
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 5519–5532
December 7-11, 2022 ©2022 Association for Computational Linguistics

LADIS: Language Disentanglement for 3D Shape Editing

Ian Huang†, Panos Achlioptas§, Tianyi Zhang†,
Sergey Tulyakov§, Minhyuk Sung‡ and Leonidas Guibas†

†Department of Computer Science, Stanford University
{ianhuang, tianyizhang, guibas}@cs.stanford.edu

‡ School of Computing, KAIST §Snap Research
mhsung@kaist.ac.kr {panos, stulyakov}@snap.com

Abstract

Natural language interaction is a promising
direction for democratizing 3D shape design.
However, existing methods for text-driven 3D
shape editing face challenges in producing de-
coupled, local edits to 3D shapes. We address
this problem by learning disentangled latent
representations that ground language in 3D ge-
ometry. To this end, we propose a comple-
mentary tool set including a novel network ar-
chitecture, a disentanglement loss, and a new
editing procedure. Additionally, to measure
edit locality, we define a new metric that we
call part-wise edit precision. We show that our
method outperforms existing SOTA methods
by 20% in terms of edit locality, and up to 6.6%
in terms of language reference resolution accu-
racy. Human evaluations additionally show that
compared to the existing SOTA, our method
produces shape edits that are more local, more
semantically accurate, and more visually obvi-
ous. Our work suggests that by solely disen-
tangling language representations, downstream
3D shape editing can become more local to rel-
evant parts, even if the model was never given
explicit part-based supervision.

1 Introduction

Natural language has been used as a universally
accessible and powerful interface to enable con-
tent creation and manipulation. For 2D images,
Dall·E (Ramesh et al., 2022), Imagen (Saharia et al.,
2022a), and StyleCLIP (Patashnik et al., 2021)
demonstrated impressive capabilities in creating
and editing images using language descriptions.

However, understanding and grounding natural
language in 3D geometry remains a challenge. Re-
cent efforts have all focused on using existing large
pretrained vision-language models like CLIP (Rad-
ford et al., 2021), along with a differentiable ren-
derer to interface 3D geometry with CLIP through
2D renderings. While these methods can perform
geometry edits as described by language, they often

Figure 1: An example of the language-conditioned 3D
shape editing task. Given an input shape and an edit
description, the objective is to edit the shape to match
the edit description. When language representations are
entangled, this can often produce edits not localized
to the relevant parts. In contrast, by regularizing the
disentanglement of language representation alone, our
system achieves higher edit locality while making more
pronounced edits in the requested areas.

also create unintended, additional, and unwanted
changes. For example in Figure 1, while the edit
instruction asks for the chair legs to become thin-
ner, existing methods can produce spurious editing
artifacts elsewhere, like the back of the chair. To
minimize the artifacts created by these changes,
works such as ChangeIt3D (Achlioptas et al., 2022)
often regularize their predicted edits to be very con-
servative, resulting in the overly subtle changes
in regions of the shape where edits are requested,
as shown in Figure 1. Such edit behaviors can
be counter-intuitive and detrimental to the editing
experience, interfering with the design process.

We hypothesize that the source of non-local edits
lies in the way we jointly represent edit descriptions
and shapes. To perform language-based shape edits,
existing methods first learn a shape-language joint
space using a classification or contrastive learning
objective. Then, the system iteratively perform
shape edits to maximize the similarity between the

5519

final shape representation and the edit instruction
representation (Michel et al., 2022; Wang et al.,
2022; Hong et al., 2022; Jain et al., 2022). Prob-
lems arise when the joint representation space is
entangled, i.e., the representations of independent
edit instructions referring to unrelated shape edits
have non-trivial co-dependencies. Optimizing with
such entangled language representations can cause
unintended correlations in unrelated shape edits.

In this work, we study how to achieve localized
language-based 3D shape editing through learn-
ing more disentangled language representations.
Given an input shape and an utterance, the system
should perform the correct edits to the shape while
minimizing edits to parts of the shape that are un-
necessary to shape integrity and undescribed by the
edit description.

Thus, we aim to learn disentangled grounded
language representations that link language refer-
ences to the correct parts of the shape. In an ideal
disentangled latent space, independent edit descrip-
tions that describe mutually independent attributes
and parts should be orthogonal to each other (e.g.
“the car has big wheels” and “the car has 2 doors”).
Figure 2 shows an example of two independent edit
descriptions.

To this end, we propose a language disentan-
glement loss, named LADIS, and a multi-expert
shape-difference encoder architecture. Whereas
the LADIS loss enables the model to orthogonalize
mutually independent utterances, the multi-expert
shape-difference encoder allows the experts to spe-
cialize on different geometric features that span
the semantics of the edit descriptions. These two
design decisions enable our model to decouple dif-
ferent adjectives and part references within the edit
descriptions, leading to improved disentanglement.

We note that a certain degree of geometry entan-
glement may be inherent in the integrity of the
shape structure – the use of different linguistic
terms (e.g., “table top”, “table leg”) does not al-
ways imply perfect disentanglement of the part
locations or geometries. For example, we typically
expect co-dependencies between the extent of a
four-leg table top and its leg locations. Such depen-
dencies have to be learned from data and encoded
in the shape space, making our task quite challeng-
ing.

Even with a more disentangled joint repre-
sentation space, imperfect optimization makes
shape editing difficult. Empirically, we find that

optimization-based 3D editing approaches may
generate invalid objects. For example, failed shape
edits can cause a chair shape to stop looking like a
realistic chair. To combat this issue, we addition-
ally introduce two modifications to a standard opti-
mization procedure: neighborhood simplex editing
(NSE) and output-driven edit step-size adjustment
(ODESSA). NSE re-frames shape editing as inter-
polating between a source shape and its nearest
neighbors, which helps the edited shape to remain
realistic. ODESSA enables every optimization step
to produce a constant amount of change in the out-
put 3D space, allowing us to cope with metric am-
biguities in language instructions.

