
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 5486–5503
December 7-11, 2022 ©2022 Association for Computational Linguistics

BERT Meets CTC: New Formulation of End-to-End Speech Recognition
with Pre-trained Masked Language Model

Yosuke Higuchi1,2, Brian Yan1, Siddhant Arora1, Tetsuji Ogawa2,
Tetsunori Kobayashi2, Shinji Watanabe1

1Carnegie Mellon Univeristy, 2Waseda University
higuchi@pcl.cs.waseda.ac.jp

Abstract

This paper presents BERT-CTC, a novel for-
mulation of end-to-end speech recognition that
adapts BERT for connectionist temporal clas-
sification (CTC). Our formulation relaxes the
conditional independence assumptions used in
conventional CTC and incorporates linguistic
knowledge through the explicit output depen-
dency obtained by BERT contextual embed-
ding. BERT-CTC attends to the full contexts
of the input and hypothesized output sequences
via the self-attention mechanism. This mecha-
nism encourages a model to learn inner/inter-
dependencies between the audio and token rep-
resentations while maintaining CTC’s training
efficiency. During inference, BERT-CTC com-
bines a mask-predict algorithm with CTC de-
coding, which iteratively refines an output se-
quence. The experimental results reveal that
BERT-CTC improves over conventional ap-
proaches across variations in speaking styles
and languages. Finally, we show that the se-
mantic representations in BERT-CTC are ben-
eficial towards downstream spoken language
understanding tasks.

1 Introduction

The field of natural language processing (NLP)
has witnessed remarkable improvements in perfor-
mance thanks to the advances in deep learning-
based techniques (Collobert et al., 2011; Bahdanau
et al., 2015; Sutskever et al., 2014; Vaswani et al.,
2017; Young et al., 2018). Much of the recent
progress in NLP lies in large-scale language mod-
els (LMs) (Devlin et al., 2019; Brown et al., 2020),
which are pre-trained on a vast amount of text
data to learn versatile linguistic knowledge (Tenney
et al., 2019). Such pre-trained models have been
shown to improve diverse NLP tasks, alleviating
the heavy requirement of supervised training data.
Inspired by the great success in NLP, pre-trained
LMs have been actively adopted for speech process-
ing tasks, including automatic speech recognition

(ASR) (Shin et al., 2019; Huang et al., 2021), spo-
ken language understanding (SLU) (Chuang et al.,
2020; Chung et al., 2021), and text-to-speech syn-
thesis (Hayashi et al., 2019; Kenter et al., 2020).

This paper focuses on leveraging pre-trained
LMs for end-to-end ASR (E2E-ASR), which aims
to model direct speech-to-text conversion (Graves
and Jaitly, 2014; Chorowski et al., 2015; Chan et al.,
2016). One of the challenges in E2E-ASR is a huge
discrepancy between input and output sequences;
the input is a continuous acoustic signal with fine-
grained patterns, while the output is discrete lin-
guistic symbols (e.g., words) with long-range de-
pendencies. Such an input-output gap makes it
difficult for an E2E-ASR model to extract seman-
tic/morphosyntax information from speech, which
is essential for generating proper text. We believe
this limitation can be mitigated by taking advan-
tage of the rich linguistic representations obtained
from pre-trained LMs.

Several attempts have been made to use pre-
trained LMs indirectly for improving E2E-ASR,
such as N-best hypothesis rescoring (Shin et al.,
2019; Salazar et al., 2020; Chiu and Chen, 2021;
Futami et al., 2021; Udagawa et al., 2022) and
knowledge distillation (Futami et al., 2020; Bai
et al., 2021; Kubo et al., 2022). Others have in-
vestigated directly unifying an E2E-ASR model
with a pre-trained LM, where the LM is fine-tuned
to optimize ASR in an end-to-end trainable frame-
work (Huang et al., 2021; Yi et al., 2021; Zheng
et al., 2021; Deng et al., 2021; Yu et al., 2022).

We explore a novel direction for adopting a
pre-trained masked language model (MLM) for
E2E-ASR, based on connectionist temporal clas-
sification (CTC) (Graves et al., 2006). Com-
pared to other autoregressive approaches, such
as RNN-Transducer (RNN-T) (Graves, 2012) and
attention-based sequence-to-sequence (Chorowski
et al., 2015), CTC’s non-autoregressive formula-
tion allows simple training and inference processes

5486

for realizing E2E-ASR. However, the performance
of CTC is often limited due to a conditional inde-
pendence assumption between output tokens (Chiu
et al., 2018). In this work, we propose BERT-
CTC that adapts BERT (Devlin et al., 2019) for
CTC to mitigate the conditional independence as-
sumption. BERT-CTC conditions CTC outputs on
context-aware BERT embeddings, thereby incor-
porating explicit linguistic information into train-
ing/inference. The BERT-conditional formulation
enables a model to attend to the full contexts of the
input and hypothesized output sequences via the
self-attention mechanism, while maintaining the
benefits of a simple training algorithm in CTC. Dur-
ing inference, BERT-CTC combines a mask-predict
algorithm with CTC decoding, which iteratively re-
fines outputs with flexible length adjustment.

The key contributions of this work are summa-
rized as follows:

• We propose BERT-CTC, which efficiently
adapts a pre-trained MLM for CTC-based
E2E-ASR without fine-tuning. We provide
a probabilistic formulation of our BERT-CTC
and its close relation to conventional ap-
proaches, i.e., CTC and RNN-T.

• We evaluate BERT-CTC in various ASR tasks,
which demonstrates its effectiveness regard-
less of variations in speaking styles and lan-
guages. We also show its potential application
to end-to-end SLU.

• The codes and recipes are open-sourced on
ESPnet (Watanabe et al., 2018), the widely
used toolkit for end-to-end speech process-
ing.1 We hope our work encourages further
research on combining ASR with pre-trained
LMs, helping to bridge ASR and NLP fields.

2 Background

To understand how BERT-CTC exploits BERT
for relaxing the conditional independence assump-
tion in CTC, we start with a brief review of prob-
abilistic formulations of conventional E2E-ASR
approaches, including CTC (Graves et al., 2006;
Graves and Jaitly, 2014) and RNN-T (Graves,
2012; Graves et al., 2013).

Definition of End-to-End ASR Let O = (ot ∈
RD|t = 1, · · · , T) be an input sequence of length

1https://github.com/YosukeHiguchi/espnet/tree/
bert-ctc

T , and W = (wn ∈ V|n = 1, · · · , N) be the cor-
responding output sequence of length N . Here,
ot is a D-dimensional acoustic feature at frame
t, wn is an output token at position n, and V is a
vocabulary.2 In general, the output length is much
shorter than the input length (i.e., N ≪ T). The
objective of ASR is to find the most probable out-
put sequence Ŵ that corresponds to a given input
sequence O:

Ŵ = argmax
W∈V∗

p(W |O), (1)

where V∗ denotes all possible token sequences.
E2E-ASR aims to realize the direct mapping from
O to W by modeling the posterior distribution
p(W |O) with a single deep neural network.

2.1 Connectionist Temporal Classification
CTC formulates E2E-ASR by considering all pos-
sible alignments between an input sequence O
and output sequence W . To align the sequences
at the frame level, CTC augments an output se-
quence by allowing repetitions of the same to-
ken and inserting a blank symbol ϵ for represent-
ing “no output token” (e.g., silence). Let A de-
note an augmented output sequence defined as
A = (at ∈ V ∪ {ϵ}|t = 1, · · · , T), which we
refer to as an alignment between O and W .

With the introduction of the frame-level align-
ment, CTC factorizes p(W |O) as follows:

pctc(W |O) =
∑

A∈B−1
ctc (W)

p(W |A,��O)p(A|O) (2)

≈
∑

A∈B−1
ctc (W)

p(A|O), (3)

where Bctc is the collapsing function (Graves et al.,
2006) that maps A to W by suppressing repeated
tokens and removing blank symbols, and B−1

ctc(W)
is a set of all possible CTC alignments that are
compatible with W . To obtain Eq. (3), CTC makes
a conditional independence assumption of O in
Eq. (2), and we assume p(W |A) = 1, as W can be
determined uniquely by the collapsing function.

The joint probability p(A|O) is further factor-
ized using the probabilistic chain rule as

p(A|O) ≈
T∏

t=1

p(at|((((((a1, · · · , at−1, O). (4)

2We consider V as a vocabulary constructed for pre-
training a large-scale MLM, i.e., BERT.

5487

https://github.com/YosukeHiguchi/espnet/tree/bert-ctc
https://github.com/YosukeHiguchi/espnet/tree/bert-ctc

In Eq. (4), CTC makes a conditional independence
assumption between output tokens, where p(A|O)
is approximated as the product of token emission
probabilities at each time frame. The conditional
probability p(at|O) in Eq. (4) is computed as

p(at|O) = Softmax(Linear(hae
t)), (5)

hae
t ∼ AudioEnc(O). (6)

In Eq. (5), Softmax(·) is a softmax function, and
Linear(·) is a linear projection layer. AudioEnc(·)
in Eq. (6) is an audio encoder network that embeds
speech input into a sequence of dae-dimensional
hidden vectors Hae = (hae

t ∈ Rdae |t = 1, · · · , T).
Training The objective function of CTC is de-
fined by the negative log-likelihood of Eq. (4) over
all possible alignments:

Lctc(O,W) = − log
∑

A∈B−1
ctc (W)

T∏

t=1

p(at|O). (7)

The summation in Eq. (7) is efficiently computed
via dynamic programming (Graves et al., 2006).

