to their respective surface
forms, using either label relations from the KG, or
by extracting some semantically meaningful sur-
face form from the relation URI. These are the
“textualized relations" shown in Figure 1. Table
2 shows some more examples of relation labels
for three KGs. Note that this mapping can be
many-to-one. For example, both dbo:language and
dbp:language map to the same relation label “lan-
guage".

Our goal is to identify which relation surface
form best matches each relation placeholder in the
skeleton. We thus train the SEQ2SEQ decoder and
relation encoder to project into the same space.
Concretely, the decoder hidden state correspond-
ing to each relation placeholder is optimised to be
closest to the encoded representation of the correct
relation, using a cross-entropy loss.

Let the output layer embeddings corresponding
to the decoder tokens (s1, s2..st) be (h1, h2..ht).
Let Z be the indices corresponding to the place-
holder tokens in s, and Yi be the correct relation
corresponding to a placeholder token si. Then the
partial relation linking loss is defined as:

L2(Q) = −
∑

(q,h)∈Q

∑

i∈Z
logPΘ2(Yi|hi) (2)

PΘ2(Yi|hi) =
erYi .hi

∑
k∈R erk.hi

(3)

where rYi denotes the relation embedding obtained
from the relation encoder, corresponding to Yi in
the relation dictionary R. For example, in Figure 1,
the decoder state for :prop0 should have maximum
inner product with the encoded representation for
the relation surface form “Directed by", compared
to the encoded representations of all other relations.
Our relation encoder is a transformer model whose
parameters are initialized with pretrained BERT
model. Given that BERT-based representations of
lexically or semantically similar relations across
KGs will be close, it is easy to see why transfer
across KG is possible. The final outcome of partial
relation linking is a ranked list of relation surface
forms for each placeholder in the skeleton.

A linear combination of the skeleton generation
loss and partial relation linking loss is optimized.

L(Q) = λL1(Q) + (1− λ)L2(Q) (4)

The SPARQL skeleton together with the partial
relation linking produces a ranked list of softly-tied
query sketches. In the case of multiple placehold-
ers, the score of each pair of relation surface forms
is the product of their individual scores. Some-
times this phase produces multiple semantic inter-
pretations, either due to noisy surface forms (for
instance, DBpedia KG includes Wikipedia infobox
keys “as is” when they can not be mapped to the
ontology relations) or due to the presence of seman-
tically identical or similar relations with distinct
identifiers (eg. dbo:language and dbp:language). For
the example, “The films directed by John Krasinski
are in which language?", this stage will produce
the following sketches:

P=0.87 SELECT ?var0 where {
?var1 director :ent0.
?var1 language ?var0.}

P=0.76 SELECT ?var0 where {
?var1 director :ent0.
?var1 languages ?var0.}

...

2.2 KG Interaction

In order to generate an executable SPARQL query,
we need to introduce vocabulary specific to the KG.
The KG interaction stage performs this task. Con-
cretely, given a list of candidate query sketches, this
stage performs the following steps to produce the
final question answer: 1) Link the different entities
to their corresponding placeholders in the skeleton,
2) Disambiguate relations’ textual form and link
it to the specific KG relations, and 3) Select the
correct SPARQL based on the actual facts in the
KG.

In our approach, we leverage a pre-trained off-
the-shelf entity linker, BLINK (Wu et al., 2020).
BLINK provides tuples of (surface form, linked
entity) pairs. The entity placeholder resolution
step aligns the entities with the entity place holders
in the query sketch. In the example above, :ent0
will be linked to dbr:John_Krasinski in DBpedia, or
wd:Q313039 in Wikidata. When multiple entities are
present in the question, the position of the corre-
sponding textual span defines the alignment to the
entity placeholder variable. During training, the
first entity in the question corresponds to :ent0, the
second entity by :ent1, etc. This pattern is repeated
by the system when decoding during inference,
making entity placeholder resolution trivial.

