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Abstract

In this paper, we study trade-offs between
efficiency, cost and accuracy when pre-
training Transformer encoders with different
pre-training objectives. For this purpose, we an-
alyze features of common objectives and com-
bine them to create new effective pre-training
approaches. Specifically, we designed light
token generators based on a straightforward
statistical approach, which can replace ELEC-
TRA computationally heavy generators, thus
highly reducing cost. Our experiments also
show that (i) there are more efficient alterna-
tives to BERT’s MLM, and (ii) it is possible to
efficiently pre-train Transformer-based models
using lighter generators without a significant
drop in performance.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
require expensive hardware to be pre-trained
(Strubell et al., 2019; Brown et al., 2020). Recently,
many works focused on reducing pre-training cost
(Lan et al., 2020; Sanh et al., 2020; Turc et al.,
2019). ELECTRA, for example, proposes to train
BERT as a discriminator rather than a generator
(Clark et al., 2020). They replace the Masked Lan-
guage Modeling objective (MLM) (Devlin et al.,
2019) with Token Detection (TD). Then, the dis-
criminator detects if input tokens are original or
fake created by a small generator network.

On the one hand, the discriminator is much more
efficient than MLM. On the other hand, the use
of a generator requires the pre-training of a sec-
ond transformer, increasing the pre-training cost.
ELECTRA has been shown to be more accurate
than BERT. However, it is not clear if this superior
performance is due to its innovative architecture
or to the long and extensive training, which highly
increases the computation cost for obtaining the
final language model.

∗Equal contribution

In this paper, we study pre-training strategies
with respect to the trade-off between efficiency,
cost, and accuracy. Theoretical efficiency and com-
putational cost do not always align well because
the latter is influenced by the underlying infras-
tructure and by hardware acceleration technologies
(i.e., NVIDIA Tensor Cores). For this purpose,
we analyze the main important components of pre-
training, i.e., pre-training objectives and the algo-
rithms with which they are applied. For example,
we note that MLM needs a large classification head
that spans over the whole vocabulary (which usu-
ally contains several tens of thousands of tokens),
while TD requires a smaller head, which is much
more efficient and uses low computation resources.

We summarize our contribution as follows: First,
we propose Random Token Substitution (RTS)
and Cluster-based Random Token Substitution (C-
RTS), two fast alternatives to ELECTRA’s genera-
tor, which allows us to set a middle-ground in the
trade-off between efficiency and accuracy. Indeed,
RTS consists in just detecting tokens that are ran-
domly changed into others, so very low cost, while
C-RTS, which is a bit more expensive than RTS, ex-
ploits the knowledge about predictions in previous
iterations to select more challenging replacements.
Both our objectives increase the efficiency (20% -
45%) thanks to a much smaller binary classifica-
tion head on top and are equally accurate to MLM
on most of the tasks from a statistical significance
viewpoint. We also demonstrate that, if trained for
a longer time, C-RTS outperforms RTS on many
benchmarks because it is a more challenging pre-
training task.

Second, we propose Swapped Language Mod-
eling (SLM), a variant of BERT’s MLM that only
replaces tokens with others, thus removing the spe-
cial MASK token, which is responsible for BERT’s
pre-training/fine-tuning discrepancy (Clark et al.,
2020). We show that this objective increases cost
with respect to RTS and C-RTS, but outperforms
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MLM in almost every task using precisely the same
computational budget.

Finally, we empirically study the trade-offs men-
tioned above by pre-training standard BERT mod-
els with the proposed objectives, also comparing
them with state-of-the-art architectures trained and
tested on the same data. We perform an accurate
comparison by evaluating our models on several
natural language inference benchmarks: all tasks in
the GLUE benchmark suite, ASNQ, WikiQA and
TREC-QA, reporting accuracy as well as efficiency
and cost. To better assess the latter, we also test the
impact of objectives on smaller architectures (e.g.,
BERT-small), showing that our approaches have a
broader impact on those classes of models.

2 Related Work

Many different objectives for self-supervised learn-
ing have been proposed in recent works, such as
Causal Language Modeling (CLM) (Radford, 2018;
Radford et al., 2019; Brown et al., 2020), Masked
Language Modeling (MLM) (Devlin et al., 2019;
Liu et al., 2019b) and Token Detection (TD) (Clark
et al., 2020), the latter used by ELECTRA, which
is composed by a generator and a discriminator.
While the generator is trained with MLM to find
suitable candidates to replace the special MASK
tokens, the discriminator should recognize the re-
placements in the original text instead. After pre-
training, the generator is removed, and the discrim-
inator is used as the pre-trained language model.
ELECTRA introduces many innovations: (i) the
exploitation of the whole output of the discrimi-
nator to compute the loss function, thus having a
stronger signal for the back-propagation; (ii) the
usage of a generator network to find suitable re-
placements and (iii) the fact that the discriminator
does not see spurious tokens such as the MASK
token. The latter is a main drawback of the original
BERT, as it creates input discrepancies between
pre-training and fine-tuning, since the CLS repre-
sentation is dependent on all input tokens thanks to
the self-attention mechanism.

Other research directions to reduce training time
address the architecture instead of the learning ob-
jective. In ALBERT (Lan et al., 2020), the authors
tie the weights of every Transformer layer to save
GPU memory, thus enabling bigger batch sizes.
However, since the expressive power of their mod-
els is reduced when layers are tied, they must train
for much longer. Sanh et al. (2020) and Turc et al.

(2019) instead use distillation to reduce the model
size, but the pre-training is still expensive because
it requires a large teacher architecture.

Although pre-training is performed only once, it
usually requires weeks and costly machines (Liu
et al., 2019b; Brown et al., 2020), so it is important
to find alternative ways to pre-train transformers.
Tay et al. (2020) provides an overview of many
recent advancements in transformer efficiency.

Another successful MLM improvement regard-
ing the objectives is SpanBERT (Joshi et al., 2020),
which proposes two new objectives: Span-Masking
and Span-Boundary-Objective (SBO). Specifically,
the Span-Masking objective is a refined version of
MLM that masks contiguous spans of text instead
of single tokens, while, with SBO, they predict
the span content by considering only the output
representation corresponding to the tokens on the
boundaries. Furthermore, in Zhang et al. (2020),
the authors propose a technique to improve down-
stream performance by adapting the model to the
final task while pre-training. Similarly, in Di Liello
et al. (2022) they do continuous pre-training with
custom objectives to better adapt the model for
Answer Sentence Selection (AS2).