We evaluate our system on the
ShapeTalk (Achlioptas et al., 2022) and Shape-
Glot (Achlioptas et al., 2019) datasets. To quantify
the degree of edit locality, we propose part-wise
edit precision (PEP), a new metric that measures
if shape edits are restricted to the parts that are
mentioned by the edit description. Experimental
results show that our system demonstrates an
improved ability to resolve language references
and successfully produce more local shape edits
(20% higher PEP than the closest competing
system (Achlioptas et al., 2022)). Additionally,
human evaluation comprising of 500 annotations
shows that compared to ChangeIt3D (Achlioptas
et al., 2022), our method produces 3D shape edits
with higher part-wise locality, semantic accuracy
and visual obviousness. Furthermore, our analysis
of the language representations shows a higher
level of disentanglement of shape part concepts
and adjectives, demonstrating that disentangling
language representation enables larger, more cor-
rect, and more localized shape edits, without ever
equipping our model with explicit part supervision.
The code for LADIS can be found at https:
//github.com/ianhuang0630/LADIS.

2 Related Work

2.1 Language Grounding in 3D shapes

Prior works (Achlioptas et al., 2019, 2022; Thoma-
son et al., 2021) study language grounding in the
geometry of common 3D objects by first collecting
natural referential language, extracted by deploy-
ing referential games (Lewis, 1969; Kazemzadeh
et al., 2014) that use 3D shapes as visual ground-
ing. Then, tapping on such visio-linguistic data the
aforementioned works and similar ones (Achlioptas
et al., 2020; Chen et al., 2019; Anonymous, 2023;

5520

https://github.com/ianhuang0630/LADIS
https://github.com/ianhuang0630/LADIS

Learning Shape-Language Joint Encoder

Source

Shape

Target

Shape

Pretrained 
Shape

Encoder

Language

Shape

Difference

Similarity

Ground-Truth 
Edit Description

“Has thinner
legs.”

Independent 
Edit Description

“Has rungs in
the back.”

Learned

Transformer

Encoder

u1
’u1

u1

u2

u2
’

u2

Classification

Loss:

Selecting

the Target

Shape

LADIS

Loss:

Orthogonalizing

Edit Description

Embedding

Figure 2: Overview of the training for a disentangled language-shape difference joint space. Our network solves a
binary classification task of determining which input shape is the target, and in this process must jointly reason
about both the shape differences and the edit description. To disentangle this space, we regularize the process with
the LADIS loss, which encourages independent instructions to be orthogonalized within the joint space.

Iterative Shape Editing by Maximizing Alignment with Edit Instruction

Shape-Language

Joint Encoder: 

Providing 
Gradient Direction 

for Maximizing

Alignment

Edit Description

Source Chair

Neighbor 
Chair 1

Neighbor 
Chair 2

Source

Chair

Si

Si+1
Adjusting Optimization  

Step Sizes

with ODESSA

Translating

to Shape Latent

Space

Neighbor 
Chair 2

Decodes into

invalid 
chair

Edited

Chair

Neighbor 
Chair 1

Si+1

Si

Latent Dim 2

Latent Dim 1

Pretrained

Encoder Pretrained

Decoder

Output Edited

Chair

“Has thinner
legs.”

Figure 3: Overview of the editing procedure. The system first retrieves a set of nearest neighbors to create an
coordinate space in which our edited shape will be expressed. Using the joint space J , gradient steps iteratively
increase the semantic similarity of the edited shape difference and the edit description, modulated by ODESSA. The
pretrained decoder can be used to decode the final edited latent code to an output.

Koo et al., 2022), train deep-learning-based models
by learning to solve 3D-grounded referential tasks.

While our work focuses on learning disentan-
gled representations to edit shapes, we also show
that our proposed method can lead to improve-
ments in language reference resolution as well.
ChangeIt3D (Achlioptas et al., 2022) introduced
the language-driven shape editing task and con-
tributed a large scale dataset (ShapeTalk) to en-
able data-driven solutions for it. Here, we improve
upon baseline methods introduced in ChangeIt3D.
Methods like DreamFusion (Poole et al., 2022),
DreamFields (Jain et al., 2022), CLIPNerf (Wang
et al., 2022), Text2Mesh (Michel et al., 2022) and

AvatarCLIP (Hong et al., 2022) differentiably ren-
der 3D objects into images and use pretrained
vision-language models such as CLIP (Radford
et al., 2021) or pretrained text-to-image models like
Imagen (Saharia et al., 2022b) to both linguistically
ground and optimize the geometry to semantically
align with the language input.

While these are promising approaches, their
value is mainly in generating new shapes from
scratch, where the idea of “edit locality” no longer
applies. Nonetheless, the question of how to pro-
duce minimal, localized edits to a shape remains an
important one, if text-guided shape editing is to be
widely adopted in the future for 3D content creation

5521

Figure 4: The architecture used to learn a disentangled joint space for language and shape differences. Note that
multiple expert models are used to represent shape differences in different spaces, and the corresponding similarity
predictions are aggregated by a voting network that chooses among these spaces based on the sentence embedding.

pipelines. As such, our work studies grounding lan-
guage in pure 3D representations, and specifically
aims to produce disentangled shape edits.

2.2 Disentangled Representations
In the deep learning literature, disentangled repre-
sentations have been studied mostly for learning
generative models. InfoGAN (Chen et al., 2016)
pioneered this line of research while modifying a
GAN objective function to maximize the mutual
information between latent codes and the generated
data. β-VAE (Higgins et al., 2017) extended this
idea with a regularization loss enforcing statistical
independence of the latent factors, which enabled
more stable training and the use of fewer assump-
tions on the data distribution. Follow-up work such
as CorEx (Gao et al., 2019), β-TCVAE (Chen et al.,
2018b), and FactorVAE (Kim and Mnih, 2018) pro-
posed information-theoretic approaches to resolve
this issue with a total correlation penalty, and a
generalization of the mutual information metric for
multivariate cases. HFVAE (Esmaeili et al., 2019)
also modified the objective function to achieve hier-
archical factorization, and DIP-VAE (Kumar et al.,
2018) introduced a different regularization based
on covariance penalization.