The next step is to disambiguate relations’ tex-
tual form and link them to the specific KG relations.
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KG KG Relation Derived Surface Form

DBpedia
dbo:language language
dbp:languages languages

Wikidata
P397 official language
P364 original language of film or TV show

FreeBase
people.ethnicity.languages_spoken languages spoken
location.country.languages_spoken languages spoken

Table 2: Examples of textualized relations for different KGs, obtained either using the relation label from the KG
(DBpedia, Wikidata) or by extracting a part of the relation URI (Freebase)

Ranked SPARQL query predictions
1. SELECT ?var0 where
{ ?var1 dbo:director dbr:John_Krasinski.
?var1 dbo:language ?var0. }

1. SELECT ?var0 where
{ ?var1 dbp:director dbr:John_Krasinski.
?var1 dbo:language ?var0. }

2. SELECT ?var0 where
{ ?var1 dbo:director dbr:John_Krasinski.
?var1 dbp:languages ?var0. }

2. SELECT ?var0 where
{ ?var1 dbp:director dbr:John_Krasinski.
?var1 dbp:languages ?var0. }

Table 3: Top predicted SPARQL queries for the ques-
tion “The films directed by John Krasinski are in which
language?"

Recall from Table 2 that each surface form in a
query sketch can map to one or more KG relations.
In our example using DBpedia as a KG, the surface
form “director" could map to both [dbo:director,
dbp:director] whereas “language" could map to
both [dbo:language, dbp:language]. The semantic
parsing stage cannot hope to distinguish between
these, and thus we rely on the KG to determine
the specific relation that should be chosen. Con-
cretely, we replace every relation surface form with
each of the possible KG relations it could map to.
Thus, each softly-tied query sketch produces one or
more fully executable SPARQLs. For example, the
two softly-tied sketches from the previous stage in
our example produce four possible SPARQLs, see
Table 3. As the final step, we execute the candi-
date SPARQL queries against the KG and choose
the highest-ranked SPARQL that produces an an-
swer for SELECT queries. Since ASK queries do
not necessarily have to be valid in the KG, we only
consider the model score in such cases.

Dataset Train Valid Test

LC-QuAD 1.0 3,650 200 1,000
SimpleQuestion 15,000 2,000 5521
WQSP-FB 2898 200 1,596
MetaQA 1-hop 86,470 9,992 9,947
MetaQA 2-hop 118,980 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274

Table 4: Dataset Statistics

3 Experiments

In this section, we validate two claims: (1) STaG-
QA achieves state-of-the-art or comparable perfor-
mance on a variety of datasets and KGs. (2) STaG-
QA generalizes across KBs and hence facilitating
transfer. All experiments were run on a machine
with an Intel Xeon E5-2690 CPU and 1 x P100
GPU. SPARQL Virtuoso endpoints were setup on
the local network for all KBs. Runtime was ap-
proximately 2.28 seconds per question. The results
show that pre-training our system even on a differ-
ent KG achieves improvement in performance with
better gains in low-resource and unseen relation
combination settings.

3.1 Datasets

To evaluate the generality of our approach, we
used datasets across a wide variety of KGs includ-
ing Wikimovies-KG, Freebase (Bollacker et al.,
2008), DBpedia (Auer et al., 2007), and Wiki-
data (Vrandečić and Krötzsch, 2014). In partic-
ular, we used the following datasets (Table 4 shows
detailed statistics for each dataset): (a) MetaQA
(Wikimovies-KG) (Zhang et al., 2018) is a large-
scale complex-query answering dataset on a KG
with 135k triples, 43k entities, and nine relations.
It contains more than 400K questions for both
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single and multi-hop reasoning. (b) WQSP-FB
(Freebase) (Yih et al., 2016) provides a subset of
WebQuestions with semantic parses, with 4737
questions in total. (c) LC-QuAD 1.0 (DBpedia)
(Trivedi et al., 2017): A dataset with 5,000 ques-
tions (4,000 train and 1,000 test) based on tem-
plates. It includes simple, multi-hop, as well as
aggregation-type questions. LC-QuAD 2.0 is an-
other version of LC-QuAD based on Wikidata. It
has 30K question in total and also template-based.
Due to the larger underlying KB and the extensive
pattern covered, we used LC-QuAD 2.0 dataset for
pretraining and showing our transfer results. (d)
SimpleQuestions-Wiki (Wikidata) (Diefenbach
et al., 2017b): a mapping of the popular Freebase’s
SimpleQuestions dataset to Wikidata KB with 21K
answerable questions.