In T5 (Raffel et al., 2020), the authors propose to
use deshuffling (Liu et al., 2019a) to pre-train an au-
toregressive model. They shuffle random spans of
text and ask the model to output tokens in the orig-
inal order. This technique provides good results on
an extensive collection of benchmarks. However,
we cannot compare with them because we focus on
autoencoder architectures only.

Finally, we mention the work by Izsak et al.
(2021), in which the authors list many optimiza-
tions that could be applied to the transformers for
faster pre-training. They also claim that using
larger models with the same runtime leads to better
results. We focus instead on the pre-training objec-
tive efficiency and on the classification head size.
Thus we state that those techniques are orthogonal
to our work and could be applied along with our
alternative pre-training objectives.

3 Background on Pre-training Objectives

Before describing our models, we provide a de-
tailed description of the most common token-level
pre-training objectives used in the literature.

Masked Language Model (MLM) was pro-
posed by Devlin et al. (2019). In MLM, 15% of
the input tokens are replaced with a special mask,

5534



E0 E1 E2 EM. . .

Classification
Head

<s> The fox is sat on the table

<s> The <mask> is sat on the table

<s> </s>The fox is sat on the table
Output

Sequence

Embeddings

Corrupted
Sequence

Input Masker
Input

Sequence

. . .. . .. . .. . .

Vocabulary
size

. . .

. . .

. . .

. . .

. . .

Layers

</s>

</s>

Classification
Head

0 00 1 0 0 0 0 0Output
Sequence

Always
2

E0 E1 E2 EM. . .

Layers

<s> </s>The fox is sat on the table

<s> </s>The bottle is sat on the table

Embeddings

Corrupted
Sequence

Input Handler
Input

Sequence

. . .

. . .

. . .

. . .

E0 E1 E2 EM. . .

Classification
Head

<s> The fox is sat on the table

<s> </s>The bottle is sat on the table

<s> </s>The fox is sat on the table
Output

Sequence

Embeddings

Corrupted
Sequence

Input Handler
Input

Sequence

. . .. . .. . .. . .

Vocabulary
size

. . .

. . .

. . .

. . .

. . .Layers

</s>

Figure 1: MLM, RTS and SLM architectures (from left to right). Notice that the classification head used by RTS is
several times smaller than those used by MLM and SLM (see Appendix G).

and the model has to predict the original value. An
improvement of MLM is whole-word-masking, in
which masking is applied to every token belonging
to a word and not just to independent tokens.

The model needs a large classification head for
pre-training, as shown in Figure 1. Its dimension is
proportional to the vocabulary size, and (especially
for small models) this constitutes a significant frac-
tion of the entire architecture parameters. In the
base architectures, the MLM head constitutes about
20% of the model parameters while for small mod-
els, the fraction increases to 30%1. The memory
footprint of the LM head while training is about
47% for base and 64% for small models2. See Ap-
pendix G for more details. For this reason, a binary
classification head (as for TD) can provide signif-
icant efficiency improvement. Moreover, sharing
the parameters of the MLM classification head with
the embeddings does not reduce the computational
cost but leads only to marginally lower memory
requirements. In the embedding layer, only a few
row vectors corresponding to the actual sentence
tokens are updated at every step. On the contrary,
MLM’s softmax continuously computes gradients
for the whole output linear transformation.

Causal Language Model (CLM) is used to train
autoregressive models by predicting the next to-
ken in a sequence (Radford et al., 2019; Radford,
2018). Similarly to MLM, it requires a large classi-
fication head to output predictions over the whole
vocabulary.

Permutation Language Modeling (PLM) was
proposed by Yang et al. (2020) to combine the

1Very often the language modelling head parameters are
shared with the embedding layer

2Gradients have to be computed for every token in the
vocabulary because of the final softmax layer

generative power of autoregressive models with
the bidirectional context of autoencoders. This
is accomplished by permuting the input tokens
and by letting the model use only the left con-
text for the next token prediction. In this way, the
model keeps the strengths of autoregressive mod-
els while exploiting the whole input sequence for
better-contextualized output embedding.

Token Detection (TD) was introduced by ELEC-
TRA (Clark et al., 2020), which is an architec-
ture composed of a discriminator and a smaller
generator network. First, the generator is trained
with MLM and finds suitable replacements for the
masked tokens, as in BERT. Then, those candidates
are inserted in the original sentence, and the re-
sulting sequence is fed to the discriminator, which
classifies whether a token is original or not. TD has
the advantage of computing the loss on the whole
discriminator output and having a minimal memory
footprint. However, the whole system is inefficient
because of the presence of the generator, which is
still MLM-based.

4 Effective Pre-training Objectives

This section presents our alternative pre-training
objectives, which can potentially be applied to a
wide range of Transformer-based models.

Random Token Substitution (RTS) Like ELEC-
TRA, RTS trains a model that discriminates be-
tween original and substituted tokens. The main
difference is that RTS replaces 15% of the tokens
with random alternatives, thus avoiding using com-
putational resources to train a separate and expen-
sive network. Besides, unlike MLM, this approach
relies on a smaller classification head that is not
proportional to the vocabulary size, see Figure 1.
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Aggregated probabilities of token misclassifica-
tion (C-RTS) The random selection applied by
RTS may provide too many easy cases to perform
effective pre-training. Thus, our idea is to use a to-
ken probability distribution, inversely proportional
to the classification simplicity. More formally,
let (w0, w1, . . . , wn) be an input sequence of to-
kens. A transformer model m predicts y = {0, 1}n,
where yi = 0 indicates wi is original, and yi = 1
that wi was replaced with some w′

i (wi → w′
i). We

aim at maximising P (yi = 0 | wi → w′
i), since

we want to create substitutions wi → w′
i that are

difficult to be detected by m.
P (yi = 0 | wi → w′

i) can be estimated by count-
ing the number of failures/successes in detecting
wi → w′

i in previous iterations. While ELECTRA
exploits the whole input context to create challeng-
ing replacements, our algorithm uses only the pre-
diction history over single tokens. Storing a counter
for every pair or token would generate a vast and
sparse matrix given the average transformer’s vo-
cabulary size. For this reason, we partition tokens
into n clusters by measuring the L2 norm between
the relative embedding vectors. We train the word
embeddings with a word2vec model (Mikolov et al.,
2013) on the same data used for pre-training, see
Appendix F for more details. After that, we use
K-Means (Lloyd, 1982) to group the tokens into
the clusters C1, . . . , Cn.