For 3D shape editing, there is little work on learn-
ing disentangled representations. Aumentado Arm-
strong et al. (Aumentado-Armstrong et al., 2019)
were the first to leverage the ideas of HFVAE (Es-
maeili et al., 2019) and DIP-VAE (Kumar et al.,
2018) on 3D shape data. The approach was ex-
tended in DeepMetaHandles (Liu et al., 2021) to
learn keypoint-based intuitive meta-handles. De-
formSyncNet (Sung et al., 2020) also proposed

learning a dictionary for editing, whose disentan-
glement is enforced with a sparsity regularization
over the per-point offsets of the deformation. Com-
pared to these works, we introduce a novel method
for learning disentangled language representation
to edit 3D shapes given a language prompt.

3 Method

3.1 Problem Statement

We are interested in the language-based shape edit-
ing task: given a source shape S and edit descrip-
tion u, we want to modify S to fulfill the edits men-
tioned in u. Our model learns to accomplish this
task by learning on a dataset of edit descriptions de-
scribing the difference between some source shape
S and target shape T . Importantly, as shown in
Figure 1, u is not expected to describe all the char-
acteristics of either S or T , just some ways in which
T is different from S. S and T can be given to us
in various 3D representations (meshes, implicits,
etc.). We assume access to pretrained shape autoen-
coders that can both encode to and decode from
latent vector representations of shapes. In other
words, s = enc(S) ∈ Rd is a vector representing
the 3D shapes S and S = dec(s) represents the
inverse operation.

The key to tackle the language-based shape edit-
ing task is linking an edit instruction u with the
shape difference between the target T and source
S, which we denote as diff(S, T). We achieve this
by embedding diff(S, T) and u into the same vec-
tor space J , as other works like Text2Shape (Chen
et al., 2018a) and CLIP (Radford et al., 2021) have
done.

5522

Inspired by prior work studying shape differ-
ences (Mo et al., 2020), we represent diff(S, T)
as first-class citizens. Specifically, we model
diff(S, T) ∈ J as f(t) − f(s), where f(x) ∈ J
is a shape encoder on top of the encoded latent
representation x of the input shape. To project
the edit instruction to J , we use encoder g(u) ∈
J . We learn f and g so that the cosine similar-
ity cossim(f(t) − f(s), g(u)) is high. Equipped
with J , we then can perform editing using op-
timization. We initialize s′ as a perturbed ver-
sion of s and iteratively change s′ based on u to
maximize sim(f(s′) − f(s), g(u)). During edit-
ing, we keep the parameters of f, g unchanged
and only keep updating s′. We refer these two
stages as Grounded Representation Learning
and Optimization-based Editing. We now discuss
these two stages respectively.

3.2 Grounded Representation Learning

In order to learn a good grounded representation
space J , we propose to learn a classification task.
Given the triplet (s, t, u), we train the encoders f
and g by learning a binary classification task of
identifying whether s or t is the correct edit target,

Lbinary(s, t, u) =

− log

(
exph(s, t, u)

exph(s, t, u) + exph(t, s, u)

)

where h(s, t, u) = sim(f(t)− f(s), g(u)).
While Lbinary is useful for learning grounded rep-

resentations, it does not encourage disentangling
the representations in J . In order to obtain a dis-
entangled joint space J , we need to disentangle
the representations of both the shape and the edit
instruction. As shown in Figure 2, we first design
a multi-expert network architecture that separates
each shape representation into multiple specialized
vectors and then propose a language disentangle-
ment loss that orthogonalizes representations of
independent edit instructions. In the next two sec-
tions, we discuss these two techniques respectively.

3.2.1 Multi-Expert Shape Difference Encoder
There are many different perspectives on describing
a 3D shape, including dimension, texture, structure,
etc. Ideally, we can represent each aspect of a
shape with a different representation. We instan-
tiate this intuition by designing a multi-expert ar-
chitecture (Figure 4), where a collection of experts

f1, f2...fk project the input shapes into separate
spaces. For an expert fi, we define the shape dif-
ference as fi(t)− fi(s). We aggregate each of the
projected shape differences via a voting network
w(u) = Softmax(MLP (g(u))), by:

f(t) =
k∑

i=1

wi(u)fi(t). (1)

With f as a mapping from each shape into J , we
measure the alignment h(s, t, u) between the shape
difference and edit instruction by cosine similarity
with the encoding of the edit instruction represen-
tation g(u) ,

h(s, t, u) = cossim(g(u), f(t)− f(s)). (2)

In practice, we implement g with a transformer
encoder (Vaswani et al., 2017) and take the repre-
sentation of the first token. We implement each
shape encoder expert fi as an MLP ontop of the
latent shape representation from a pretrained shape
autoencoder. We additionally make the tempera-
ture parameter τ for w(u) a learnable parameter,
which empirically lowers throughout training auto-
matically as the experts specialize.

3.2.2 Language Disentanglement Loss
Recall that our end goal of learning a disentangled
joint space J is to ensure localized edits: when
the user asked for making the legs thinner, the
system should not add holes to the back of the
source chair (Figure 1). In our framework, this
intuition translates to ensuring that independent
edit instructions u and u− have zero similarity, i.e.
cossim(g(u), g(u−)) ≈ 0.

With this goal in mind, we design a regulariza-
tion loss by mining independent edit instructions.
We use M(u) = {u−1 , u−2 , ...u−k } to represent the
action of retrieving independent instructions for
u. With these independent edit instructions, we di-
rectly optimize for our previous intuition by propos-
ing a language disentanglement (LADIS) loss,

LLADIS(u) =
∑

u−∈M(u)

|g(u) · g(u−)|. (3)

In practice, we design different sampling strate-
gies for mining independent edit instructions based
on the dataset structure. We optimize the shape dif-
ference encoder by adding LLADIS and Lbinary and
tune the ratio between them as a hyperparameter.

5523

Algorithm 1 Calculate edited latent s′

Require: input shape s, edit utterance u,
Require: shape decoder dec, Number of nearest

neighbors P > 0, Variance γ > 0, Expected
output change δ > 0, B optimization steps.