3.2 Baselines

In this work, we evaluate against ten different
KBQA systems. (1) NSQA (Kapanipathi et al.,
2021; Abdelaziz et al., 2021) is state-of-the-art
system for KBQA on DBpedia datasets. (2)
QAMP (Vakulenko et al., 2019) is an unsupervised
message passing approach that provides compet-
itive performance on LC-QuAD 1.0 dataset. (3)
WDAqua (Diefenbach et al., 2017a) is another sys-
tem that generalises well across a variety of knowl-
edge graphs. (4) Falcon 2.0 (Sakor et al., 2020) is a
heuristics-based approach for joint detection of en-
tities and relations in Wikidata. Since this approach
does not predict the query structure, we tested it on
SimpleQuestions dataset only. (5) SYGMA (Nee-
lam et al., 2021) is a modular approach facilitating
multiple reasoning types, (6) EDGQA (Hu et al.,
2021) which leverages a novel graph structure
called Entity Description Graph (EDG) to repre-
sent the structure of complex questions, (7) Embed-
KGQA (Saxena et al., 2020) is the state-of-the-art
KBQA system on MetaQA and WebQSP datasets,
(8) PullNet (Sun et al., 2019) is recent approach
evaluated on MetaQA and WebQSP datasets, (9)
GraftNet (Sun et al., 2018) infuses both text and
KG into a heterogeneous graph and uses GCN for
question answering, and (10) EmQL (Sun et al.,
2020) is a query embedding approach that was
successfully integrated into a KBQA system and
evaluated on WebQSP and MetaQA datasets.

Weak vs Strong Supervision: We note that
state-of-the-art systems on WebQSP and MetaQA
use only question/answer pairs. To make a fair

comparison against these methods, we begin from
question/answer pairs and retrieve candidate se-
mantic paths using the KG. We find the shortest
paths from the question entity to the answer, and
treat each of these paths as target SPARQLs. This
reduces to noisier training, with the same input
question being mapped to different target sketches
in different examples. We observe in the next sec-
tion that we achieve state-of-the-art performance
with the weak-supervision setting.

3.3 Results

Table 5 shows our system results on all four
datasets in comparison to existing approaches. We
show two versions of our system, one pre-trained
with LC-QuAD 2.0 datatset (Dubey et al., 2019)
(STaG-QApre) and another trained from scratch
on the target dataset only (STaG-QA). As noted
earlier, to the best of our knowledge, we are the
first to show generality across knowledge graphs
by evaluating on datasets from DBpedia, Wikidata,
Freebase, and Wikimovies-KG.

On SimpleQuestions-Wiki, our approach
achieves significantly better performance com-
pared to Falcon 2.0 and SYGMA with 24% and
16% better F1 score respectively. On MetaQA
dataset, our system achieves near perfect scores on
all 3 subsets. On LC-QuAD 1.0, our approach is
on par with EDGQA, the state-of-the-art system
for DBpedia. As for WebQSP, both versions of our
approach are inferior compared to EmQL, which
can leverage KBC embeddings unlike STaG-QA.
Overall, the results show that STaG-QA shows
better or competitive performance on three out
of four datasets and when pretrained on another
dataset, the performance improves across all
datasets.

3.4 Effect of Pretraining

Figure 2: System performance on MetaQA 2-hop ques-
tions using different number of training examples
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SimpleQuestions-Wiki LC-QuAD 1.0 WebQSP MetaQA

System P R F1 P R F1 Hits@1
Hits@1
1-Hop

Hits@1
2-Hop

Hits@1
3-Hop

WDAqua - - - 22.0 38.0 28.0 - - - -
QAMP - - - 25.0 50.0 33.0 - - - -
NSQA - - - 44.8 45.8 44.4 - - - -
EDGQA - - - 50.5 56.0 53.1 - - - -
Falcon 2.0 34 41.1 36.3 - - - - - - -
SYGMA 42.0 55.0 44 .0 47.0 48.0 47.0 - - - -

GraftNet - - - - - - 70.3 97.0 99.9 91.4
PullNet - - - - - - 69.7 97.0 99.9 91.4
EmbedKGQA - - - - - - 66.6 97.5 98.8 94.8
EMQL - - - - - - 75.5 - 98.6 99.1

STaG-QA 58.7 61.1 60.3 76.5 52.8 51.4 65.3* 100.0* 99.8* 99.8*
STaG-QApre 60.4 62.6 61.2 74.5 54.8 53.6 68.5 100.0 100.0 100.0