We use a matrix F ∈ Zn×n, initialized with
zeros, to count the difference between the failures
and successes of the discriminator. While training,
for each pair of tokens (wi ∈ Ca, w

′
i ∈ Cb) such

that wi → w′
i, we decrease Fa,b by 1 if yi = 0,

otherwise we increment it by 1.
To maximise P (yi = 0 | wi → w′

i) in our ap-
proach, we select the pairs (wi, w

′
i) with the highest

mistake probability estimated with F . We compute
the probability of selecting wi ∈ Ca and replacing
it with w′

i ∈ Cb as follows:
P (wi ∈ Ca → w′

i ∈ Cb) = P (wi) P (w′
i|Cb) P (Cb|Ca)

where we set (i) the probability of selecting a token
in the input sequence P (wi) to 15%; (ii) P (w′

i|Cb)
equal to 1

|Cb| because it is computed assuming uni-
form probability of choosing w′

i in Cb; and (iii)
we set P (Cb|Ca) as the probability of detecting
tokens from cluster Ca when replaced with tokens
from Cb. The latter is computed from F as follows:
given the candidate token wi ∈ Ca, we define a
multinomial distribution over the target clusters
by indexing the a-th row of F . To transform the

counts in Fa into values interpretable as probabili-
ties, we first apply the min-max normalization and
then a γ-softmax. γ controls how the probability
mass is concentrated or relaxed around the most
probable cluster. For our token substitutions, we
sample Cb from this multinomial distribution.

We searched for the best n among a reason-
able set {30, 100, 300, 1000} and the best γ in
{1, 2, 5, 10}. After preliminary experiments, we
found that the best combination is n = 100, γ = 2.

Swapped Language Modeling (SLM) is similar
to BERT’s MLM, but in this case, tokens are only
randomly replaced with others and never with the
special MASK. Then, unlike RTS, the model is
trained to predict the original value and not dis-
criminate between fakes and originals. SLM uses
the same pre-training head as MLM; thus, it is
computationally equivalent to it.

5 Datasets

This section contains the descriptions of the
datasets we used for pre-training and fine-tuning.

5.1 Pre-training datasets

We used Wikipedia and BookCorpus for pre-
training, as in BERT (Devlin et al., 2019).
Wikipedia is a large collection of documents con-
taining raw text for a total of about 2,500M words.
We cleaned the corpus by removing lists, tables,
headers, links and footers, and we considered only
the passages. The BookCorpus (Zhu et al., 2015) is
composed instead of free novel books, containing
approximately 800M words after cleaning. Since
the original BookCorpus is not available anymore,
we used the version available from the datasets
library (Lhoest et al., 2021), which may result in
slightly different final scores.

5.2 Fine-tuning datasets

GLUE (an acronym for General Language Under-
standing Evaluation) is a benchmark suite to test
models on different NLU tasks (Wang et al., 2019).
The collection includes datasets for Question An-
swering, Natural Language Inference, Question
Pairs detection, Entailment Recognition and Lan-
guage Acceptability. For more details about each
task, see Appendix C.

ASNQ (which stands for Answer-Sentence Natu-
ral Questions), is a dataset built for Answer Sen-
tence Selection (AS2) (Garg et al., 2019). It was
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Dataset Split # Questions # Candidates

ASNQ Train 57,242 20,377,568
Dev 2,672 930,062

WikiQA
Train 2,118 20,360
Dev 122 1,126
Test 237 2,341

TREC-QA
Train 1,226 53,417
Dev 69 1,343
Test 68 1,442

Table 1: Statistics for the three AS2 datasets that we consid-
ered (ASNQ, WikiQA, and TrecQA). Notice that we use the
"clean" setting for the dev and test splits WikiQA and TrecQA,
while for ASNQ we use the original splits proposed in (Garg
et al., 2019)

derived from the Natural Questions (NQ) corpus
(Kwiatkowski et al., 2019), which was initially de-
signed for Machine Reading. It contains thousands
of questions extracted from the Google search en-
gine and candidate sentences retrieved from the
top-ranked Wikipedia page. We present the details
of the dataset in Table 1.

WikiQA is a small dataset for Answer Sentence
Selection built from questions asked to the Mi-
crosoft Bing search engine (Yang et al., 2015).
Questions have been manually paired with answers
taken from Wikipedia articles and labelled as rele-
vant or not. We train on the whole training split, but
we validate and test in a “clean” setting: questions
having only positive or only negative candidates
are removed. More details in Table 1.

TREC-QA is another popular benchmark used for
AS2 (Wang et al., 2007). The dataset is created
from the TREC-8 to TREC-13 tracks of Question
Answering. As in (Garg et al., 2019), we train on
the large train-all split, but we do validation and
testing only on the questions that have at least a
positive and a negative answer. Note that train-all
contains more noise and questions that do not have
positive answers. However, it is larger than train
and allows for a more stable fine-tuning. Training
with train-all and testing on clean data is the stan-
dard setting in TREC-QA. We add more details in
Table 1.

6 Experimental Setting

In these experiments, we compare the cost and
accuracy of our models with the state-of-the-art
methods on GLUE and several AS2 benchmarks.
Finally, we summarize results derived from previ-
ous work. Then, we provide a description of the

training set as well as our pre-training and fine-
tuning experiments and results.

6.1 Models

We applied every objective to the same BERT (De-
vlin et al., 2019) architecture to make a fair com-
parison. Furthermore, since pre-training time is not
proportional to the number of parameters but to the
number of computations, we also measure the float-
ing point operations required to do pre-training,
as in (Clark et al., 2020). FLOPS indicates the
number of mathematical operations performed on
the underlying hardware and are independent of
the used accelerator (CPU, GPU or TPU) and the
model size.