Inference Eq. (1) is solved using the best path
decoding algorithm (Graves et al., 2006). The al-
gorithm first obtains the most probable alignment
Â in a greedy manner, concatenating the most ac-
tive tokens at each frame: ât = argmaxat p(at|O).
The most probable token sequence Ŵ is then ob-
tained by applying the collapsing function to Â as
Ŵ = Bctc(Â).

2.2 RNN-Transducer
CTC estimates the distribution over alignments
only depending on speech input (Eq. (4)). Thus,
by definition, CTC cannot consider output depen-
dencies, preventing a model from properly cap-
turing the multimodal distribution of target token
sequences (Gu et al., 2018).

RNN-T overcomes this problem by making each
token prediction explicitly conditioned on the previ-
ous non-blank output tokens (w1, · · · , wn−1). Let
Z = (zu ∈ V ∪ {ϵ}|u = 1, · · · , T + N) be an
alignment used in RNN-T, and RNN-T factorizes
p(W |O) similarly to Eq. (3) as

prnnt(W |O) ≈
∑

Z∈B−1
rnnt(W)

p(Z|O), (8)

where Brnnt is the collapsing function of RNN-
T (Graves, 2012) that map Z to W . The joint prob-
ability p(Z|O) is factorized using the probabilistic

chain rule without the conditional independence
assumption (cf. Eq. (4)) as

p(Z|O) =

T+N∏

u=1

p(zu|z1, · · · , zu−1, O) (9)

≈
T+N∏

u=1

p(zu| w1, · · · , wnu−1︸ ︷︷ ︸
=Brnnt(z1,··· ,zu−1)

, O), (10)

where nu is the number of tokens predicted up to
an index of u. From Eq (9) to Eq. (10), RNN-T as-
sumes (z1, · · · , zu−1) ≈ (w1, · · · , wnu−1), which
is reasonable since W can be determined uniquely
by the collapsing function. The conditional proba-
bility p(zu|w1, · · · , wnu−1, O) is computed as

p(zu|w1, · · · , wnu−1, O)

= Softmax(JointNet(hae
t ,hpn

nu
)), (11)

hpn
nu

= PredictionNet(w1, · · · , wnu−1). (12)

In Eq. (11), hae
t is obtained from the audio encoder

(Eq. (6)), and JointNet(·) is a joint network that
combines the audio and token representations, hae

t

and hpn
nu

, using a linear projection layer. In Eq. (12),
PredictionNet(·) is a prediction network that en-
codes the previous non-blank output tokens to a
hidden vector hpn

nu
. The adoption of the prediction

network is the main difference from CTC, which
explicitly captures causal dependency in outputs.

Training The RNN-T loss Lrnnt(O,W) is de-
fined by the negative log-likelihood of Eq. (10).
Similar to the CTC objective in Eq. (7), the summa-
tion over alignments is efficiently computed using
dynamic programming (Graves, 2012).

Inference RNN-T estimates the most probable
token sequence Ŵ using the beam search algorithm
proposed in (Graves, 2012).

3 BERT-CTC

Overview In Fig. 1, we compare our proposed
E2E-ASR model, BERT-CTC, to CTC and RNN-
T. BERT-CTC leverages powerful representations
from BERT (Devlin et al., 2019) to make CTC
training/inference explicitly conditioned on linguis-
tic information (Fig. 1(a) vs. Fig. 1(c)). We use
BERT as a feature extractor for a (masked) token
sequence, whose parameters are frozen during train-
ing. BERT-CTC can be similar to RNN-T in that
audio and token representations are fused to es-
timate the distribution over alignments (Fig. 1(b)

5488

Softmax

Acoustic
Encoder

O

Audio Encoder

p(at|O)

hae
t

(a) CTC

Softmax

Acoustic
Encoder

O

Audio Encoder Prediction Net.

Joint Network

hae
t h

pn
nu

p(zu|w1, · · · , wnu−1, O)

w1, · · · , wnu−1

(b) RNN-T

Softmax

Acoustic
Encoder

O

Self-Attention

W̃

BERT (Freeze)Audio Encoder

p(at, BERT(W̃), O)

(c) BERT-CTC (ours)

Figure 1: Comparisons between different model architectures for end-to-end ASR.

vs. Fig. 1(c)). However, BERT-CTC attends to
the full contexts of the input and output sequences
via the self-attention mechanism (Vaswani et al.,
2017), which facilitates a model to learn inner/inter-
dependencies within/between the sequences.

BERT-CTC is formulated by introducing a par-
tially masked (or partially observed) sequence
W̃ = (w̃n ∈ V∪{[MASK]}|n = 1, · · · , N), which
is obtained by replacing some tokens in an output
sequence W with a special mask token [MASK].
Note that during inference, we apply masks to a
hypothesized sequence Ŵ to obtain a masked se-
quence. Considering all possible W̃ , the condi-
tional probability p(W |O) is factorized as follows:

pbc(W |O) =
∑

W̃∈A(W)

p(W |W̃ ,O)p(W̃ |O), (13)

where A(W) covers W with all possible masking
patterns. Here, we interpret p(W̃ |O) as a prior
distribution of sequences consisting of observed
tokens that are easily recognized only from speech
input; the other masked tokens are difficult and re-
quire contextual information to be determined (e.g.,
homophones), which is modeled by p(W |W̃ ,O).
We further describe the above interpretation in the
training (§3.1) and inference (§3.2) sections.

The conditional probability p(W |W̃ ,O) is fur-
ther factorized by using the CTC alignment as

p(W |W̃ ,O) =
∑

A∈B−1
ctc (W)

p(W,A|W̃ ,O) (14)

≈
∑

A∈B−1
ctc (W)

p(A|W,��̃W,O)p(W |W̃ ,��O). (15)

In Eq. (15), we make two conditional independence
assumptions. The first is that given W and O, W̃

is not required to determine A. This is reasonable
because W already contains observed tokens in W̃
and is helpful in avoiding the combination of all
possible masked sequences and alignments (i.e.,
A × B−1

ctc). The second is that given W̃ , O is not
required to determine W . We consider p(W |W̃)
as a strong prior modeled by a pre-trained MLM
(i.e., BERT), which can be achieved without the
observation from O. We empirically show that this
assumption holds in §7.3.

Similar to CTC, the joint probability p(A|W,O)
is factorized using the probabilistic chain rule as

p(A|W,O) ≈
T∏

t=1

p(at|((((((a1, · · · , at−1,W,O). (16)

To obtain Eq. (16), we make the same conditional
independence assumption as in CTC. However,
compared to Eq. (4), Eq. (16) is conditioned on an
output sequence W , enabling a model to explicitly
use linguistic information to estimate the distribu-
tion over alignments. This is somewhat similar to
RNN-T (Eq. (10)), but is different in that BERT-
CTC attends to the whole context (w1, · · · , wN).
We discuss this advantage in §7.1.

Substituting Eq. (16) into Eq. (15), we model
the product of p(at|W,O) and p(W |W̃) as

Eq. (15) ≜
∑

A∈B−1
ctc (W)

T∏

t=1

p(at|BERT(W̃), O),

(17)
where BERT(·) is the output of BERT represent-
ing the distribution of target sequences.3 This en-
ables Eq. (17) to be realized with a single differ-
entiable model, enabling the whole network to be

3Note that BERT(·) can be any pre-trained MLM.

5489

trained end-to-end. The conditional probability
p(at|BERT(W̃), O) is computed as

p(at|BERT(W̃), O)

= Softmax(SelfAttnt(Hae, Hbert)), (18)

Hbert = BERT(W̃). (19)

In Eq. (18), SelfAttnt(·) indicates the t-th output of
stacked Transformer self-attention layers (Vaswani
et al., 2017), which consume the concatenated Hae

(from Eq. (6)) and Hbert.4 In Eq. (19), BERT(·)
embeds a masked sequence W̃ into a sequence of
dbert-dimensional hidden vectors Hbert = (hbert

n ∈
Rdbert |n = 1, · · · , N).

3.1 Training
The BERT-CTC objective is defined by the negative
log-likelihood of Eq. (13) expanded with Eq. (15):

− log
∑

W̃

∑

A

p(A|W,O)p(W |W̃)p(W̃ |O). (20)

To deal with the intractable marginalization over
W̃ in Eq. (20), we rewrite it under expectation with
respect to the sampling distribution A(W):

≈ − logEW̃∼A(W)

[∑

A

p(A|W,O)p(W |W̃)p(W̃ |O)

]
,

whose upper bound can be derived by using the
Jensen’s inequality as

≤ −EW̃∼A(W)

[
log

∑

A

p(A|W,O)p(W |W̃)p(W̃ |O)

]

≤ −EW̃∼A(W)

[
log

∑

A

∏

t

p(at|BERT(W̃), O)

]

︸ ︷︷ ︸
≜Lbc(O,W)

, (21)

where Lbc is the loss for BERT-CTC training.
Compared with the CTC objective (Eq. (7)), each
token prediction in Eq. (21) is explicitly condi-
tioned on contextual embedding from BERT. This
relaxes the conditional independence assumption
between outputs while retaining the same opti-
mization strategy as in CTC. For sampling W̃
from A(W) in Eq. (21), we first obtain the ran-
dom number of tokens from a uniform distribution
as M ∼ Uniform(1, N). Then, M tokens in a
ground-truth sequence W are randomly selected to
be replaced with [MASK], similar to (Ghazvininejad
et al., 2019).