1: Q← GetNearest(P, s)
2: ϵ ∼ N(0, γ)
3: s′ ← s+ ϵTQ
4: for B steps do
5: ∆ϵ← ∇ϵh(s, s

′, u)
6: η ← ODESSA(s′,∆ϵ, δ)
7: ϵ← ϵ+ η∆ϵ
8: s′ ← s+ ϵTQ
9: end for

10: return s′

3.3 Shape Editing with Iterative Optimization
While a disentangled shape-language joint space J
provides strong signals, we now discuss the algo-
rithm to convert these signals to actual shape edits.
Recall that we encode the input shape S using a pre-
trained auto-encoder into s. As shown in Figure 3,
we follow the standard approach to iteratively tra-
verse the latent encoder space to find a new shape
s′ that maximizes h(s, s′, u) and then decoded s′

with the pretrained decoder (Algorithm 1).
However, the encoder latent space is nonlinear

and a naive optimization often leads to degenerate
edits. To better guide the latent space traversal, we
propose two modifications: we adjust the direction
of traversal by leverage a valid object neighborhood
and adjust the traversal step size by controlling for
the total change incurred by the edit in the output.

3.3.1 Neighborhood Simplex Editing (NSE)
To prevent the latent space traversal from deviating
off the valid shape manifold, we retrieve P nearest
neighbors from the training set using s, forming a
P -simplex Q ∈ RP×d within a higher-dimensional
latent space (Algorithm 1, Line 6). We constrain
the traversal by treating Q as base coordinates, and
optimizing s′ with these new coordinates by setting
s′ = s+ ϵTQ, as shown in Figure 3. Our intuition
is that P can be chosen well enough to cover most
modes of variations from the source shape s, while
being low-dimensional enough (in comparison to
the latent space dimension d) to constrain the edit-
ing to happen on the shape manifold. Note that
these modes of variation do not necessarily have to
be captured in a “positive” directional sense. For
example, since the elements of ϵ are allowed to be

negative, for the utterance “shorter legs”, a neigh-
boring chair within the chair space with longer legs
than the input shape can be equally as informative
as one with shorter legs. Ablations involving NSE
is included in the Appendix.

3.3.2 Output-Driven Edit Step-Size
Adjustment (ODESSA)

The high-dimensional nonlinear nature of the en-
coder latent space makes editing challenging be-
cause a small step in the latent space can poten-
tially cause both catastrophically large changes
as well as unnoticeable changes in the decoded
shape. To combat this, we rescale the size of each
edit step so that the total change in the decoded
output is similar. We denote this operation as
ODESSA(s′,∆ϵ, δ), which outputs a scalar as the
step size in the direction ∆ϵ based on an expected
total change δ in the output space. We implement
ODESSA by calculating the changes on the decoded
3D representation and present the implementation
details and relevant ablations in the Appendix.

4 Experiments

In this section, we evaluate our system’s ability to
achieve localized language-guided shape edits. We
evaluate our disentangled joint space J by shape
classification accuracy, and by the locality of our
system’s edits, evaluated both by our novel part-
based metric and human evaluators. In addition, we
analyze expert specialization in our multi-expert
shape difference encoder and visualize the disen-
tangled language representations. Experimental
results show that our proposed method is better at
shape classification, produces more disentangled
representations, and lead to more local shape edits.

4.1 Experiment Setup

4.1.1 Datasets
There are two datasets that provide textual
information for differences between shapes:
ShapeTalk (Achlioptas et al., 2022) and Shape-
Glot (Achlioptas et al., 2019). In both, text de-
scribes a distinguishing feature that a target shape
has which the source shape(s) do not. Within
ShapeTalk, each sample has only a single source
shape, but multiple separate lines of text are col-
lected from human labelers that enumerate many
differences between the source and the target. For
ShapeGlot, the text is more pragmatic, and used to
differentiate a target from two source shapes. This

5524

also means that a single textual description can very
sparsely describe the difference between the source
and the target. In our experiments, we use these
textual descriptions as edit descriptions.

4.1.2 Evaluating Metrics
In order to quantify the degree to which our edits
are local to certain parts, we introduce Part-based
Edit Precision (PEP), which is defined as the log
of the ratio between the percentage volume change
found in the “relevant" regions of the input 3D
shape, versus the entire shape. For a subset of
chairs, we manually associate certain keywords
within edit descriptions to Partnet (Mo et al., 2019)
part labels, and this enables us to measure the per-
centage volume change observed in the regions
associated with mentioned parts. The PEP score is
0 when the percentage volume change in the men-
tioned area is the same as the percentage volume
change across the whole entire shape. Thus, higher
PEP indicates that an edit has high locality. We ad-
ditionally measure ∆v, the total change in volume.
Further information about PEP and ∆v is provided
in the Appendix.

In what follows, we evaluate the mean PEP
(mPEP) score and mean ∆v (m∆v) for 2000 chairs
within the ShapeTalk test set with existing Part-
Net (Mo et al., 2019) part segmentations.

4.2 Experimental Results
4.2.1 Shape Editing
We investigate whether the disentangled language
representations allow for more localized edits. We
compare against the SOTA method (Achlioptas
et al., 2022) on the ShapeTalk dataset using mPEP.

Latent Geometric Representations In our edit-
ing experiments, we use the IM-NET (Chen and
Zhang, 2019) as a shape autoencoder, as it enables
easy conversion to meshes, and therefore enables
better comparisons of edit locality.

Mining for independent utterances For
ShapeTalk, labelers are prompted to enumerate
different shape differences for every source-target
pair. As such, the utterances provided for a
single pair by a single labeler are very likely
independent. We can thus instantiate M(u) as the
multiple utterances gathered from a single labeler
for the same source-target pair (multiutterance
LADIS). As a compromise in settings where
labeler information is not available, we instantiate
M(u) as the other edit instructions within the

Multiutt ShareCon ChangeIt3D
mPEP ↑ 0.378 0.338 0.315
m∆V ↑ 0.0334 0.0416 0.0105

Table 1: Comparison of edit locality (mPEP) and mean
edit volume (mδV) with the ChangeIt3D baseline on
ShapeTalk. For multiutterance LADIS (multiutt) and
shared-context LADIS (ShareCon), our models achieve
higher locality and more volumetrically obvious edits.