Table 5: Comparison with prior state-of-the-art approaches. Following these techniques, we report precision, recall
and F1 scores on SimpleQuestions and LC-QuAD 1.0, and Hits@1 performance on WebQSP and MetaQA. pre
indicates the “pre-trained" version of our system using LC-QuAD 2.0 dataset. *Weakly supervised training

Figure 3: System performance on LC-QuAD 1.0 using
different number of training examples

Our architecture is designed to allow transfer
learning between entirely different QA dataset/KG
pairs. We consider low-resource settings to high-
light the benefit of transfer, even across KGs. This
is particularly applicable when there is scarcity of
training data for a new target KG. We investigate
the benefit of pretraining the semantic parsing stage
using LC-QuaD 2.0 (Wikidata), before training on
the 2-hop dataset in MetaQA (Wikimovies-KG)
and the LC-QuAD 1.0 dataset (DBpedia). Figures
2 and 3 show the performance of STaG-QA on
each dataset with and without pre-training. We
make note of the following observations.

First, without any fine-tuning on either datasets,
the pre-trained version STaG-QApre is able to
achieve 18% Hits@1 on MetaQA and 8% F1 on
LC-QuAD 1.0, demonstrating zero-shot transfer
across KGs. Second, the pre-trained version shows
significantly low sample complexity. For example,
in MetaQA (Figure 2), STaG-QApre was able to
reach almost 100% Hits@1 with 100 training ex-

amples only. To reach the comparable performance,
STaG-QA without pretraining required ∼ 1, 000
examples, an order of magnitude more training data.
The same behaviour can be observed on LC-QuAD
1.0.

3.5 Novel relation composition

Common KBs have a large number of relations. In
multi-hop queries, these relations can be arranged
as paths (e.g., director → language) where possible
path combinations grow combinatorially. Seeing
all possible relation combinations during training
is impractical with most KBs as it would require
significantly large training data to cover all combi-
nations. Instead, an effective KBQA system should
be able to generalise to unseen relation paths. How-
ever, we find that some prominent KBQA datasets
do not effectively evaluate this property of a QA
system.

We show in Table 6 the number of test questions
in LC-QuAD 1.0, MetaQA and WebQSP datasets
that contain relation combinations never seen at
training. MetaQA does not have any unseen re-
lation paths, and WebQSP contains only 2.06%
of such questions. In contrast, in LC-QuAD 1.0
roughly half of the test questions contain novel
relation compositions.

MetaQA Unseen Challenge Set: In order
to investigate how this issue affects evaluation
of KBQA systems, we modified the train and
dev sets of MetaQA as follows: From the
2-hop training set, we removed training ex-
amples containing two randomly chosen rela-
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Dataset # unseen path questions

LC-QuAD 1.0 490/1,000 (49 %)

WebQSP 45/1,638 (2 %)

MetaQA 2-hop 0/14,872 (0 %)

MetaQA 3-hop 0/14,274 (0 %)

Table 6: Novel combinations in Test of seen relations

System 2-Hop Seen 2-Hop Unseen

EmbedKGQA 99.00 50.00
GraftNet-KB 97.90 75.2
GraftNet-Text 51.2 43.3
GraftNet-Both 99.13 95.41

STaG-QA 99.9 99.7

Table 7: MetaQA Unseen Challenge Set Setting

tion paths ( actor_to_movie_to_director and
director_to_movie_to_actor) and split the
dev set into two, one containing 13,510 questions
with all seen relations combinations in training and
another containing 1,361 questions with all unseen
relation paths.

We then trained STaG-QA, EmbedKGQA and
GraftNet on the new reduced training set and tested
the performance on our new development sets (seen
and unseen). Shown in Table 7, the results demon-
strate a significant drop in performance in meth-
ods that rank directly across entities in the KG to
predict answers. This is most clearly observed in
EmbedKGQA, as well as GraftNet-KB, though the
use of text alleviates this issue. In contrast, our
approach is able to maintain the same level of per-
formance for novel relation compositions, using
KB information alone.

4 Related Work

There have been a variety of KBQA systems de-
veloped recently. Closest among them to our archi-
tecture is MaSP, a multi-task end-to-end learning
approach that focuses of dialog-based QA. How-
ever, MaSP does not show transfer across KGs.
Coarse2Fine (Dong and Lapata, 2018) is another
two-stage approach, but they differ in the complete-
ness of the semantic parse, while the two stages in
our approach differ in KB-agnosticity.