6.2 Pre-training

Base models We pre-trained a model for every
alternative objective in the same setting as BERT-
base (Devlin et al., 2019) to perform a fair compar-
ison. More precisely, we pre-trained models on the
English Wikipedia and the BookCorpus dataset for
900K steps with a maximum sequence length of
128 tokens and another 100K steps at 512 with an
uncased vocabulary. This saves much pre-training
time because the computational complexity of the
attention is quadratic in the sequence length.

We use Adam and a triangular learning rate for
optimization with a peak value of 10−4 and 10K
warm-up steps. We use a batch size of 256 exam-
ples. More details are given in Appendix A.

Since ELECTRA models require more FLOPS
because of the generator, we reduce the number
of steps proportionally to the presence of the addi-
tional generator, as in (Clark et al., 2020). Thus,
we pre-trained ELECTRA for a total of 766K steps,
of which 689K with a maximum sequence length
of 128 tokens and the remaining 77K at 512.

Small models We pre-trained 4 models using the
small architecture defined by (Clark et al., 2020)
and MLM, SLM, RTS and C-RTS as objectives.
We pre-train small models with the same data and
hyper-parameters for the base models but using a
larger batch size of 1024 for 500K steps and always
using a reduced maximum sequence length of 128
tokens.

6.3 Fine-tuning

We evaluate the effectiveness of the pre-training
objectives described in Section 3 by fine-tuning on
four benchmark datasets introduced in Section 5.2.
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Model CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B AVG Timematt. corr. acc acc acc acc acc acc spear %

BERT-B / MLM+NSP ♣ 53.0 82.7 82.8 89.6 88.2 62.8 91.2 80.6 78.9 × 1.00

BERT-B / MLM 53.7 83.6 82.6 89.9 89.1 63.1 92.3 83.6 79.7 × 1.00
BERT-B / RTS 57.3 82.6 81.3 89.3 88.9 66.2 91.7 82.2 79.9 × 0.81
BERT-B / C-RTS 57.3 82.8 81.9 89.4 88.6 60.9 91.0 82.2 79.3 × 0.82
BERT-B / SLM 57.0 83.3 83.1 89.7 88.9 65.0 92.3 83.8 80.4 × 1.00
ELECTRA-B / TD 60.6 83.6 84.1 90.2 89.0 69.1 92.4 85.5 81.8 × 1.05

Table 2: Results on the GLUE test set. Notice that the model with ♣ is the same as Table 9. We took the best models on the
development set and submitted them to the GLUE leaderboard. Also, in this case, we don’t do best model selection from a pool
of candidates, and we do not use ensemble models. Results on the dev. set and significance tests are available in Appendix D.

Model WikiQA TREC-QA ASNQ −→ WikiQA ASNQ −→ TREC-QA ASNQ Time
MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

BERT-B / MLM+NSP ♣ 82.8 (0.9) 84.2 (1.0) 87.2 (0.9) 92.9 (1.0) 87.9 (0.4) 89.3 (0.4) 89.1 (0.4) 93.4 (0.5) 66.8 (0.1) 73.2 (0.2) × 1.00

BERT-B / MLM 79.9 (1.1) 81.2 (1.2) 86.4 (0.7) 91.5 (0.7) 88.9 (1.0) 90.2 (1.0) 87.6 (0.9) 90.6 (1.1) 65.5 (0.2) 72.2 (0.3) × 1.00
BERT-B / RTS 78.5 (2.5) 80.1 (2.5) 86.6 (1.5) 91.8 (1.5) 87.9 (0.5) 89.3 (0.5) 88.5 (0.5) 93.4 (0.4) 64.6 (0.1) 71.1 (0.2) × 0.81
BERT-B / C-RTS 79.0 (1.9) 80.6 (1.6) 87.0 (0.8) 91.8 (1.1) 87.1 (0.6) 88.3 (0.6) 88.7 (0.4) 92.9 (0.7) 64.7 (0.1) 71.5 (0.1) × 0.82
BERT-B / SLM 80.2 (1.5) 81.7 (1.6) 87.3 (1.3) 92.1 (1.5) 87.7 (0.8) 89.3 (0.7) 87.9 (0.6) 91.0 (0.6) 65.8 (0.3) 72.7 (0.3) × 1.00
ELECTRA-B / TD 81.8 (1.6) 83.2 (1.6) 86.8 (1.4) 92.2 (1.5) 88.4 (0.4) 89.8 (0.4) 88.9 (0.3) 92.0 (0.5) 64.9 (0.3) 71.7 (0.4) × 1.05

Table 3: Results on WikiQA and TREC-QA datasets with single-task fine-tuning and after the transfer step on ASNQ. We also
report the results on the dev. set of ASNQ optimizing MAP. The NSP loss of the original BERT mainly improves the results
without the transfer step. After the transfer on ASNQ, which trains especially the CLS token representation, the difference
with our MLM-based BERT is much smaller. We show the standard deviation after 5 runs with different initialization seeds in
rounded brackets. We underline results that are significantly different from the BERT-B / MLM baseline after a two-sided T-Test
with a significance level equal to 95%.

GLUE We use the same hyper-parameters used
in (Liu et al., 2019b). More details are given in Ap-
pendix D. We measure Spearman and Matthews’s
correlation coefficients for STS-B and CoLA re-
spectively, and accuracy for all the other tasks. For
every model, we take the best checkpoint on the de-
velopment set and evaluate it on the GLUE Leader-
board.

ASNQ We train our models on ASNQ using a
batch size of 2048 with a learning rate of 1× 10−5

for 12 epochs with early stopping on the develop-
ment set. Since most question-answer pairs are
shorter than 128 tokens, we use this as the max-
imum sequence length. We measure the perfor-
mance using Mean Average Precision (MAP) and
Mean Reciprocal Rank (MRR).