4We apply simple embedding layers to Hae and Hbert so
that the dimensions of hidden vectors match, but we omit it
for simplicity. See Appendix D.2 for detailed implementation.

Hierarchical Loss We apply an auxiliary CTC
loss to the audio encoder output in a hierarchi-
cal multi-tasking manner (Fernández et al., 2007;
Sanabria and Metze, 2018). As the vocabulary
size of BERT is often too large for ASR training,
we train the audio encoder to predict a sequence
W ′ = (w′

l ∈ V ′|l = 1, · · · , L) tokenized with a
smaller vocabulary V ′ (i.e., |V ′| ≪ |V|). This has
been shown effective for training sparse word-level
ASR (Higuchi et al., 2022). The BERT-CTC loss
is combined with the hierarchical CTC loss as

(1− λctc)Lbc(O,W) + λctcLctc(O,W ′), (22)

where λctc is a tunable parameter. We investigate
the importance of the hierarchical loss in §7.1.

3.2 Inference
The most probable token sequence Ŵ is estimated
by solving Eq. (1) for Eq. (13) as

Ŵ = argmax
W

∑

W̃

p(W |W̃ ,O)p(W̃ |O) (23)

≈ argmax
W

p(W |W̄ ,O), (24)

where W̄ = argmax
W̃

p(W̃ |O). (25)

From Eq. (23) to Eq. (24), we make the Viterbi ap-
proximation to deal with the intractable summation
over all possible masked sequences.

To solve Eq. (24), we design a mask-predict algo-
rithm (Ghazvininejad et al., 2019) assisted by CTC
inference, inspired by (Chan et al., 2020; Higuchi
et al., 2020). See Table 4 for an example decoding
and Appendix A for pseudocode. The algorithm
first initializes a target sequence with an estimated
length, which is then followed by k = {1, · · · ,K}
iterations of token masking and prediction steps.

Initialization (k = 1) BERT-CTC is non-auto-
regressive, and the length of a target sequence N̂
needs to be given in advance to start decoding (Gu
et al., 2018). We determine the target length based
on the auxiliary sequence Ŵ ′ predicted from the
audio encoder output Hae as N̂ ∼ |Ŵ ′|. Given
the estimated length, we initialize an initial masked
sequence W̄ (k=1) by filling all N̂ positions with
the mask token [MASK]. By feeding Hae and Hbert

(= BERT(W̄ (k=1))) to the self-attention module,
a hypothesized sequence Ŵ (k=1) is obtained via
CTC inference. Here, Ŵ (k=1) is predicted only
from speech without any observations from output
tokens, as they are all masked.

5490

Token Masking Step (Eq. (25)) Given a current
prediction Ŵ (k), we replace m(k) tokens having
the lowest probability scores with [MASK], which
results in the next masked sequence W̄ (k+1). Here,
m(k) is a linear decay function m(k) = ⌊|Ŵ (k)| ·
K−k
K ⌋, similar to (Ghazvininejad et al., 2019).

Token Prediction Step (Eq. (24)) Hae and Hbert

(= BERT(W̄ (k+1))) are fed to the self-attention
module to generate the next hypothesis Ŵ (k+1).
Here, the prediction of Ŵ (k+1) is conditioned on
the contextual embedding obtained from BERT.

Similar to (Chan et al., 2020; Chi et al., 2021),
BERT-CTC inference repeatedly predicts a target
sequence at the alignment level, which does not
require an additional mechanism (Gu et al., 2019;
Higuchi et al., 2021b) for adjusting the target length
over iterations. Moreover, BERT-CTC considers
the output dependencies at the token level, making
it more suitable for a model to capture linguistic
information.

3.3 BERT-CTC for End-to-End SLU

In addition to E2E-ASR, BERT-CTC can model
end-to-end SLU jointly by extending Eq. (18) as

p(y|BERT(W̃), O)

= Softmax(SelfAttnT+1(H
ae, Hbert)), (26)

where we assume y ∈ Y as an intent label in a set
of intents Y . Note that SelfAttnT+1(·) indicates
the T + 1-th output of the self-attention module,
which corresponds to the [CLS] token of BERT.

Training The loss is defined by adding Eq. (22)
and the negative log-likelihood of Eq. (26) as

Eq. (22) − λslu log p(y|BERT(W̃), O), (27)

where λslu is a tunable parameter.

Inference The most probable label ŷ can be es-
timated at any timing of BERT-CTC inference by
ŷ = argmaxy p(y|W̄ ,O). When k = 1, the label
is predicted only from audio information, and when
k = K, the label is predicted with full access to
audio and linguistic information.

4 Additional Related Work

End-to-End ASR with MLM Inspired by the
great success in non-autoregressive neural ma-
chine translation, conditional masked language
model (CMLM) (Ghazvininejad et al., 2019) has

been adopted for E2E-ASR. Audio-CMLM (A-
CMLM) (Chen et al., 2020) has trained an E2E-
ASR model with an MLM objective (Devlin et al.,
2019), making token predictions conditioned on
both the speech input and a partially masked target
sequence. Imputer (Chan et al., 2020) and Mask-
CTC (Higuchi et al., 2020, 2021b) have introduced
CTC to the CMLM-based modeling, where the
mask-predict algorithm is used to refine a frame-
level or token-level sequence predicted by CTC.

Our method of combining CTC and MLM is
related to the above studies, but conceptually differ-
ent in that BERT-CTC aims to relax the conditional
independence assumption used in CTC by leverag-
ing an external pre-trained MLM (i.e., BERT) as
contextual embedding.

LM Integration for End-to-End ASR. There
is a line of prior studies seeking to integrate an
external LM into E2E-ASR. Shallow fusion has
been the most widely used approach (Hannun et al.,
2014; Gulcehre et al., 2015; Chorowski and Jaitly,
2017; Kannan et al., 2018), which linearly inter-
polates the output probabilities from an E2E-ASR
model and external LM. Deep fusion (Gulcehre
et al., 2015) is a more structured approach, where
an E2E-ASR model is jointly trained with an ex-
ternal LM to learn the optimal combination of the
audio and linguistic information in a latent space.
Cold fusion (Sriram et al., 2018) and component
fusion (Shan et al., 2019) have further improved
deep fusion by a gating mechanism that learns a
more sophisticated combination of the two models.

Our approach can be seen as a variant of cold
fusion in that an external pre-trained MLM is fused
to a CTC-based E2E-ASR model, selectively com-
bining audio and linguistic representations via the
self-attention mechanism. However, BERT-CTC
is a novel direction in which we seek to integrate
BERT into a CTC-based model in a theoretically-
sound manner.

5 Experiments

We used the ESPnet toolkit (Watanabe et al., 2018)
for all the experiments. All the implementations
and recipes are made publicly available (see §1).

5.1 Tasks and Datasets
Speech Recognition We evaluated models on
the LibriSpeech (Panayotov et al., 2015), TED-
LIUM2 (Rousseau et al., 2014) and AISHELL-
1 (Bu et al., 2017) datasets. LibriSpeech consists of

5491

read English speech from audiobooks, and we used
train-clean-100 for training. TED-LIUM2 con-
tains spontaneous English speech from Ted Talks.
AISHELL-1 consists of read Mandarin speech.

Spoken Language Understanding We also eval-
uated our model on the SLURP dataset (Bastianelli
et al., 2020). SLURP consists of English prompts
of an in-home personal robot assistant, and we fo-
cused on the intent classification task.

We used the standard development and test sets
for tuning hyper-parameters and evaluating perfor-
mance for each dataset. Full dataset descriptions
are in Appendix D.1.

5.2 End-to-End ASR Models

CTC (baseline): A model trained based on the
CTC loss Lctc (see §2.1). Given the recent ad-
vances in CTC-based modeling (Higuchi et al.,
2021a), we built a strong baseline using the in-
termediate CTC technique (Tjandra et al., 2020;
Lee and Watanabe, 2021), which applies an auxil-
iary CTC loss to intermediate outputs of the audio
encoder. We used the intermediate loss in a hierar-
chical manner (Sanabria and Metze, 2018), where
the loss is calculated using a target sequence tok-
enized with a smaller vocabulary (i.e., V ′ in §3.1).
RNN-T (baseline): A model trained based on the
RNN-T loss Lrnnt (see §2.2). Considering the re-
cent techniques developed upon multi-task learn-
ing (Boyer et al., 2021), we trained a strong model
using an auxiliary CTC loss applied to the audio en-
coder output (Jeon and Kim, 2021). Same as CTC,
we enhanced the audio encoder with intermediate
CTC (Lee et al., 2022). All the CTC losses were
calculated using the smaller-vocabulary sequence.
BERT-CTC (ours): The proposed model trained
based on the BERT-CTC loss (Eq. (22)). As in the
other models, we adopted intermediate CTC for the
audio encoder. All the CTC losses were calculated
using the smaller-vocabulary sequence.

See Appendices B and C for intermediate CTC
and detailed model descriptions, respectively.