Multiutt ShareCon ChangeIt3D
IM-NET 69.52% 69.03% 62.9 %
ShapeGF 70.62% 70.94% 65.64 %

Table 2: Source-target classification accuracies of mul-
tiutterance LADIS (Multiutt) and shared-context LADIS
(SharCon) on ShapeTalk, compared to ChangeIt3D
(Achlioptas et al., 2022). Both versions of our models
outperform ChangeIt3D, on both types of latent repre-
sentations.

dataset used to describe the same source-target
pair (shared-context LADIS).

Experimental Results Table 1 compares our
method with ChangeIt3D. We find that LADIS not
only produce edits that are 20% more localized
(measured by mPEP), but also volumetrically larger
changes (≥ 3× that of ChangeIt3D edits), allowing
our system to achieve more visually pronounced
and localized shape edits than ChangeIt3D edits,
as shown in the sample in Figure 1. We perform a
dependent sample T-test between the ChangeIt3D
baseline and our method (specifically the multi-
utterance variant) and confirm that the PEP im-
provement was statistically significant (p=0.0287).
This verifies our hypothesis that learning disentan-
gled representations can better ensure the locality
of the geometric edits, even though no explicit part
information was ever given to the model.

4.2.2 Language Reference Resolution
We next measure the quality of the shape-language
joint space by evaluating the source-target shape
binary classification accuracy, which is the training
objective of shape difference encoder.

Latent Shape Representations In addition to
IM-NET, we experiment with the ShapeGF (Cai
et al., 2020) autoencoder, which learns to recon-
struct shapes by deforming an initial prior distribu-
tion of points according to a gradient field.

Mining for independent utterances As an ad-
ditional compromise where the set of utterances

5525

Figure 5: Qualitative examples of our method editing different kinds of chairs, compared to ChangeIt3D. The text
describing the desired output is shown above the samples. Compared to ChangeIt3D, our method allows for more
semantically correct and obvious edits, while improving the locality of the shape edit.

Random LADIS w/o LADIS
IM-NET 78.43% 76.15%
ShapeGF 76.58% 75.59%

Table 3: Source-target binary classification accuracies
on ShapeGlot. LADIS loss applied on even random
utterances yield an notable improvement in accuracy for
both IM-NET and ShapeGF latent representations.

per source-target is prohibitvely sparse, we explore
using utterances from different source-target pairs
within the batch to be M(u) (random LADIS).
We do this with ShapeGlot, and break every triplet
of shapes into two pairs (source1, target) and
(source2, target) for training and testing.

Experimental Results Table 3 and Table 2 show
that models trained with the LADIS loss has a no-
table increase in classification accuracy across two
datasets and two backbone networks. Table 3 also
reveals that even when loosely independent edit in-
structions are used for LADIS loss, we still observe
a performance gain on the ShapeGlot dataset. Our
findings show that LADIS produces higher quality
language-shape joint spaces J , which may explain
its effectiveness for downstream shape editing.

4.2.3 Human Evaluation
Figure 5 displays some examples of our method’s
shape edits on the chair category. Qualitative re-
sults show that on average, our method produces
more semantically accurate and localized edits.

To evaluate this more systematically, we con-
duct a human evaluation comparing our method

and ChangeIt3D. Our evaluation employs 10 vol-
unteer annotators from our institute and in total,
has 500 annotations. Our annotators are given the
input, a language description of the desired output,
and a pair of edited outputs (from our method and
ChangeIt3D), and are tasked with deciding which
of the edits: (1) is most obviously aligned with the
language instruction and (2) is the most localized
(i.e. preserves the identity of the unmentioned parts
of the object). More details about the annotation
process is detailed in the Appendix.

In 72% of the cases, our edits were deemed more
semantically accurate (more semantically aligned
and visually obvious) compared to ChangeIt3D.
In 61% of the cases, our results were deemed
more localized. Looking across the evaluators, all
10 evaluators unanimously judge that our method
produces more accurate and obvious edits than
ChangeIt3D. 8 of the 10 evaluators judge that our
method produces strictly more localized edits than
ChangeIt3D, with the other 2 evaluators indicating
a tie.

In 65% of the cases, a higher PEP score directly
corresponds to a subjective perception of higher lo-
cality of edits reported by human evaluators. This
also motivates the use of PEP as an automatic eval-
uation metric.

4.2.4 Visualizing Disentanglement
What is the effect of the LADIS loss on the lan-
guage representations? Figure 6 shows a T-SNE
embedding of a subset of edit descriptions within
the joint space J . We color-code edit description
based on the various chair parts that are mentioned.

5526

Figure 6: TSNE visualization of the learned language
embeddings for (a) multi-utterance LADIS and (b) our
model without LADIS loss, with the colors indicating
the sets of parts mentioned within each utterance.

Comparing representations trained with LADIS to
a baseline without LADIS, we see that representa-
tion clusters are more distinct and better correspond
to certain part identities.

To analyze the effect of the LADIS loss on the
shape representations, we visualize expert special-
ization. We group edit descriptions by the adjective
that appear in them and aggregate expert weights
w(u). Recall that expert weights w(u) decides the
importance of each expert representation for differ-
ent edit instruction. Figure 7 shows experts trained
with LADIS loss specialized to different adjectives.
For example, whenever an edit description contains
the word “longer”, the seventh expert is weighted
most heavily. In contrast, without the LADIS loss,
expert specialization occurs to a much lesser extent.
In conclusion, our representation analysis suggests
that the LADIS loss helps disentangle both the lan-
guage and the geometry representations.