WikiQA & ASNQ → WikiQA Following the
approach of TANDA (Garg et al., 2019), we fine-
tune our models directly on WikiQA and again on
WikiQA but after a transfer step on ASNQ. In par-
ticular, for each model, we run a hyperparameter
search to obtain the best results. We search for the
best batch-sizes in {32, 64, 128}, the best learning
rates in {2× 10−6, 5× 10−6, 1× 10−5, 2× 10−5},
and we always use a maximum sequence length of
128 for up to 40 epochs. We repeat each experi-
ment 10 times with different seeds to also report

the results’ standard deviation. We evaluate the
model’s performance on the test set using MAP
and MRR.

TREC-QA & ASNQ → TREC-QA For these
2 tasks, we adopted the same strategy used for
WikiQA and ASNQ → WikiQA. We repeat each
experiment 10 times with different seeds; in this
case, we evaluate with the same metrics above.

7 Results

We first report the cost of our models in compari-
son with the state-of-the-art methods in Tables 5
and 6 for base and small models, respectively. No-
tice also that RTS and C-RTS use about half the
GPU memory of MLM with base and 1

3 with small
models. Thus, the training time of the former’s
to complete all the training steps could have been
even shorter by increasing the batch size. How-
ever, we keep a constant batch size to make a fair
comparison. After that, we carry out a comparison
in terms of accuracy on GLUE datasets as well as
question-answering benchmarks. Additionally, we
compare our models with state-of-the-art results
published in previous works, pointing out the cost
of training them.
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Model WikiQA TREC-QA ASNQ GLUE TimeMAP MRR MAP MRR MAP MRR AVG

BERT-S / MLM 66.9 (1.7) 68.2 (1.6) 80.9 (2.2) 85.8 (2.6) 58.6 (0.3) 66.0 (0.4) 74.1 × 1.00
BERT-S / RTS 71.8 (1.3) 73.5 (1.5) 81.4 (0.5) 87.3 (1.7) 59.8 (0.1) 66.9 (0.2) 75.4 × 0.54
BERT-S / C-RTS 69.4 (1.3) 70.8 (1.0) 81.3 (1.4) 86.5 (0.7) 59.6 (0.2) 67.1 (0.2) 75.7 × 0.54
BERT-S / SLM 69.5 (1.0) 70.8 (1.0) 81.9 (1.1) 87.3 (1.5) 59.2 (0.2) 66.5 (0.3) 75.7 × 1.00

Table 4: Results of RTS, C-RTS and SLM compared with MLM applied to small architectures on AS2 benchmarks and GLUE
test set. We underline the results that are significantly different from the BERT-S / MLM baseline after a two-sided T-Test with a
significance level of 95%. We show the standard deviation after 5 runs with different initialization seeds in rounded brackets.

7.1 Base models

GLUE Table 2 shows that all the consid-
ered approaches, except for ELECTRA vanilla
(MLM+TD), obtain comparable performance on
GLUE. In particular, despite a small performance
decrease compared with our MLM BERT, the RTS
and C-RTS models require about 20% less time
to be pre-trained on the same machine. This sug-
gests that using a smaller classification head greatly
impacts the training time. The difference could be
even broader when considering models using larger
vocabularies such as RoBERTa (Liu et al., 2019b)
or models with a smaller number of Transformer
layers, such as DistilBERT (Sanh et al., 2020) or
tiny-BERT (Turc et al., 2019).

It is also worthwhile mentioning that: (i) our
BERT-SLM model achieves better performance
than MLM BERT (+0.7%), and the original BERT
(+1.5%) on average, confirming that removing the
MASK token during pre-training is important; (ii)
ELECTRA provides superior performance when
fine-tuned on small datasets such as CoLA, while
in other tasks it shows similar accuracy to SLM
and MLM.

For the sake of completeness, we also show
the results on the development set of the GLUE
datasets in Appendix D.

QA benchmarks We report the performance ob-
tained by the models on a wide range of QA tasks
in Table 3. The results on the dev. set of ASNQ
are obtained by fine-tuning all models in the same
setting. SLM provides the highest results among all
models using token-level objectives, scoring even
higher than ELECTRA.

On WikiQA and TREC-QA, RTS and C-RTS
have mixed results compared to MLM. In some
QA tasks, RTS performs slightly better than MLM,
while, in others, slightly lower. To show that there
is no statistical significant difference in perfor-
mance between the two models, we do the fol-
lowing test: we split the test set of TREC-QA and

WikiQA in 10 parts, and we test the performance
of both models on all mini-batches. Finally, we
take the difference in performance between the
two models on every mini-batch, and we report
the mean and standard deviation. We discover
that MLM is better than RTS on ASNQ → Wik-
iQA by 1.4 (±3.8) points while, similarly, RTS
outperforms MLM on ASNQ → TREC-QA by
1.1 (±2.9). The high std. dev. makes the small dif-
ference between models insignificant. In contrast,
RTS requires 20% less time to be fully pre-trained.

C-RTS shows minor but consistent improve-
ments over RTS in most QA tasks, especially when
trained longer (see Appendix H), also featuring a
much smaller std. dev. when fine-tuned without the
transfer step on ASNQ, which generally reduces
the variability of results (Garg et al., 2019). More-
over, similarly to GLUE, the model trained with
SLM obtains small but consistent advantages over
MLM in MAP and MRR on three benchmarks out
of four.

We stress the fact that the only other differences
between our BERT models and the original by De-
vlin et al. (2019) are the BookCorpus pre-training
dataset and the additional NSP loss. We use only
MLM to provide a fair comparison between token-
level objectives. NSP may improve results slightly
because it improves the sentence-level represen-
tation already while pre-training. This is espe-
cially true when models are not trained as long
as RoBERTa or ELECTRA, which dropped NSP
because it became insignificant for them, and may
even hurt performance after many training steps.

7.2 Small models
Table 4 shows that RTS and C-RTS on small mod-
els outperform MLM in most tasks. In addition,
RTS also improves over SLM by a wide margin in
two of the three considered benchmarks (WikiQA
and ASNQ). Besides, thanks to the smaller archi-
tecture, RTS greatly impacts the pre-training time.
In particular, Table 6 shows that small models ex-
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Models BERT-B / MLM BERT-B / RTS BERT-B / C-RTS BERT-B / SLM ELECTRA-B / TD

LM head complexity O(bs× L× |V |) O(bs× L) O(bs× L) O(bs× L× |V |) O(bs× L× |V |)
FLOPS 1.61× 1019 1.54× 1019 1.54× 1019 1.61× 1019 1.98× 1019

Training time 3d 14h 2d 22h 2d 23h 3d 14h 3d 18h

Table 5: FLOPS used to pre-train each base model, language modelling head complexity and real training time on the same
machine. bs stands for batch size, L for the input sequence length and |V | is the vocabulary size, equal to about 30K tokens in
BERT models. Notice that BERT-RTS and BERT-C-RTS use less memory thanks to the smaller binary classification head (also
potentially allowing for larger batch sizes.)