5.3 Experimental Settings

Model Configuration For the audio encoder,
we adopted the Conformer architecture (Gulati
et al., 2020), which consisted of 12 encoder blocks.
The prediction network in RNN-T was a single
long short-term memory (LSTM) layer. The self-
attention module in BERT-CTC had 6 Transformer
encoder blocks, and we used a BERTBASE model

0 5 10 15 20 25 30

8

10

12

14

Iterations K

D
ev

W
E

R
[%

](
↓)

3.5

4

4.5

5

5.5

D
ev

C
E

R
[%

](
↓)

LibriSpeech
TED-LIUM2
AISHELL-1

Figure 2: BERT-CTC results on development sets, using
different number of decoding iterations.

provided by HuggingFace (Wolf et al., 2020).

Tokenization For each language, we used the
same vocabulary as BERT for tokenizing target
texts. We also constructed a smaller-sized vocab-
ulary V ′ for the hierarchical losses, which is ob-
tained by applying the byte pair encoding-based
algorithm (Sennrich et al., 2016) to the transcrip-
tion of each dataset.

Training We mostly followed ESPnet recipes
provided for each dataset. For BERT-CTC, we
set λctc (in Eq. (22)) to 0.3 for all the ASR tasks
and λslu (in Eq. (27)) to 1.0 for the SLU task.

Inference For CTC, we performed the best path
decoding (§2.1). For RNN-T, we used the beam
search decoding (§2.2) with a beam size of 20. For
BERT-CTC, unless otherwise indicated, the num-
ber of iterations K was always set to 20 (§3.2).

Detailed experimental settings for reproducibil-
ity are in Appendix D.

6 Results

Speech Recognition Table 1 shows results on
LibriSpeech-100h and TED-LIUM2 in word error
rate (WER), and AISHELL-1 in character error
rate (CER). While RNN-T slightly outperformed
CTC on several evaluation sets in LibriSpeech-
100h and AISHELL-1, CTC resulted in better per-
formance on TED-LIUM2. RNN-T was ineffective
at training ASR with the BERT vocabulary, partic-
ularly when a severe mismatch exists against the
target ASR domain (i.e., Wikipedia vs. lecture).
BERT-CTC significantly outperformed the base-
lines, consistently achieving the best results on all
datasets. BERT-CTC improved over RNN-T, and
we attribute this to not only considering the whole
context of the target sequence but also using the

5492

Model

LibriSpeech-100h TED-LIUM2 AISHELL-1

Dev WER (↓) Test WER (↓)
Dev WER (↓) Test WER (↓) Dev CER (↓) Test CER (↓)

clean other clean other

CTC† 11.2 21.4 11.4 22.0 9.9 9.3 5.1 5.6
RNN-T† 9.7 21.5 9.8 22.2 10.2 9.6 5.2 5.5

BERT-CTC 7.0 16.3 7.2 16.6 8.1 7.6 3.9 3.9

Table 1: WER [%] on LibriSpeech-100h and TED-LIUM2, and CER [%] on AISHELL-1. † indicates that the
models are slightly different from the original CTC or RNN-T in that they are trained with hierarchical CTC loss.

Model WER (↓) Acc. (↑)

ESPnet-SLU (Arora et al., 2022) – 86.3
ASR + BERT (Arora et al., 2022) – 85.7

BERT-CTC (K = 1) 19.1 87.0
BERT-CTC (K = 20) 18.2 87.8

Table 2: WER [%] and classification accuracy [%] on
SLURP intent classification task.

Model Dev WER (↓) Test WER (↓)

CTC† 11.2 / 21.4 11.4 / 22.0
w/o hierarchical loss 11.8 / 23.2 12.2 / 24.1

RNN-T† 9.7 / 21.5 9.8 / 22.2
w/o hierarchical loss 11.4 / 24.6 11.5 / 25.8

BERT-CTC 7.0 / 16.3 7.2 / 16.6
w/o hierarchical loss 8.6 / 19.1 8.9 / 19.5
w/o BERT 7.4 / 17.2 7.4 / 17.7

Table 3: Ablation studies on LibriSpeech-100h.

powerful representations from BERT, which we fur-
ther analyze later. In Appendix E, we compare our
AISHELL-1 results to those from recent works and
show that our approach is on par with the state-of-
the-art (Zheng et al., 2021) with fewer parameters.
Figure 2 illustrates the correlation between BERT-
CTC results and the number of decoding iterations.
When decoded with K = 1, the model only uses
speech input to predict a token sequence. By in-
creasing K, the model beneficially exploited the
BERT knowledge for refining the output tokens.

Spoken Language Understanding Table 2 lists
the results of the SLURP intent classification task,
evaluated in accuracy. We refer to the ESPnet-
SLU (Arora et al., 2022) result as a baseline, which
performs SLU along with ASR by prepending an
intent label to the corresponding output sequence.
We also refer to the ESPnet-SLU result obtained
by stacking BERT on top of an ASR model, which
was found to be less effective. BERT-CTC outper-

formed the baselines by effectively incorporating
acoustic and linguistic information. By decoding
in a single iteration (K = 1), BERT-CTC predicted
an intent only from speech, and the accuracy was al-
ready higher than those of baselines. We observed
a slight but clear gain by increasing K, which im-
proved both ASR and SLU performance thanks
to BERT. We note that our result outperforms the
state-of-the-art 86.9% reported in (Seo et al., 2022).

7 Analyses

7.1 Ablation Studies

To validate the effectiveness of our model design
for BERT-CTC, we conduct ablation studies (Ta-
ble 3) on the usage of hierarchical loss and BERT.

Hierarchical Loss We observed that hierarchical
CTC helped all the models improve their perfor-
mance by a large margin. As the vocabulary of
BERT is generally too large for E2E-ASR, the hi-
erarchical modeling was crucial for predicting the
sparse word-level tokens. Moreover, the result in-
dicates that the hierarchical loss is effective for
training an ASR model with a vocabulary from
a different domain, as there is a non-negligible
domain-mismatch between the BERT training text
and ASR transcription.

BERT To ablate BERT-CTC with BERT, we re-
placed BERT(·) in Eq. (19) with a simple embed-
ding layer with positional encoding. We found that
removing BERT led to degradation in BERT-CTC
performance, which supports the importance of us-
ing BERT. However, interestingly, the result was
still better than the baselines, indicating the advan-
tage over RNN-T in that BERT-CTC is capable of
considering the bi-directional context.

7.2 Error Analysis with Decoding Example

Table 4 shows a process of BERT-CTC inference,
decoding an utterance in the LibriSpeech test set.

5493

k=1 ... thou a gave meet any one afterter these hour recite aught of courtry whether he be ne’er ...
k=10 ... thou a again meet any one afterter these hour reciteiting aught of poetryry whether he be near’er ...
k=15 ... thou again meet any one after this hour reciteiting aught of poetryry whether he be near’or ...
k=20 ... thou again meet any one after this hour reciteiting aught of poetry whether he be near ...
w/o BERT ... thou a gag meet any one after this hour residing aught of boy whether he be near ...

Reference ... thou again meet any one after this hour reciting aught of poetry whether he be near ...

Table 4: Decoding example from LibriSpeech test-other set (2033-164914-0016). At each iteration, the highlighted
tokens are masked and repredicted in the next iteration. Blue indicates refined tokens, and red indicates ones not.

0 15 30 45 60 75 90 105 120
Input

0

15

30

45

60

75

90

105

120

Ou
tp

ut

0 15 30 45 60 75 90 105 120
Input

0

15

30

45

60

75

90

105

120

Ou
tp

ut

Figure 3: Attention visualization for BERT-CTC. White
lines indicate the boundaries of audio and token seqs.

In the output sequence at k = 1, the model mis-
takenly predicted phonetically similar tokens (e.g.,
“again”→“a gave”, “near”→“ne’er”). At the first
iteration, the model was only conditioned on acous-
tic information, making it challenging to determine
target tokens accurately. As the iteration proceeded,
the model corrected the most errors by considering
the output dependency. Unlike the original mask-
predict algorithm (Ghazvininejad et al., 2019), our
approach permits for flexibly adjusting the target
length, enabling the model to resolve insertion and
deletion errors (e.g., “afterer”→“after”). We also
show an example obtained w/o BERT (from Ta-
ble 3), which failed to recover tokens that were
correctly recognized by BERT-CTC with BERT.

7.3 Conditional Independence of p(W |W̃ ,��O)

We empirically validate the conditional indepen-
dence assumption made in Eq. (15), where the
output sequence W depends only on its masked
sequence W̃ without audio information O. To this
end, we augmented the BERT module by inserting
adaptive cross-attention layers, which is similar to
Adapter-BERT Networks (Guo et al., 2020). These
additional layers are trained to infuse the audio en-
coder output Hae into each BERT layer, thereby
allowing BERT-CTC to realize p(W |W̃ ,O). When
evaluated on LibriSpeech, the modified BERT-
CTC resulted in 7.2%/17.9% on the dev. set and

7.3%/18.0% on the test set, which are worse than
the results in Table 1. This indicates that BERT al-
ready captures sophisticated linguistic information
and does not require extra parameters for adapting
BERT to audio input.

7.4 Attention Visualization
Figure 3 depicts example attention weight matri-
ces, produced by the second self-attention layer of
BERT-CTC. We observed two major attention pat-
terns: weights aligning audio and token sequences
by capturing inter-dependencies (Fig. 3 left) and
weights attending inter-dependencies within each
sequence (Fig. 3 right). These patterns support our
motivation for the BERT-CTC design in learning
inner/inter dependencies within/between the audio
and token representations.