Some KBQA approaches are rule based, and
depend on generic language based syntactic (Zou
et al., 2014) or semantic parses (Abdelaziz et al.,
2021; Kapanipathi et al., 2021) of the question

and build rules on it to obtain a query graph that
represents the SPARQL query. NSQA, the state of
the art approach for DBpedia based datasets such
as LC-QuAD-1.0 (Trivedi et al., 2017) and QALD-
9 (Usbeck et al., 2017), falls in this category. Many
of these systems have components that are specific
to the KG they evaluate on, and do not trivially
generalize to other KGs. In particular GAnswer,
NSQA, and QAmp are specific to DBpedia and do
not evaluate their approaches on any other KGs.

Another class of approaches explicitly generate
query-graphs through a staged generation proce-
dure (Chen et al., 2019; Lan and Jiang, 2020). The
primary difference between these works and ours is
that they fully resolve the entities and relations in
each stage of the query graph construction process;
thus the graph is strongly tied to the KG at each
stage. On the other hand, we separate the structure
of the graph (skeleton) from the actual entities and
relations. Transfer learning between KGs has not
been empirically validated for these methods.

A prominent work (Maheshwari et al., 2019)
ranks all candidate graph patterns retrieved from
the knowledge graph based on the grounded en-
tity. In multi-hop settings, as in MetaQA with
3-hop questions, retrieving all possible candidates
upto n-hops (for an arbitrary choice of n) and then
ranking across all of them is expensive. In con-
trast, our work focuses on a generative approach to
model query graph patterns. EmbedKGQA (Sax-
ena et al., 2020) and GraftNet are two approaches
that directly ranks across entities in the knowledge
base to predict an answer, by leveraging either KG
embeddings from Knowledge Base Completion
(KBC); or creating a unified graph from KB and
text. However, these approaches do not generalize
well to novel relation compositions not seen dur-
ing training. Finally, it is unclear how to transfer
KBC embedding-based approaches such as Embed-
KGQA across KGs since the learnt KG embeddings
are tightly coupled with the KG.

5 Conclusion

In this work, we show that a simple 2-stage archi-
tecture which explicitly separates the KG-agnostic
semantic parsing stage from the KG-specific inter-
action can generalize across a range of datasets and
KGs. We evaluated our approach on four KG/QA
pairs, obtaining state-of-the-art performance on
MetaQA, LC-QuAD 1.0, and SimpleQuestions-
Wiki; as well as competitive performance on We-
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bQSP. We also successfully demonstrate transfer
learning across KGs by showing that pre-training
the first stage on an existing KG/QA-dataset pair
can help improve performance in low-resource set-
tings for a new target KG; and greatly reduce the
sample complexity to achieve state-of-the-art per-
formance. Finally, we show that some popular
benchmark datasets do not evaluate generalization
to novel relation compositionality.

6 Limitations

We consider two limitations. First, any multi-stage
approach is subject to cascading errors. Most as-
pects of the query graph such as resolved relations
and entities can be reranked in the final stage, thus
mitigating early hardening. However, one potential
source of cascade error is the structure of the query
graph (skeleton) itself, which is not revised.

Second, this approach’s scope for transfer learn-
ing across KGs is limited. Concretely, when con-
sidering the equivalence of 2 subgraphs from dif-
ferent KGs for a given natural language question,
we have two different cases: 1) The two KG sub-
graphs are already ‘softly’ aligned, meaning that
there is a 1-1 mapping between their nodes and
edges (isomorphic), and 2) The harder case where
one node might not directly map to a single entity
in the second KG, etc. This work does not attempt
to facilitate transfer learning in the second case.
Instead we empirically argue that across popular
KGs, we find many queries to fall under the first
case. Transfer learning in the second case is an
important but unsolved challenge that we leave for
future work.
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Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Zero-shot entity
linking with dense entity retrieval. In EMNLP.

Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He,
and Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In ACL, pages 201–206.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander
Smola, and Le Song. 2018. Variational reasoning
for question answering with knowledge graph. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

Lei Zou, Ruizhe Huang, Haixun Wang, Jeffrey Xu Yu,
Wenqiang He, and Dongyan Zhao. 2014. Natural
language question answering over rdf: a graph data
driven approach. In Proceedings of the 2014 ACM
SIGMOD international conference on Management
of data, pages 313–324.

5580

https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
http://arxiv.org/abs/2004.03658