Models BERT-S / MLM BERT-S / RTS BERT-S / C-RTS BERT-S / SLM

LM head complexity O(bs× L× |V |) O(bs× L) O(bs× L) O(bs× L× |V |)
FLOPS 1.83× 1018 1.64× 1018 1.64× 1018 1.83× 1018

Training time 1d 7h 17h 17h 1d 7h

Table 6: FLOPS used to pre-train each small model, language modelling head complexity and real training time on the same
hardware. See the caption of Table 5 for more details.

ploiting RTS or C-RTS for pre-training consume
half the resources used by MLM. We controlled
the training of RTS and C-RTS on a small fraction
of the pre-training set used for validation. We dis-
covered that the last-epoch F1 scores of RTS and
C-RTS in detecting replaced tokens were 96.3 and
94.7, respectively. This confirms that C-RTS is a
more challenging task and may be well suited for
longer pre-training. RTS, instead, would be more
easily solved, thus providing weaker loss signals to
the model.

7.3 Models cost

Tables 5 and 6 show the training compute and time
required by several models. FLOPS are significant
indicators but may reflect different practical per-
formances if the underlying hardware implements
special acceleration for some operations. In fact,
the training times on our NVIDIA A100 GPU are
not perfectly proportional to the model’s FLOPS.
For example, RTS and C-RTS are much faster to
be pre-trained in practice in comparison to MLM
and even more than the theoretical FLOPS differ-
ence thanks to the smaller memory footprint. Addi-
tionally, even by reducing the number of training
steps of ELECTRA proportionally to the additional
weight of the generator network, as suggested by
the authors, ELECTRA still uses more computing
than BERT for pre-training.

7.4 Better modelling or just more computing?

We aim to produce models that require less com-
puting budget to achieve performance similar to
MLM-based models. Our results show that the per-
formance improvement is logarithmic in the size

of the pre-training dataset. At the same time, there
is no statistically significant difference between
our computationally lighter objectives and more ex-
pensive models such as ELECTRA. Indeed, Table
7 shows that top-performing architectures outper-
form MLM-based models only when trained on
much more data. For example, ELECTRA-Base
uses 21 times more resources than BERT-Base,
while RoBERTa uses 53 times more. It is impres-
sive the fact that to reach a score of 90.0 on GLUE,
a model has to be trained for 2000 times the origi-
nal BERT.

Model GLUE FLOPS
BERT-S / RTS 75.4 × 0.10
BERT-S / MLM 74.1 × 0.12
BERT-S / SLM 75.7 × 0.12
BERT-B / RTS 79.9 × 0.81
BERT-B / MLM 79.7 × 1
BERT-B / SLM 80.4 × 1
BERT-L / MLM+NSP (Devlin et al., 2019) 83.3 × 12
ELECTRA-B / TD (Clark et al., 2020) 85.7 × 21
RoBERTa-B / MLM (Liu et al., 2019b) 86.3 × 53
ELECTRA-L / TD (Clark et al., 2020) 88.6 × 194
RoBERTa-L / MLM (Liu et al., 2019b) 88.8 × 200
ALBERT-L / MLM+SOP (Lan et al., 2020) 90.0 × 1937

Table 7: Large models comparison on the GLUE test
set. We report the average accuracy over the different
tasks of Table 2, while FLOPS refers to pre-training.

7.5 Does clustering really matter?

We compared our two efficient approaches (RTS
and C-RTS) to understand whether selecting more
challenging replacement tokens could really im-
prove the model performance on the downstream
tasks on a long run. In order to perform this analy-
sis, we pre-trained two small models with both ob-
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jectives using a different setting. In particular, we
increased the sequence length to 512 and trained
for 200K steps with a batch size of 1024, thus
letting the models (i) see much more tokens and
(ii) compute attention scores over long sequences.
Then, we evaluated them on five different bench-
marks (WikiQA, TREC-QA, ASNQ, MRPC and
QNLI). We chose these datasets because they cover
a wide range of tasks (AS2, Paraphrasing and NLI)
and a wide range of sizes, from the 3.6K examples
of MRPC to the 20M of examples in ASNQ. The
results shown in Table 8 clearly underline that in
every experiment, C-RTS achieves better perfor-
mance than RTS. For example, it scores between
1 and 3% points over RTS in MAP on the three
AS2 datasets. Moreover, it provides more stable
results, as it can be seen from the standard devi-
ation across all experiments. We claim that the
advantages of C-RTS over RTS derive from a more
difficult pre-training objective, which is slower to
converge and provides better loss signals in the
last training epochs. More details are given in Ap-
pendix H.

Dataset Metric RTS C-RTS

WikiQA MAP 72.2 (0.6) 75.0 (2.4)

TREC-QA MAP 84.3 (2.4) 85.4 (1.1)

ASNQ MAP 59.9 (0.2) 60.7 (0.1)

MRPC Accuracy 81.5 (1.5) 84.2 (0.1)

QNLI Accuracy 86.9 (0.3) 86.9 (0.1)

Table 8: Performance comparison between RTS and C-RTS
on five different benchmarks. The results reported for WikiQA
and TREC-QA are on the test set, while for ASNQ, MRPC
and QNLI, we report the highest score on the development
set. We show the standard deviation after 5 runs with different
initialization seeds in rounded brackets.