7.5 Inference Speed Comparison
To see how the iterative decoding with BERT af-
fects the inference speed of BERT-CTC, we evalu-
ated each model on the real-time factor (RTF). RTF
was measured on the LibriSpeech test-other set
using a single GPU with a batchsize of 1 or a sin-
gle CPU. RTFs for GPU / CPU inference resulted
in 7.91e-3 / 4.18e-2 for CTC, 4.81e-1 / 4.55 for
RNN-T, and 9.72e-2 / 7.22e-1 for BERT-CTC. The
semi-autoregressive characteristic in BERT-CTC
enabled faster inference than autoregressive RNN-
T and provided further speedup with the parallel
computing using GPU.

8 Conclusion

We proposed BERT-CTC that leverages BERT
for relaxing the conditional independence assump-
tion in CTC. BERT-CTC uses BERT as contex-
tual embedding to explicitly condition CTC train-
ing/inference on linguistic information. Experimen-
tal results showed that BERT-CTC improved over
conventional approaches. Moreover, we confirmed
that BERT-CTC is applicable to end-to-end SLU.

5494

Dev WER (↓) Test WER (↓)
V Model clean / other clean / other

Vasr CTC† 6.9 / 20.1 7.0 / 20.2
Vasr RNN-T† 5.7 / 17.0 6.0 / 17.2
Vbert CTC† 11.2 / 21.4 11.4 / 22.0
Vbert RNN-T† 9.7 / 21.5 9.8 / 22.3

Vbert BERT-CTC 7.0 / 16.3 7.2 / 16.6

Table 5: WER [%] on LibriSpeech-100h. Vasr indicates
a subword vocabulary constructed from ASR transcrip-
tions, where |Vasr| = 300. Vbert indicates the BERT
vocabulary, where |Vbert| = 30522.

Limitations

Vocabulary Constraint The output unit of
BERT-CTC is constrained to the vocabulary of
BERT, which is likely to be not generalized to an
ASR domain and too sparse for ASR training. Ta-
ble 5 shows results on LibriSpeech-100h with dif-
ferent vocabularies, where Vasr is an ASR vocabu-
lary with a vocabulary size of 300 constructed from
LibriSpeech transcriptions, and Vbert is the BERT
vocabulary with a vocabulary size of 30522. We ob-
served that, by using Vasr, the performance of CTC
and RNN-T improved over the results using Vbert

and closed the gap with the BERT-CTC results. We
believe that using a BERT variant with a smaller
vocabulary, e.g., CharacterBERT (El Boukkouri
et al., 2020) improves BERT-CTC further.

Computational Cost BERT-CTC requires a high
computational cost, especially during inference,
due to the iterative forward calculations of BERT
(i.e., K=20 times) with the O(N2) computational
and memory complexities in the self-attention lay-
ers. Still, GPUs can greatly accelerate the inference
speed, and BERT-CTC can alternatively use other
pre-trained MLMs with lighter weights, e.g., AL-
BERT (Lan et al., 2019) and DistilBERT (Sanh
et al., 2019).

Non-streaming BERT-CTC is not suited for on-
line streaming scenarios, where output tokens are
predicted synchronously to sequential speech input.
It is not a significant problem when we consider
applying BERT-CTC to utterance-level ASR tasks,
such as end-to-end SLU as we demonstrated the
capability of BERT-CTC (Table 2). Otherwise, we
can adopt existing techniques for making BERT-
CTC streaming, e.g., causal masking (Vaswani
et al., 2017), time-restricted attention (Povey et al.,
2018), and block-wise processing (Tsunoo et al.,

2019). Another solution can be to apply the two-
pass algorithm (Sainath et al., 2019), where BERT-
CTC first performs streaming recognition at k = 1
and then refines the outputs using the full context
information at k > 1.

Acknowledgements

This work was supported in part by JST ACT-X (JP-
MJAX210J) and JSPS KAKENHI (JP21J23495).
This work used the Extreme Science and Engineer-
ing Discovery Environment (XSEDE) (Towns et al.,
2014) supported by National Science Foundation
grant number ACI-1548562. It uses the Bridges
system (Nystrom et al., 2015) supported by NSF
award number ACI-1445606, at the Pittsburgh Su-
percomputing Center (PSC).

References
Siddhant Arora, Siddharth Dalmia, Pavel Denisov, Xu-

ankai Chang, Yushi Ueda, Yifan Peng, Yuekai Zhang,
Sujay Kumar, Karthik Ganesan, Brian Yan, Ngoc
Thang Vu, Alan W Black, and Shinji Watanabe.
2022. ESPnet-SLU: Advancing spoken language
understanding through ESPnet. In Proceedings of
the 2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
7167–7171.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
3rd International Conference on Learning Represen-
tations (ICML).

Ye Bai, Jiangyan Yi, Jianhua Tao, Zhengkun Tian,
Zhengqi Wen, and Shuai Zhang. 2021. Fast end-to-
end speech recognition via non-autoregressive mod-
els and cross-modal knowledge transferring from
BERT. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 29:1897–1911.

Emanuele Bastianelli, Andrea Vanzo, Pawel Swieto-
janski, and Verena Rieser. 2020. SLURP: A spo-
ken language understanding resource package. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7252–7262.

Florian Boyer, Yusuke Shinohara, Takaaki Ishii, Hiro-
fumi Inaguma, and Shinji Watanabe. 2021. A study
of Transducer based end-to-end ASR with ESPnet:
Architecture, auxiliary loss and decoding strategies.
In Proceedings of the 2021 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 16–23.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda

5495

Askell, et al. 2020. Language models are few-shot
learners. In Proceedings of Advances in Neural In-
formation Processing Systems 33 (NeurIPS), pages
1877–1901.

Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao
Zheng. 2017. AISHELL-1: An open-source Man-
darin speech corpus and a speech recognition base-
line. In Proceedings of the 20th Conference of the
Oriental Chapter of the International Coordinating
Committee on Speech Databases and Speech I/O Sys-
tems and Assessment (O-COCOSDA), pages 1–5.

William Chan, Navdeep Jaitly, Quoc Le, and Oriol
Vinyals. 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech
recognition. In Proceedings of the 2016 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4960–4964.

William Chan, Chitwan Saharia, Geoffrey Hinton, Mo-
hammad Norouzi, and Navdeep Jaitly. 2020. Imputer:
Sequence modelling via imputation and dynamic pro-
gramming. In Proceedings of the 37th International
Conference on Machine Learning (ICML), pages
1403–1413.

Nanxin Chen, Shinji Watanabe, Jesus Antonio Vil-
lalba, Piotr Zelasko, and Najim Dehak. 2020. Non-
autoregressive Transformer for speech recognition.
IEEE Signal Processing Letter.

Nanxin Chen, Piotr Żelasko, Laureano Moro-Velázquez,
Jesús Villalba, and Najim Dehak. 2021. Align-
Denoise: Single-pass non-autoregressive speech
recognition. In Proceedings of Interspeech 2021,
pages 3770–3774.

Ethan A Chi, Julian Salazar, and Katrin Kirchhoff. 2021.
Align-Refine: Non-autoregressive speech recognition
via iterative realignment. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages 1920–
1927.

Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu, Ro-
hit Prabhavalkar, Patrick Nguyen, Zhifeng Chen, An-
juli Kannan, Ron J. Weiss, Kanishka Rao, Ekaterina
Gonina, Navdeep Jaitly, Bo Li, Jan Chorowski, and
Michiel Bacchiani. 2018. State-of-the-art speech
recognition with sequence-to-sequence models. In
Proceedings of the 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 4774–4778.

Shih-Hsuan Chiu and Berlin Chen. 2021. Innovative
BERT-based reranking language models for speech
recognition. In Proceedings of the 2021 IEEE Spoken
Language Technology Workshop (SLT), pages 266–
271.

Jan Chorowski and Navdeep Jaitly. 2017. Towards bet-
ter decoding and language model integration in se-
quence to sequence models. In Proceedings of Inter-
speech 2017, pages 523–527.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy
Serdyuk, Kyunghyun Cho, and Yoshua Bengio. 2015.
Attention-based models for speech recognition. In
Proceedings of Advances in Neural Information Pro-
cessing Systems 28 (NeurIPS), pages 577–585.

Yung-Sung Chuang, Chi-Liang Liu, Hung yi Lee, and
Lin shan Lee. 2020. SpeechBERT: An audio-and-
text jointly learned language model for end-to-end
spoken question answering. In Proceedings of Inter-
speech 2020, pages 4168–4172.

Yu-An Chung, Chenguang Zhu, and Michael Zeng.
2021. SPLAT: Speech-language joint pre-training for
spoken language understanding. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT), pages
1897–1907.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12(76):2493–
2537.

Keqi Deng, Songjun Cao, Yike Zhang, and Long Ma.
2021. Improving hybrid CTC/attention end-to-end
speech recognition with pretrained acoustic and lan-
guage models. In Proceedings of the 2021 IEEE
Automatic Speech Recognition and Understanding
Workshop (ASRU), pages 76–82.