5 Conclusion

In this work, we introduce a set of complimentary
techniques to improve language-based shape ed-
its. Our core idea is to learn a more disentangled

Figure 7: Visualizing the activation of different ex-
perts for different utterances reveals that the LADIS
loss allows for different experts activate for different
sets of adjectives. Notice that synonymous words like
“wider”/“wide" and “tall”/“taller” are allocated to the
same experts. Compare to the baseline without LADIS
loss, where the same level of specialization is not as
clearly observed.

shape-language joint space, which is achieved by
a novel multi-expert architecture and a language
disentanglement loss. Importantly, we show that
we can accomplish more obvious edits while im-
proving their locality by learning to disentangle
the language alone, without ever equipping our
model with part supervision. Experimental results
show the effectiveness of our methods in producing
localized shape edits. Our techniques are agnos-
tic to the underlying 3D representations, and we
look forward to extending our method to other 3D
representations and modalities.

Limitations

In this work, we study the task of language-based
shape editing. We limit the scope of our study to
previous datasets, where only English is studied.
We believe it’s important future work to studying
how other spoken and sign languages can be used
for language-based shape editing.

5527

Acknowledgements I. Huang and L. Guibas ac-
knowledge the support of ARL grant (W911NF-
21-2-0104), a Vannevar Bush Faculty Fellowship,
and gifts from the Adobe and Snap Corporations.
M. Sung acknowledges the support of NRF grant
(2022R1F1A1068681) funded by the Korea govern-
ment(MSIT) and grants from Adobe, KT, Samsung
Electronics, and ETRI.

References
Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mo-

hamed Elhoseiny, and Leonidas J. Guibas. 2020.
ReferIt3D: Neural listeners for fine-grained 3d object
identification in real-world scenes. In ECCV.

Panos Achlioptas, Judy Fan, Robert D. Hawkins,
Noah D. Goodman, and Leonidas J. Guibas. 2019.
ShapeGlot: Learning language for shape differentia-
tion. In ICCV.

Panos Achlioptas, Ian Huang, Minhyuk Sung, Sergey
Tulyakov, and Leonidas Guibas. 2022. ChangeIt3D:
Language-assisted 3d shape edits and deformations.
https://changeit3d.github.io/.

Anonymous. 2023. 3D-Scene-Entities: Using phrase-to-
3D-object correspondences for richer visio-linguistic
models in 3D scenes. In Submitted to The Eleventh
International Conference on Learning Representa-
tions. Under review, https://openreview.
net/forum?id=coMWK6WGkBP.

Tristan Aumentado-Armstrong, Stavros Tsogkas, Allan
Jepson, and Sven Dickinson. 2019. Geometric dis-
entanglement for generative latent shape models. In
ICCV.

Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor,
Zekun Hao, Serge Belongie, Noah Snavely, and
Bharath Hariharan. 2020. Learning gradient fields
for shape generation. In ECCV.

Kevin Chen, Christopher B Choy, Manolis Savva,
Angel X Chang, Thomas Funkhouser, and Silvio
Savarese. 2018a. Text2shape: Generating shapes
from natural language by learning joint embeddings.
In ACCV.

Ricky T. Q. Chen, Xuechen Li, Roger Grosse, and David
Duvenaud. 2018b. Isolating sources of disentangle-
ment in vaes. In NeurIPS.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman,
Ilya Sutskever, and Pieter Abbeel. 2016. InfoGAN:
Interpretable representation learning by information
maximizing generative adversarial nets. In NeurIPS.

Z. Dave Chen, Angel X. Chang, and Matthias Nießner.
2019. ScanRefer: 3D object localization in RGB-D
scans using natural language. arXiv, abs/1912.08830.

Zhiqin Chen and Hao Zhang. 2019. Learning implicit
fields for generative shape modeling. In CVPR.

Babak Esmaeili, Hao Wu, Sarthak Jain, Alican Bozkurt,
N. Siddharth, Brooks Paige, Dana H. Brooks, Jen-
nifer G. Dy, and Jan-Willem van de Meent. 2019.
Structured disentangled representations. In AISTATS.

Shuyang Gao, Rob Brekelmans, Greg Ver Steeg, and
A. G. Galstyan. 2019. Auto-encoding total correla-
tion explanation. In AISTATS.

Irina Higgins, Loïc Matthey, Arka Pal, Christopher P.
Burgess, Xavier Glorot, Matthew M. Botvinick,
Shakir Mohamed, and Alexander Lerchner. 2017.
beta-VAE: Learning basic visual concepts with a con-
strained variational framework. In ICLR.

Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhon-
gang Cai, Lei Yang, and Ziwei Liu. 2022. Avatar-
CLIP: Zero-shot text-driven generation and anima-
tion of 3d avatars. arXiv preprint arXiv:2205.08535.

Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter
Abbeel, and Ben Poole. 2022. Zero-shot text-guided
object generation with dream fields. In CVPR.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and
Tamara Berg L. 2014. ReferItGame: Referring to
objects in photographs of natural scenes. In EMNLP.

Hyunjik Kim and Andriy Mnih. 2018. Disentangling
by factorising. In ICML.

Juil Koo, Ian Huang, Panos Achlioptas, Leonidas J
Guibas, and Minhyuk Sung. 2022. Partglot: Learn-
ing shape part segmentation from language reference
games. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
16505–16514.

Abhishek Kumar, Prasanna Sattigeri, and Avinash Bal-
akrishnan. 2018. Variational inference of disentan-
gled latent concepts from unlabeled observations. In
ICLR.

David Lewis. 1969. Convention: A philosophical study.
Harvard University Press.

Minghua Liu, Minhyuk Sung, Radomir Mech, and Hao
Su. 2021. Deepmetahandles: Learning deformation
meta-handles of 3d meshes with biharmonic coordi-
nates. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
12–21.

Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim,
and Rana Hanocka. 2022. Text2Mesh: Text-driven
neural stylization for meshes. In CVPR.

Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter
Wonka, Niloy J Mitra, and Leonidas J Guibas. 2020.
StructEdit: Learning structural shape variations. In
CVPR.

Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Sub-
arna Tripathi, Leonidas J Guibas, and Hao Su. 2019.
PartNet: A large-scale benchmark for fine-grained
and hierarchical part-level 3d object understanding.
In CVPR.