8 Discussion and Conclusion

In this work, we studied several alternative methods
to pre-train Transformer models. Our approaches
aim at designing pre-training objectives that (i)
match the results of well-known methods using
fewer resources or (ii) outperform previous tech-
niques with the same computing budget. This
translates into shorter training, lower memory us-
age, and the possibility of increasing the batch
size. Among other benefits, more efficient mod-
els can reduce carbon footprint and infrastructure
costs. Notice that this advantage is even higher for
smaller models since the MLM classification head
is not shrunk proportionally to the architecture size
(Turc et al., 2019), thus it increases its weight on

the computational complexity for smaller models.
Moreover, we demonstrate that the MASK token
is useless and similar or even better results can be
achieved using only token substitution. We reiter-
ate that our objectives could be easily applied to
many different transformer models; we chose the
BERT setting due to computational resource con-
straints and easy reproducibility. In Appendix E
we provide an overview of negative results. Finally,
we show that recent models’ performance improve-
ments are mostly driven by longer training phases
rather than by more refined architectures.

We evaluated our approaches on several datasets,
such as GLUE, WikiQA, TREC-QA and ASNQ.
The results show that RTS and C-RTS match the
accuracy of MLM in most tasks, requiring a lower
amount of computational effort (20% less), while
SLM outperforms MLM in most tasks. C-RTS
also shows a lower accuracy in detecting replaced
tokens, meaning that the task is harder and better
suited for longer pre-training sessions.

In addition, we tested our pre-training objec-
tives on smaller transformer architectures. In this
scenario, RTS and C-RTS obtained better perfor-
mances than MLM by requiring half of its time
to be pre-trained. For example, RTS outperforms
MLM by almost 5 MAP points on WikiQA. This
last finding is potentially helpful for training trans-
former models from scratch with limited resources.

In the future, we plan to explore combinations of
our new techniques with efficient architectures such
as ALBERT to take advantage of a lighter structure
and more effective pre-training objectives.

9 Limitations

Pre-training of large language models is an ex-
pensive operation: powerful hardware must be
reserved for many days and a lot of energy is
consumed. In this paper we explore different
pre-training objectives to both save computational
power and increase the performance. However,
despite the improvements that we propose, the pre-
training of language models still requires an incred-
ible amount of resources. For these reasons and our
computational constraints, we worked only with
small and base architecture, leaving large models
as future work.

We trained many language models only on En-
glish training data; however, we did not explore the
benefits of our alternative objectives if applied in a
multilingual setting, but we believe our approaches
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could be easily extended to other languages with
similar morphology.

Finally, we benchmark our language models on
a wide range of tasks, such as Question Similarity,
Answer Sentence Selection, Natural Language In-
ference, etc., but we omitted several other tasks for
space limitation.
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Appendix

A Pre-training details

We pre-trained on the cleaned versions of the Book-
Corpus and the English Wikipedia.

For the optimization of both the small and the
base models, we use Adam with a learning rate
equal to 10−4, ϵ = 10−8, β1 = 0.9 and β2 =
0.999. The learning rate scheduler is designed to
warm up for 10K steps and then decrease linearly.
We use a batch size of 256 examples for the base
models and 1024 for the smalls. Finally, we apply a
constant weight decay rate of 0.01, and the dropout
probability is set to 0.1.

B Frameworks & Infrastructure

We implemented every model taking advantage
of the HuggingFace Transformers library (Wolf
et al., 2020), (ii) PyTorch-Lightning for the training
framework and the distributed training algorithm
(Falcon et al., 2019) and TorchMetrics for classifi-
cation and AS2 evaluation metrics (Detlefsen et al.,
2022).

We performed our pre-training experiments for
every model on 8 NVIDIA A100 GPUs with 40GB
of memory each, using fp16 for tensor core accel-
eration.

C GLUE tasks

The collection includes: (i) two datasets to test per-
formance in paraphrasing capabilities, one com-
posed of questions (QQP) pairs and the other
of the sentence pairs (MRPC); (ii) a dataset for
question-answer entailment (QNLI) derived from
the SQUAD dataset (Rajpurkar et al., 2016); (iii)
three datasets for textual entailment (RTE, MNLI
and WNLI); (iv) a single dataset (STS-B) to test the
model on textual similarity; (v) a dataset (SST-2)
to evaluate performance on sentiment analysis and
finally (vi) a dataset to check linguistic acceptabil-
ity (CoLA). As in (Devlin et al., 2019) and (Clark
et al., 2020), for stability reasons we avoid testing
on WNLI.

We report the results obtained in the develop-
ment set in Table 9 for both the base and the small
models.

D GLUE hyperparameters and
development set results

We used a batch size of 16 with lr = 1 × 10−5

for CoLA and MRPC, a batch size of 16 with a

learning rate of 2× 10−5 for RTE and STS-B, and
a batch size of 32 and a learning rate of 1× 10−5

for MNLI, QNLI, QQP and SST-2. We set the max-
imum sequence length to 128 for every task. All
the GLUE experiments use a triangular learning
rate scheduler with 10% of warmup. We train mod-
els using half-precision, and optimize them on the
development set. Table 9 provides the results on
the development set of GLUE for all models.

E Non impactful objectives

E.1 C-RTS sampling within the same cluster

We experimented with a simplification of C-RTS
where tokens are always replaced with tokens
within the same cluster. We found that it is im-
portant to maintain the possibility to sample also
from other clusters because the model was able
to learn how tokens are clustered after an enough
large number of steps.

E.2 Position-based techniques

We experimented with changing the position of
tokens, i.e., we masked some positional encod-
ing in an MLM-like approach. The objective was
to retrieve the position of the masked tokens in
the original sentence. The classification head of
this approach is smaller than MLM (slightly larger
than RTS, because of the 512 possible positions in
BERT), but the results were worse by 3-4% points
on GLUE.

We also defined another objective consisting of
(i) shuffling input positions of some tokens, and
then (ii) predicting their original position. We se-
lected 15% of the tokens, and we permuted them.
Although the results were below MLM by 1-2% on
the GLUE average, the approach was as much fast
as RTS. A combination of position-based objec-
tives with the token-level ones is a possible future
direction.