Keqi Deng, Zehui Yang, Shinji Watanabe, Yosuke
Higuchi, Gaofeng Cheng, and Pengyuan Zhang.
2022. Improving non-autoregressive end-to-end
speech recognition with pre-trained acoustic and lan-
guage models. In Proceedings of the 2022 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 8522–8526.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional Transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT), pages 4171–4186.

Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne,
Hiroshi Noji, Pierre Zweigenbaum, and Jun’ichi Tsu-
jii. 2020. CharacterBERT: Reconciling ELMo and
BERT for word-level open-vocabulary representa-
tions from characters. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 6903–6915.

Santiago Fernández, Alex Graves, and Jürgen Schmid-
huber. 2007. Sequence labelling in structured do-
mains with hierarchical recurrent neural networks.
In Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 774–
779.

5496

Yuya Fujita, Shinji Watanabe, Motoi Omachi, and Xu-
ankai Chang. 2020. Insertion-based modeling for
end-to-end automatic speech recognition. In Pro-
ceedings of Interspeech 2020, pages 3660–3664.

Hayato Futami, Hirofumi Inaguma, Masato Mimura,
Shinsuke Sakai, and Tatsuya Kawahara. 2021. ASR
rescoring and confidence estimation with ELECTRA.
In Proceedings of the 2021 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 380–387.

Hayato Futami, Hirofumi Inaguma, Sei Ueno, Masato
Mimura, Shinsuke Sakai, and Tatsuya Kawahara.
2020. Distilling the knowledge of BERT for
sequence-to-sequence ASR. In Proceedings of In-
terspeech 2020, pages 3635–3639.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 6114–6123.

Alex Graves. 2012. Sequence transduction with
recurrent neural networks. arXiv preprint
arXiv:1211.3711.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: Labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd International Conference on Machine Learning
(ICML), pages 369–376.

Alex Graves and Navdeep Jaitly. 2014. Towards end-
to-end speech recognition with recurrent neural net-
works. In Proceedings of the 31st International
Conference on International Conference on Machine
Learning (ICML), pages 1764–1772.

Alex Graves, Abdelrahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Proceedings of the 2013
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6645–6649.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In Proceedings of the 6th
International Conference on Learning Representa-
tions (ICLR).

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein Transformer. In Proceedings of Ad-
vances in Neural Information Processing Systems
32 (NeurIPS).

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang.
2020. Conformer: Convolution-augmented Trans-
former for speech recognition. In Proceedings of
Interspeech 2020, pages 5036–5040.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On
using monolingual corpora in neural machine trans-
lation. arXiv preprint arXiv:1503.03535.

Junliang Guo, Zhirui Zhang, Linli Xu, Hao-Ran Wei,
Boxing Chen, and Enhong Chen. 2020. Incorpo-
rating BERT into parallel sequence decoding with
adapters. In Proceedings of Advances in Neural In-
formation Processing Systems 33 (NeurIPS), pages
10843–10854.

Pengcheng Guo, Florian Boyer, Xuankai Chang,
Tomoki Hayashi, Yosuke Higuchi, Hirofumi In-
aguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-
Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun
Wei, Wangyou Zhang, and Yuekai Zhang. 2021. Re-
cent developments on ESPnet toolkit boosted by Con-
former. In Proceedings of the 2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5874–5878.

Awni Hannun, Carl Case, Jared Casper, Bryan Catan-
zaro, Greg Diamos, Erich Elsen, Ryan Prenger, San-
jeev Satheesh, Shubho Sengupta, Adam Coates, et al.
2014. Deep Speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567.

Tomoki Hayashi, Shinji Watanabe, Tomoki Toda,
Kazuya Takeda, Shubham Toshniwal, and Karen
Livescu. 2019. Pre-trained text embeddings for en-
hanced text-to-speech synthesis. In Proceedings of
Interspeech 2019, pages 4430–4434.

Yosuke Higuchi, Nanxin Chen, Yuya Fujita, Hirofumi
Inaguma, Tatsuya Komatsu, Jaesong Lee, Jumon
Nozaki, Tianzi Wang, and Shinji Watanabe. 2021a.
A comparative study on non-autoregressive model-
ings for speech-to-text generation. In Proceedings
of the 2021 IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), pages 47–54.

Yosuke Higuchi, Hirofumi Inaguma, Shinji Watanabe,
Tetsuji Ogawa, and Tetsunori Kobayashi. 2021b. Im-
proved mask-CTC for non-autoregressive end-to-end
ASR. In Proceedings of the 2021 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 8363–8367.

Yosuke Higuchi, Keita Karube, Tetsuji Ogawa, and Tet-
sunori Kobayashi. 2022. Hierarchical conditional
end-to-end ASR with CTC and multi-granular sub-
word units. In Proceedings of the 2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7797–7801.

Yosuke Higuchi, Shinji Watanabe, Nanxin Chen, Tetsuji
Ogawa, and Tetsunori Kobayashi. 2020. Mask CTC:
Non-autoregressive end-to-end ASR with CTC and
mask predict. In Proceedings of Interspeech 2020,
pages 3655–3659.

Wen-Chin Huang, Chia-Hua Wu, Shang-Bao Luo, Kuan-
Yu Chen, Hsin-Min Wang, and Tomoki Toda. 2021.

5497

Speech recognition by simply fine-tuning BERT. In
Proceedings of the 2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 7343–7347.

Jae-Jin Jeon and Eesung Kim. 2021. Multitask learn-
ing and joint optimization for Transformer-RNN-
Transducer speech recognition. In Proceedings of
the 2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
6793–6797.

Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N
Sainath, Zhijeng Chen, and Rohit Prabhavalkar. 2018.
An analysis of incorporating an external language
model into a sequence-to-sequence model. In Pro-
ceedings of the 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 1–5828.

Tom Kenter, Manish Sharma, and Rob Clark. 2020.
Improving the prosody of RNN-based english text-to-
speech synthesis by incorporating a BERT model. In
Proceedings of Interspeech 2020, pages 4412–4416.

Tom Ko, Vijayaditya Peddinti, Daniel Povey, and San-
jeev Khudanpur. 2015. Audio augmentation for
speech recognition. In Proceedings of Interspeech
2015, pages 3586–3589.

Yotaro Kubo, Shigeki Karita, and Michiel Bacchiani.
2022. Knowledge transfer from large-scale pre-
trained language models to end-to-end speech rec-
ognizers. In Proceedings of the 2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 8512–8516.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 66–75.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A lite BERT for self-supervised
learning of language representations. In Proceed-
ings of the 5th International Conference on Learning
Representations (ICLR).

Jaesong Lee, Jingu Kang, and Shinji Watanabe. 2021.
Layer pruning on demand with intermediate CTC. In
Proceedings of Interspeech 2021, pages 3745–3749.

Jaesong Lee, Lukas Lee, and Shinji Watanabe. 2022.
Memory-efficient training of RNN-Transducer with
sampled softmax. In Proceedings of Interspeech
2022.

Jaesong Lee and Shinji Watanabe. 2021. Intermediate
loss regularization for CTC-based speech recognition.
In Proceedings of the 2021 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6224–6228.

Jumon Nozaki and Tatsuya Komatsu. 2021. Relaxing
the conditional independence assumption of CTC-
based ASR by conditioning on intermediate predic-
tions. In Proceedings of Interspeech 2021, pages
3735–3739.

Nicholas A Nystrom, Michael J Levine, Ralph Z
Roskies, and J Ray Scott. 2015. Bridges: A uniquely
flexible HPC resource for new communities and data
analytics. In Proceedings of XSEDE, pages 1–8.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur. 2015. Librispeech: An ASR corpus
based on public domain audio books. In Proceedings
of the 2015 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
5206–5210.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
2019. SpecAugment: A simple data augmentation
method for automatic speech recognition. In Pro-
ceedings of Interspeech 2019, pages 2613–2617.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. PyTorch: An imperative style,
high-performance deep learning library. In Proceed-
ings of Advances in Neural Information Processing
Systems 32 (NeurIPS).

Daniel Povey, Hossein Hadian, Pegah Ghahremani,
Ke Li, and Sanjeev Khudanpur. 2018. A time-
restricted self-attention layer for ASR. In Proceed-
ings of the 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 5874–5878.

Anthony Rousseau, Paul Deléglise, and Yannick Estève.
2014. Enhancing the TED-LIUM corpus with se-
lected data for language modeling and more TED
talks. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC), pages 3935–3939.

Tara N. Sainath, Ruoming Pang, David Rybach,
Yanzhang He, Rohit Prabhavalkar, Wei Li, Mirkó
Visontai, Qiao Liang, Trevor Strohman, Yonghui Wu,
Ian McGraw, and Chung-Cheng Chiu. 2019. Two-
pass end-to-end speech recognition. In Proceedings
of Interspeech 2019, pages 2773–2777.

Julian Salazar, Davis Liang, Toan Q Nguyen, and Katrin
Kirchhoff. 2020. Masked language model scoring.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
2699–2712.

Ramon Sanabria and Florian Metze. 2018. Hierarchical
multitask learning with CTC. In Proceedings of the
2018 IEEE Spoken Language Technology Workshop
(SLT), pages 485–490.

5498

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 1715–1725.

Seunghyun Seo, Donghyun Kwak, and Bowon Lee.
2022. Integration of pre-trained networks with con-
tinuous token interface for end-to-end spoken lan-
guage understanding. In Proceedings of the 2022
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 7152–7156.