5528

https://changeit3d.github.io/
https://openreview.net/forum?id=coMWK6WGkBP
https://openreview.net/forum?id=coMWK6WGkBP

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel
Cohen-Or, and Dani Lischinski. 2021. StyleCLIP:
Text-driven manipulation of stylegan imagery. In
ICCV.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben
Mildenhall. 2022. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In ICML.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. 2022. Hierarchical text-
conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. 2022a. Photorealistic
text-to-image diffusion models with deep language
understanding. arXiv preprint arXiv:2205.11487.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. 2022b. Photorealistic
text-to-image diffusion models with deep language
understanding. arXiv preprint arXiv:2205.11487.

Minhyuk Sung, Zhenyu Jiang, Panos Achlioptas,
Niloy J. Mitra, and Leonidas J. Guibas. 2020. De-
formSyncNet: Deformation transfer via synchro-
nized shape deformation spaces. ACM Transactions
on Graphics (Proc. of SIGGRAPH Asia).

Jesse Thomason, Mohit Shridhar, Yonatan Bisk, Chris
Paxton, and Luke Zettlemoyer. 2021. Language
grounding with 3d objects. In CoRL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Can Wang, Menglei Chai, Mingming He, Dongdong
Chen, and Jing Liao. 2022. CLIP-NeRF: Text-and-
image driven manipulation of neural radiance fields.
In CVPR.

A Appendix

In this appendix we will provide further detail on
the implementation of our models, and the param-
eters during training and editing. We will also
provide the mathematical definition of Part-wise
Edit Precision (PEP), and the specific implementa-
tion of Output-Driven Edit Step-Size Adjustment
(ODESSA). Through ablations, we will demon-
strate the importance of language disentanglement
for the task of localized shape edits, and also the im-
portance of our edit-time design decisions (namely,
ODESSA and Neighborhood Simplex Editing). Fi-
nally, we’ll provide further details on the human
evaluation conducted to evaluate our method.

A.1 Implementation details

When learning the joint space, we train using batch-
sizes of 64, with 256-dimensional encodings for
every shape (for both ShapeGF and IM-NET au-
toencoders). We pretrain the shape autoencoders
and the joint spaces on the official ShapeTalk train-
ing set. For both IM-NET and ShapeGF, we use
the default training hyperparameters, matching the
pretraining process of autoencoders in ChangeIt3D.
For both autoencoders, the latent space is 256 di-
mensional.

The dimensionality of our model’s joint space is
128 dimensional, and use 14 expert networks, each
with 3 feedforward layers with skip connections.
For the implementation of the transformer, we use
a slightly modified version of the text encoder used
for CLIP with 4 layers and 4 multi-attention heads,
which produces a sentence embedding that is 1024
dimensional at the first token.

The voting network is implemented as a single
fully connected layer, with the associated softmax
temperature parameter (for producing weights of
experts) initialized at 1.0 during training. We set
the relative weight between the binary classification
loss and LADIS loss to be 1 – that is, our training
loss is L = Lbinary + LLADIS . Training is done
for 20 epochs and the checkpoint with the high-
est validation accuracy on the official ShapeTalk
validation set is selected.

When editing using the pretrained joint space,
the number of neighbors we choose for NSE is 64.
We also use gradient descent for 50 steps, with each
step rescaled according to ODESSA.

5529

Step Multiutt LADIS ShareCon LADIS Random LADIS w/o LADIS
1 0.372 0.345 0.271 0.185
2 0.384 0.320 0.217 0.191
3 0.373 0.316 0.252 0.182
4 0.321 0.303 0.252 0.171
5 0.305 0.269 0.241 0.162

Table 4: Different variants of LADIS, from most ideal to least, from left to right. mPEP shown for 5 edit steps,
where the output of the previous step is the input shape into the next step, for the same edit description. We see that
mPEP generally decreases from the most to least ideal variant of LADIS.

A.2 Definition of Part-Wise Edit Precision

Part-Wise Edit Precision is a novel metric we in-
troduce to measure the locality of an edit to the
parts that are explicitly mentioned by language in-
structions. The metric measures the log of the ratio
between percentage volume change found in the
correct regions of the input 3D shape versus the
entire shape.

Let sequence of edits to a shape be s(t), where
s(0) is the original input shape. We assume that
for input shape s0 = s(0), we have a part decom-
position Rs0 : R3 → P that maps a given point in
R3 to a label within P , the full set of part labels.
We can construct Rs0 by using part-segmentation
masks from PartNet.

We also construct a mapping Q : L → P(P),
which is a manually designed classifier that, based
on the words within the utterance u from space
L, selects a subset of P as “relevant” parts, where
changes should be allowed. We define Q manually
by mapping sets of words found in utterances of
ShapeTalk to different PartNet part classes.

Given an implicit occupancy decoder dec, we
can find the volume difference ∆v defined for some
edit s′ = s(t), and some region X:

∆v(X, s′) =

∣∣∣∣
∫

x∈X
dec(s′, x)− dec(s0, x)dx

∣∣∣∣
(4)

We can then find the percentage volume change
in region X as:

w(X, s′) =
∆v(X, s′)∫

x∈X dec(s0, x)dx
. (5)

PEP is defined as the log of the ratio of percent-
age volume change found in the parts of the input
object mentioned by language to the percentage
volume change found in the whole object:

PEP (s(t), u) = log
w(Xs(0),u, s(t))

w(X , s(t)) , (6)

where X is the ambient space and Xs(0),u =

X ∩R−1
s(0)(Q(u)) is the set of points that belong in

the set of parts mentioned by utterance u. When
an edit is more "local" in a part-wise sense, we ex-
pect PEP to be high. Since the ratio is established
between two percentage changes, this effectively
normalizes against the size of the part mentioned,
which rewards nominally smaller volume changes
to skinny/small parts mentioned by language if it
amounts to a significant percentage of the original
part volume. We find empirically that this is im-
portant, as many utterances refer to volumetrically
less-significant parts, like legs and armrests.

We’ve also found empirically that the log of the
ratios has a much more Gaussian-like distribution,
which matches the human prior we assume over
visual obviousness of a change in the correct parts.