E.3 LM head-on ELECTRA’s discriminator

Capitalizing on the good performance reached from
SLM, we implemented and evaluated a version of
SLM for ELECTRA. Since SLM cannot be directly
applied to the ELECTRA discriminator (the pre-
dictions are only performed on the output positions
corresponding to tampered tokens nullifying the
task of detecting fake tokens), we propose an alter-
native objective called SLM-all. In this case, the
discriminator has to predict the whole input sen-
tence, estimating which tokens were changed and
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Model CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B AVG
matt. corr. acc acc acc acc acc acc spear %

BERT-S/ MLM 42.2 (0.9) 78.8 (0.2) 80.8 (0.9) 85.7 (0.6) 88.6 (0.1) 58.6 (1.3) 89.4 (0.2) 84.4 (0.2) 76.1
BERT-S / RTS 51.2 (1.8) 79.9 (0.2) 81.5 (0.7) 87.9 (0.1) 89.4 (0.1) 61.2 (0.6) 88.4 (0.4) 85.2 (0.2) 78.1
BERT-S / C-RTS 51.6 (0.9) 79.8 (0.1) 81.3 (1.0) 87.0 (0.4) 89.4 (0.1) 61.6 (1.4) 89.5 (0.2) 85.3 (0.3) 78.2
BERT-S / SLM 45.8 (0.5) 79.1 (0.2) 83.3 (0.4) 86.3 (0.3) 89.0 (0.1) 60.8 (1.4) 88.6 (0.4) 86.0 (0.2) 77.4

BERT-B / MLM+NSP ♣ 57.6 (1.8) 84.3 (0.4) 82.3 (1.3) 91.0 (0.7) 91.0 (0.2) 68.9 (1.4) 92.6 (0.1) 89.1 (0.3) 82.1

BERT-B / MLM 58.1 (1.0) 83.4 (0.2) 87.5 (0.5) 90.2 (0.3) 90.9 (0.1) 67.4 (1.2) 92.2 (0.3) 87.8 (0.3) 82.2
BERT-B / RTS 58.1 (1.1) 82.7 (0.2) 87.6 (1.0) 89.4 (0.3) 90.9 (0.1) 68.5 (1.4) 91.5 (0.3) 86.6 (0.4) 81.9
BERT-B / C-RTS 57.4 (0.7) 82.0 (0.3) 84.2 (0.4) 89.6 (0.2) 90.6 (0.1) 66.6 (2.4) 91.5 (0.2) 87.0 (0.2) 81.1
BERT-B / SLM 59.6 (1.0) 83.4 (0.2) 87.5 (0.4) 89.9 (0.2) 91.0 (0.1) 69.2 (1.2) 92.1 (0.1) 87.6 (0.3) 82.5

ELECTRA-B / TD 63.4 (1.3) 83.7 (0.2) 87.2 (0.8) 90.4 (0.1) 91.2 (0.1) 74.6 (1.4) 91.4 (0.4) 88.5 (0.2) 83.8

Table 9: Results on GLUE dev. set for both base and small models (we use the suffixes -B and -S). The symbol ♣ indicates the
official BERT-base uncased pre-trained model released by (Devlin et al., 2019), which uses an additional NSP loss during the
pre-training. We trained every other model in the same setting. For each task, we fine-tune 5 times and take the best model on
the development set. We do single task fine-tuning without best model selection or using ensemble models like in (Clark et al.,
2020). For each group of our BERT models, we underline results that are statistically different from the MLM baseline model by
doing a statistical T-Test with a significance level equal to 95%.

predicting their original values. At the same time,
it should only reproduce the input in output for
unchanged inputs. As for the other objectives, we
evaluated this approach on GLUE, WikiQA, ASNQ
and TREC-QA but we obtained generally worst re-
sults than some of the other approaches, also with
a more expensive training (1.42 times the time re-
quired by MLM with base models). This gap in the
efficiency between SLM-all and the other models
is so large because the latter predicts MLM-like
token for every input token. Notice that even by
reducing the number of training steps of the ELEC-
TRA model by about 25% (to balance the presence
of the additional generator with size 1/3), it uses
slightly more FLOPS than BERT-MLM. Specifi-
cally, it scores 80.02 on the GLUE average score,
78.7, 86.7, 86.7 of MAP in WikiQA, TREC-QA
and ASNQ.

F Clustering of tokens embeddings

First, token embeddings have been obtained by
training a word2vec (Mikolov et al., 2013) model
over the same data used in pre-training. We also
tried to use embeddings from an already pre-trained
BERT model, but we saw no significant differ-
ence in TD accuracy. Therefore, we decided to
use word2vec to provide a complete pre-training
pipeline and not rely on an already pre-trained
checkpoint. We used a context of 2 words on either
side of the target tokens and an embedding size
of 300. The training algorithm written in PyTorch
(Paszke et al., 2019) took less than 10 minutes on
the same GPU used for pre-training. Thus this

process is not significant concerning the whole pre-
training time. We perform clustering of tokens us-
ing the K-means algorithm (Lloyd, 1982). We used
the CPU implementation of K-means provided by
the scikit-learn library (Pedregosa et al., 2011),
doing 20 random starts. The clustering took ap-
proximately 12 minutes on the Intel Xeon Platinum
8275CL in our machine.

G Classification heads
BERT’s MLM has to make predictions over the
whole vocabulary. For this reason, the last layer of
the model should output a probability distribution
over the whole vocabulary, which usually contains
about 30K tokens. In particular, BERT uses a linear
layer of size H × |V | (H is the hidden size of the
model) followed by a softmax to generate values
that could be interpreted as probabilities. On the
contrary, RTS or C-RTS needs just a binary classi-
fication head to predict whether a token is original
or fake. This results in a simple linear layer with
size H × 2. For this reason, MLM’s classification
head is usually tens of thousands times larger than
RTS’s.

H C-RTS vs RTS with longer
pre-training.

We demonstrate the superiority of C-RTS over RTS
by doing a longer pre-training on a small model.
We increased the maximum sequence length from
128 to 512 and kept the same batch size of 1024.
We train until both models converge and no longer
improve, exploiting the same pre-training data used
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for the other experiments. After every epoch, we
evaluate the checkpoints on various tasks: Wik-
iQA, TREC-QA and MRPC. We avoid very large
datasets such as ASNQ because, on small models,
they underline more the architectural differences
than the pre-training technique.
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Figure 2: Performance comparison of RTS and C-RTS on WikiQA, TREC-QA, MRPC and QNLI.
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