Changhao Shan, Chao Weng, Guangsen Wang, Dan Su,
Min Luo, Dong Yu, and Lei Xie. 2019. Component
fusion: Learning replaceable language model com-
ponent for end-to-end speech recognition system. In
Proceedings of the 2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 5361–5635.

Joonbo Shin, Yoonhyung Lee, and Kyomin Jung. 2019.
Effective sentence scoring method using BERT for
speech recognition. In Proceedings of Asian Con-
ference on Machine Learning (ACML), pages 1081–
1093.

Anuroop Sriram, Heewoo Jun, Sanjeev Satheesh, and
Adam Coates. 2018. Cold fusion: Training seq2seq
models together with language models. In Proceed-
ings of Interspeech 2018, pages 387–391.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of Advances in Neural Information
Processing Systems 27 (NeurIPS), pages 3104–3112.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
4593–4601.

Andros Tjandra, Chunxi Liu, Frank Zhang, Xiaohui
Zhang, Yongqiang Wang, Gabriel Synnaeve, Satoshi
Nakamura, and Geoffrey Zweig. 2020. DEJA-VU:
Double feature presentation and iterated loss in deep
Transformer networks. In Proceedings of the 2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6899–6903.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka,
G. D. Peterson, R. Roskies, J. R. Scott, and
N. Wilkins-Diehr. 2014. XSEDE: Accelerating scien-
tific discovery. Computing in Science & Engineering,
16(5):62–74.

Emiru Tsunoo, Yosuke Kashiwagi, Toshiyuki Ku-
makura, and Shinji Watanabe. 2019. Transformer

ASR with contextual block processing. In Proceed-
ings of the 2019 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pages 427–
433.

Takuma Udagawa, Masayuki Suzuki, Gakuto Kurata,
Nobuyasu Itoh, and George Saon. 2022. Effect and
analysis of large-scale language model rescoring on
competitive ASR systems. In Proceedings of Inter-
speech 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30 (NeurIPS), pages 5998–6008.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson En-
rique Yalta Soplin, Jahn Heymann, Matthew Wiesner,
Nanxin Chen, Adithya Renduchintala, and Tsubasa
Ochiai. 2018. ESPnet: End-to-end speech processing
toolkit. In Proceedings of Interspeech 2018, pages
2207–2211.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations (EMNLP), pages 38–45.

Cheng Yi, Shiyu Zhou, and Bo Xu. 2021. Efficiently
fusing pretrained acoustic and linguistic encoders
for low-resource speech recognition. IEEE Signal
Processing Letters, 28:788–792.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and
Erik Cambria. 2018. Recent trends in deep learn-
ing based natural language processing [review arti-
cle]. IEEE Computational Intelligence Magazine,
13(3):55–75.

Fu-Hao Yu, Kuan-Yu Chen, and Ke-Han Lu. 2022.
Non-autoregressive ASR modeling using pre-trained
language models for Chinese speech recognition.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 30:1474–1482.

Guolin Zheng, Yubei Xiao, Ke Gong, Pan Zhou, Xiao-
dan Liang, and Liang Lin. 2021. Wav-BERT: Coop-
erative acoustic and linguistic representation learning
for low-resource speech recognition. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 2765–2777.

5499

Algorithm 1 BERT-CTC Inference
Input: The number of iterations K, audio encoder output Hae

1: Â′ = argmaxA′ p(A′|O) ▷ Obtain the most probable alignment from the audio encoder
2: Ŵ ′ = Bctc(Â

′)
3: N̂ ∼ |Ŵ ′| ▷ Obtain the target length from the intermediate prediction
4: W̄ = (wn=[MASK]|n = 1, · · · , N̂) ▷ Initialize a masked sequence
5: for k = 1, . . . ,K do
6: # Token prediction
7: Hbert = BERT(W̄) ▷ Forward BERT
8: p(A|·) = Softmax(SelfAttn(Hae, Hbert)) ▷ Forward self-attention module
9: Â = argmaxA p(A|·) ▷ Obtain the most probable alignment

10: Ŵ = Bctc(Â)

11: # Token-level probability calculation
12: P̂ = (p̂n = 0|n = 1, · · · , |Ŵ |) ▷ Initialize token-level probabilities
13: n = 1 ▷ Initialize an index for token position
14: a0 = ϵ
15: for t = 1, . . . , T do
16: if ât = ϵ then
17: if ât−1 ̸= ϵ then
18: n = n+ 1
19: end if
20: else
21: p̂n = max(p(at = ŵn|·), p̂n) ▷ Keep the maximum probability for each token
22: end if
23: end for
24: # Token masking
25: M = ⌊|Ŵ | · K−k

K ⌋ ▷ Calculate the number of masked tokens
26: W̄ = MaskLowestProb(Ŵ , P̂ ,M) ▷ Mask tokens with the M lowest probability scores
27: end for
28: return Ŵ

A Inference Algorithm

Algorithm 1 describes the overall process of BERT-
CTC inference. For estimating the target length in
line 3, at the implementation level, we first decode
Ŵ ′ into a sentence, which is then tokenized using
the BERT vocabulary, and the length of the result-
ing sequence is used as the target length. In lines
12–25, before the token masking step, we calculate
a probability score p̂n for each token ŵn in the es-
timated output sequence Ŵ . This score calculation
simply takes the maximum value in frame-level
token probabilities that correspond to a predicted
token ŵn after the collapsing operation. In line 28,
given the probability scores, MaskLowestProb(·)
masks tokens in Ŵ with the M lowest scores.

B Intermediate CTC

Intermediate CTC (Tjandra et al., 2020; Lee and
Watanabe, 2021) applies additional CTC losses to
intermediate layers of the audio encoder network.
Let H(e) = (h

(e)
t ∈ Rdae |t = 1, · · · , T) be an

intermediate output of the e-th layer of the audio
encoder, which is computed as in Eq. (6) as

h
(e)
t ∼ AudioEnc(e)(O), (28)

where AudioEnc(e)(·) indicates the e-th layer out-
put of the audio encoder. Similar to Eq. (5), token
emission probabilities at each time frame is com-
puted based on Eq. (28) as

p(e)(at|O) = Softmax(Linear(h(e)
t)). (29)

5500

Finally, an intermediate CTC loss L(e)
ctc is defined

similarly to Eq. (7) as

L(e)
ctc(O,W) = − log

∑

A∈B−1
ctc (W)

T∏

t=1

p(e)(at|O).

(30)

C Model Details

C.1 CTC (baseline)
We applied the intermediate CTC loss to the 6-
th layer of the audio encoder, which is calculated
using the smaller-vocabulary sequence W ′ in a hi-
erarchical multi-tasking manner. Using the inter-
mediate loss, the CTC loss Lctc is extended as

(1− λic)Lctc(O,W) + λicL(e=6)
ctc (O,W ′), (31)

where λic is a tunable weight for the intermediate
loss, and we equally weighted each loss (i.e., λic =
0.5) as in (Lee et al., 2021; Higuchi et al., 2022).

C.2 RNN-T (baseline)
We applied auxiliary CTC losses to the final and
intermediate layer of the audio encoder. As in
Eq. (31), the intermediate loss was applied to the
6-th layer. With the additional CTC losses, the
RNN-T loss Lrnnt is extended as

(1− λctc)Lrnnt(O,W)

+λctc{(1−λic)Lic(O,W ′)+λicL(e=6)
ctc (O,W ′)},

(32)

where λctc is a tunable weight for CTC losses, and
we set λctc = 0.3 as in (Boyer et al., 2021). Note
that all the CTC losses were calculated using the
smaller-vocabulary sequence W ′ in a hierarchical
multi-tasking manner.

C.3 BERT-CTC (ours)
We applied auxiliary CTC losses to the final and
intermediate layer of the audio encoder. As in
Eq. (31), the intermediate loss was applied to the
6-th layer. With the additional CTC losses, the
BERT-CTC loss Lbc is extended as

(1− λctc)Lbc(O,W)

+λctc{(1−λic)Lic(O,W ′)+λicL(e=6)
ctc (O,W ′)},

(33)

where λctc is a tunable weight for CTC losses, and
we set λctc = 0.3. Note that all the CTC losses
were calculated using the smaller-vocabulary se-
quence W ′ in a hierarchical multi-tasking manner
(as explained in §3.1).

D Experimental Details

D.1 Dataset

Tables 6 and 7 list descriptions of ASR and SLU
datasets, respectively. Data preparation was done
using the ESPnet2 recipe provided for each dataset:
LibriSpeech-100h5, TED-LIUM26, AISHELL-17,
SLURP8.

D.2 Model Configuration

For the audio encoder network, we used the Con-
former (Gulati et al., 2020)-based encoder archi-
tecture implemented in ESPnet (Guo et al., 2021).
The audio encoder consisted of 2 or 3 convolu-
tional neural network (CNN) layers followed by a
stack of 12 encoder blocks. The dimensions of the
self-attention layer dae and feed-forward network
dff were set to 256 and 1024, respectively, and the
number of heads dhead was set to 4. The kernel size
of depthwise separable convolution was set to 31.
For RNN-T, the prediction network was a single
LSTM layer with 512 units, and the joint network
was a single linear layer with 640 units. For BERT-
CTC, we built the Transformer (Vaswani et al.,
2017)-based architecture for the self-attention mod-
ule, which consisted of a stack of 6 encoder blocks
with dmodel = 256, dff = 2048, and dhead = 4.
Before feeding into the self-attention module, the
hidden vectors, Hae and Hbert, were emebbeded
using 2 CNN layers and a single linear layer, re-
spectively, which mapped each vector to the di-
mension size of dmodel. For the BERT module in
BERT-CTC, we downloaded pre-trained models
from the HuggingFace Transformers library (Wolf
et al., 2020)9. We used a BERTBASE model pro-
vided for each language: English10, Mandarin11.
Note that the dimension of the BERT output dbert

was 768. The number of total/trainable parame-
ters in the CTC, RNN-T, and BERT-CTC models
was about 30M/30M, 60M/60M, and 150M/40M,
respectively.