Due to the use of part segmentation masks (used
to define Rs0), PEP is susceptible to errors in the
masks, as well as translations and rotations within
edits that may shift parts far outside the groundtruth
masks. The latter may be mitigated by measur-
ing and comparing edits of smaller magnitude, or
“swelling” the groundtruth masks, as we have done
in our implementation. Additionally, the PEP met-
ric depends on a predefined set of part semantic
groups (e.g. for chairs, we’ve used “back”, “seat”,
“legs” and “armrests”), and is therefore specific to a
fixed part semantic group for each object category.

However, since PEP does not have to rely on
a pre-trained part classifier (as done in the metric
proposed by ChangeIt3D) and accounts for the dif-
ferences in size of parts by assigning volumetrically
smaller parts higher weight, we believe that it is
still a stronger metric than what currently exists.
PEP therefore should be used to do system-level
comparisons of edit locality.

5530

To represent the size of the edit, we measure the
mean volume change m∆v at edit timestep t as the
mean of v(X , s(t)) over different (source shape
si(0), language u) pairs. Over the same set, we
measure the mean PEP at a certain edit timestep t
as the mean over all edits:

mPEP =
1

N

N∑

i=1

PEP (si(t), ui) (7)

Note that while the above is formulated for im-
plicit occupancy autoencoders like IM-NET, it can
be extended to other types of autoencoders by other
notions of edit distance, such as chamfer distance
between surfaces.

Multiutt w/o ODESSA w/o NSE
m∆V 0.0334 0.0095 0.0274
FID 33.58 21.36 46.04

Table 5: Ablations in different ablations in the edit-
time procedure. We verify through this that removing
the ODESSA step results in less obvious volumetric
changes, and that without NSE, our method produces
less plausible edit outputs.

A.3 Implementing ODESSA
ODESSA rescales the size of each step to combat
the problem that latent space traversal often pro-
duces unpredictable differences in the space, which
can be especially detrimental when we optimize
within the joint space over multiple optimization
steps.

Thus, ODESSA rescales the size of each step
according to some desired degree of total change in
the decoded output per optimization step, denoted
by the parameter δ:

ODESSA(s′,∆ϵ, δ) =

δ×
∣∣∣∣
(
∇s

∫

x∈R3

dec(s, x)dx
)T

(∆ϵTQ)

∣∣∣∣
−1

Note that in the above formulation, we assume
that the geometry is outputted by the decoder as
an implicit representation, which means allows the
integral over the 3D space to capture total variation
within the output occupancy values. But as is the
case with PEP, the following formulation can also
be extended to other autoencoder architectures by
using other notions of edit distance like chamfer
distance between surfaces.

Figure 8: An example of the same optimization-based
editing, run with and without NSE. Note how without
NSE, the optimization produces spurious artifacts that
degenerates the chair output.

A.4 Ablations

In Table 4, we compare the effect of gradually re-
laxing the assumption of language independence on
the improvement of the edit locality across multiple
edits. We do these experiments on the ShapeTalk
dataset, which supports the strongest assumptions
of edit description independence (i.e. multiutter-
ance LADIS). We find that the better the negative
set is (i.e. stronger independence), the higher the
mPEP performance. This suggests that the degree
to which we can mine for independent utterances
heavily influences the degree of edit locality, and
furthermore that this trend holds throughout itera-
tive edits.

In Table 5, we compare the effects of removing
NSE and ODESSA. Specifically, since these two
techniques are meant to preserve the shape class
and also produce more obvious edits to shapes, we
compare the Frechet Inception Distance (FID) of
the renderings of decoded edits to that of the distri-
bution of the decoded input latent codes. We find
that without using NSE, our model’s FID largely
increases, while we notice a slight decrease in
the mean amount of occupancy difference in the
output shape. This suggests that without using
NSE, edits easily shift the edited shape off of the
valid shape manifold (See Figure 8). On the other
hand, without using ODESSA to recalibrate the
optimization step sizes, the mean amount of occu-
pancy difference (m∆V) becomes comparable to
the ChangeIt3D baseline (see results in Table 1) –
that is, the edits become measurably less obvious.

These ablations therefore suggest that our two
modifications to the canonical optimization-based
editing procedure both allow for more obvious edits
while improving the ability of our edits to stay on
the valid shape manifold.

5531

Figure 9: The web interface used by human evaluators to annotate the quality of shape edits. We display the two
edits side by side, one of which is produced by ChangeIt3D, and the other from our method. Through repeatedly
clicking the button in green, we allow users to toggle the view from inspecting the input shape to the edited output,
so that minute differences in edits (e.g., slight scaling of certain parts) of both methods can be more easily detected
than side-by-side comparisons. Users can also rotate the 3D models around, as well as zoom in/out, to inspect the
influence of the edit on different parts of the input. Before moving onto the next sample, the evaluator must select
which edit is more semantically obvious/correct, and which is more localized. We clearly define what each of these
criteria mean in the instructions.

A.5 Human Evaluation
Figure 9 shows the interface we used to collect
human evaluation data to evaluate our qualitative
results. We asked 10 human evaluators to each
annotate 50 sample edits (500 annotations total),
comparing our method and ChangeIt3D. 8 of the 10
annotators have no experience with NLP, graphics
or machine learning. No time limit was enforced
on the annotation process. The average time spent
on annotations was 35 minutes.

Each evaluator is given a 2 minute introduction
to the task, primarily explaining how to use the
interface, and defining and providing examples for
“edit locality” and “edit correctness”. Importantly,
evaluators are asked to comparing edits in both
criteria.

Because some of the 3D edits are fairly sub-
tle, the "toggling functionality" enables the user to
quickly flip back and forth between the source and
target shapes. We found this to be very useful in
deciding edit locality and correctness of relatively
smaller or thinner parts (e.g. legs of chairs.).

We also found that for structural changes (e.g.
“the chair has stretchers”), human evaluators typi-
cally have a harder time deciding which one is more
obvious or accurate if both (or neither) edits being
compared achieve the structural change. As such,
we allow for ties in the correctness/obviousness
criterion.

5532