5https://github.com/espnet/espnet/tree/master/
egs2/librispeech_100/asr1

6https://github.com/espnet/espnet/tree/master/
egs2/tedlium2/asr1

7https://github.com/espnet/espnet/tree/master/
egs2/aishell/asr1

8https://github.com/espnet/espnet/tree/master/
egs2/slurp/asr1

9https://github.com/huggingface/transformers
10https://huggingface.co/bert-base-uncased
11https://huggingface.co/bert-base-chinese

5501

https://github.com/espnet/espnet/tree/master/egs2/librispeech_100/asr1
https://github.com/espnet/espnet/tree/master/egs2/librispeech_100/asr1
https://github.com/espnet/espnet/tree/master/egs2/tedlium2/asr1
https://github.com/espnet/espnet/tree/master/egs2/tedlium2/asr1
https://github.com/espnet/espnet/tree/master/egs2/aishell/asr1
https://github.com/espnet/espnet/tree/master/egs2/aishell/asr1
https://github.com/espnet/espnet/tree/master/egs2/slurp/asr1
https://github.com/espnet/espnet/tree/master/egs2/slurp/asr1
https://github.com/huggingface/transformers
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-chinese

Dataset Language Speech Style # Train Hours # Valid. Hours # Test Hours

LibriSpeech-100h (Panayotov et al., 2015) English Read 100h 5.4h / 5.3h 5.4h / 5.1h
TED-LIUM2 (Rousseau et al., 2014) English Spontaneous 210h 1.6h 2.6h
AISHELL-1 (Bu et al., 2017) Mandarin Read 170h 10h 5h

Table 6: ASR dataset descriptions. The validation and test sets of LibriSpeech are split into “clean” / “other” sets
based on the quality of the recordec utterances.

Dataset Language # Intents # Train Hours # Valid. Hours # Test Hours

SLURP (Bastianelli et al., 2020) English 69 40h + 43h 6.9h 10.3h

Table 7: Dataset description for SLURP intent classification. We bootstrap the train set with the synthetic data.

Hyperparameter Value

Dropout rate 0.1
LR schedule Noam (Vaswani et al., 2017)
Max learing rate best of [1e-3, 2e-3]
Warmup steps 15k
Epochs best of [50, 70, 100]
Adam betas (0.9, 0.98)
Weight decay 1e-6

Table 8: Training configuration for CTC model.

Hyperparameter Value

Dropout rate 0.1
LR schedule Noam (Vaswani et al., 2017)
Max learing rate 2e-3
Warmup steps 15k
Epochs best of [50, 70]
Adam betas (0.9, 0.98)
Weight decay 1e-6

Table 9: Training configuration for RNN-T model.

D.3 Tokenization

We used the same subword vocabulary as BERT
for tokenizing target texts, where the vocabulary
size |V| was 30522 for English and 21128 for Man-
darin. For the smaller-sized vocabulary V ′ used in
hierarchical CTC, we used SentencePiece (Kudo,
2018)12 to construct subword vocabularies from
transcription data in each training set. Following
the ESPnet recipes, the vocabulary size was set
to 300 for LibriSpeech-100h, and 500 for TED-
LIUM2 and SLURP. For AISHELL-1, we used
character-level tokenization with 4231 Chinese
characters.

Hyperparameter Value

Dropout rate 0.1
LR schedule Noam (Vaswani et al., 2017)
Max learing rate best of [1e-3, 2e-3]
Warmup steps 15k
Epochs best of [50, 70, 100]
Adam betas (0.9, 0.98)
Weight decay 1e-6

Table 10: Training configuration for BERT-CTC model.

D.4 Training

All the models were implemented and trained
using ESPnet (Watanabe et al., 2018)13 and Py-
Torch (Paszke et al., 2019)14. In Tables 8, 9,
and 10, we summarize training configurations for
the CTC, RNN-T, and BERT-CTC models, respec-
tively. We augmented speech data using speed
perturbation (Ko et al., 2015) with a factor of 3 and
SpecAugment (Park et al., 2019). For the hyper-
parameters in SpecAugment, we set the number
of frequency and time masks to 2 and 5, and the
size of frequency and time masks to 27 and 0.05T .
Note that the maximum size of the time mask de-
pends on the utterance length T . After training,
model parameters were averaged over 10 check-
points with the best validation performance. For
CTC, we trained models using a single RTX 2080
Ti GPU for 1 to 3 days, depending on the tasks and
number of epochs. For RNN-T, we trained models
using 4 V100 GPUs for 5 to 7 days, depending on
the tasks and number of epochs. For BERT-CTC,
we trained models using a single RTX 2080 Ti GPU
for 3 to 5 days, depending on the tasks and number
of epochs.

12https://github.com/google/sentencepiece
13https://github.com/espnet/espnet
14https://github.com/pytorch/pytorch

5502

https://github.com/google/sentencepiece
https://github.com/espnet/espnet
https://github.com/pytorch/pytorch

Model
#params [M]

Total (Trainable)
Pre-trained

Dev CER (↓) Test CER (↓)
AM LM

rePLM-NAR-ASR (Yu et al., 2022) 120 (120) – BERT 4.2 4.8
CTC/Attention (Deng et al., 2021) 161 (152) wav2vec2.0 – 4.7 5.0
CTC/Attention (Deng et al., 2021) 218 (209) wav2vec2.0 DistilGPT2 3.9 4.2
NAR-CTC/Attention (Deng et al., 2022) 204 (195) wav2vec2.0 BERT 4.0 4.3
Wav-BERT (Zheng et al., 2021) 380 (380) wav2vec2.0 BERT 3.6 3.8

BERT-CTC (ours) 143 (40) – BERT 3.9 3.9

Table 11: Comparison to prior works on AISHELL-1. The number of trainable parameters in BERT-CTC is fewer
than in the others because BERT-CTC uses BERT without fine-tuning.

Model #iters

LibriSpeech-100h TED-LIUM2

Dev WER (↓) Test WER (↓)
Dev WER (↓) Test WER (↓)

clean other clean other

Mask-CTC (Higuchi et al., 2020) 10 7.2 20.3 7.5 20.6 8.9 8.5
Improved Mask-CTC (Higuchi et al., 2021b) 5 7.0 19.8 7.3 20.2 8.8 8.3
Align-Denoise (Chen et al., 2021) 1 8.0 22.3 8.4 22.5 9.0 8.7
Intermediate CTC (Lee and Watanabe, 2021) 1 6.9 19.7 7.1 20.2 8.5 8.3
Self-conditioned CTC (Nozaki and Komatsu, 2021) 1 6.6 19.4 6.9 19.7 8.7 8.0
KERMIT (Fujita et al., 2020) ≃ log2(N) 7.1 19.7 7.4 20.2 9.1 8.2

BERT-CTC (ours) 20 7.0 16.3 7.2 16.6 8.1 7.6

Table 12: Comparison of BERT-CTC and non-autoregressive E2E-ASR models on LibriSpeech-100h and TED-
LIUM2. The prior results are obtained from the comparative study conducted in (Higuchi et al., 2021a).

D.5 Inference

RTF was measured using a single V100 GPU (with
a batchsize of 1) or a single Intel(R) Xeon(R) Gold
6148 CPU@2.4 GHz.

E Comparison to Prior Works

AISHELL-1 Table 11 lists results on AISHELL-
1, comparing our BERT-CTC with recent ap-
proaches using a pre-trained acoustic model (AM)
or/and LM. BERT-CTC achieved comparable per-
formance to the state-of-the-art approach, Wav-
BERT (Zheng et al., 2021), without using a pre-
trained AM. Moreover, the number of trainable
parameters in BERT-CTC was much fewer than in
the other models because BERT-CTC used BERT
as contextual embedding (without fine-tuning). We
attribute this advantage of BERT-CTC to our well-
defined formulation for conditioning CTC train-
ing/inference with BERT knowledge.

Non-autoregressive End-to-End ASR Table 12
compares our BERT-CTC with the previous non-
autoregressive E2E-ASR models on LibriSpeech-
100h and TED-LIUM2. It should be noted that
we refer to (Higuchi et al., 2021a) for the prior re-
sults, and the comparison is not necessarily in an
equivalent setting, e.g., we conducted experiments

using ESPnet2 while the previous work used ESP-
net1. Overall, BERT-CTC achieved better results
than the other non-autoregressive models, thanks
to the usage of BERT. In particular, we observed
clear differences in the LibriSpeech “other” sets
and TED-LIUM2. However, the performance on
the LibriSpeech “clean” set was on par with the
other approaches, which we attribute to the vocab-
ulary mismatch problem we have discussed in the
limitation section.

5503

