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Abstract

Recently, retrieval models based on dense rep-
resentations are dominant in passage retrieval
tasks, due to their outstanding ability in terms
of capturing semantics of input text compared
to the traditional sparse vector space models. A
common practice of dense retrieval models is to
exploit a dual-encoder architecture to represent
a query and a passage independently. Though
efficient, such a structure loses interaction be-
tween the query-passage pair, resulting in in-
ferior accuracy. To enhance the performance
of dense retrieval models without loss of effi-
ciency, we propose a GNN-encoder model in
which query (passage) information is fused into
passage (query) representations via graph neu-
ral networks that are constructed by queries and
their top retrieved passages. By this means, we
maintain a dual-encoder structure, and retain
some interaction information between query-
passage pairs in their representations, which en-
ables us to achieve both efficiency and efficacy
in passage retrieval. Evaluation results indicate
that our method significantly outperforms the
existing models on MSMARCO, Natural Ques-
tions and TriviaQA datasets, and achieves the
new state-of-the-art on these datasets.

1 Introduction

Large-scale query-passage retrieval is a core task
in search systems, which aims to rank a collection
of passages based on their relevance with regard
to a query. To balance efficiency and effective-
ness, existing work typically adopts a two-stage
retrieval pipeline (Ren et al., 2021b; Zhu et al.,
2021). The first-stage aims to retrieve a subset
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of candidate passages by a recall model from the
entire corpus and the second stage aims to re-
rank the retrieved passages. In the first-stage re-
trieval, traditional approaches (Chen et al., 2017)
implemented term-based retriever (e.g. TF-IDF
and BM25) by weighting terms based on their fre-
quency, which have limitations on representing se-
mantics of text. Recently, dense passage retrieval
is drawing more and more attention in the task of
passage retrieval (Karpukhin et al., 2020). The
underlying idea is to represent both queries and
passages as embeddings, so that the semantic rele-
vance can be measured via embeddings similarity.
With the great success of pre-trained language mod-
els (PLMs) such as BERT/RoBERTa (Devlin et al.,
2019; Liu et al., 2019) in natural language process-
ing tasks, dense retrieval models parameterized by
PLMs is emerging as the new state-of-the-art in a
variety of passage retrieval tasks (Karpukhin et al.,
2020; Xiong et al., 2020).

Two paradigms based on fine-tuned language
models are typically built for retrieval: cross-
encoders and dual-encoders. Typical cross-
encoders need to recompute the representation of
each passage in the corpus once a new query comes,
which is difficult to deploy in real-world search
systems. In contrast, dual-encoders remove query-
passage interaction by representing a query and
a passage independently through two separate en-
coders (Siamese encoders). Hence, passage em-
beddings can be pre-computed offline, and online
latency can be greatly reduced. Thanks to this ad-
vantage, dual-encoders are more widely adopted in
real-world applications. On the other hand, inde-
pendent encoding without any interaction causes se-
vere retrieval performance drop due to information
loss. To improve the performance of dual-encoders,
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some efforts have been made to incorporate more
complicated structures (i.e., late interaction) such
as attention layers (Humeau et al., 2019; Tang et al.,
2021), the sum of maximum similarity computa-
tions (Khattab and Zaharia, 2020), and the trans-
former layers (Cao et al., 2020; Chen et al., 2020)
into encoding. These late interaction strategies
bring considerable improvements on retrieval per-
formance but also increase computational overhead.
Moreover, interaction information is still neglected
in earlier encoding of query and passage.

In this work, we aim to achieve both efficiency
and effectiveness in passage retrieval. The key
idea is to maintain two independent encoders, and
keep as much interaction information as possible
in the meanwhile. To this end, we propose a novel
approach that explicitly fuses query (passage) infor-
mation into passage (query) embeddings through a
graph neural network (GNN), and name the model
GNN-encoder. Our model is built upon the dual-
encoder, and learns query-interactive passage rep-
resentations and passage-interactive query repre-
sentations through a graph neural network. Specif-
ically, given a query set, we retrieve top passages
for each query, and form a graph whose nodes are
the queries and the passages, and edges reflect cor-
respondence between query-passage pairs (i.e., if
a passage is retrieved by the query). Then, we
initialize the GNN model with the representations
of the pre-trained dual-encoder and cross-encoder,
and then perform information propagation on the
graph. To avoid information leakage, we further de-
sign a new training algorithm and name it Masked
Graph Training (MGT), in which the query set
used for training GNN is no longer used to con-
struct the query-passage graph in each training
epoch. Finally, the passage embeddings could be
pre-computed offline corresponding to the GNN.
Thus our model holds the efficiency advantage in-
herited from the dual structure, and at the same
time takes query-passage interaction into account.

Our contributions can be summarized as follows:

• We propose a novel dense retrieval model
based on graph neural network techniques that
encodes query-passage interaction into query
and passage representations without sacrifice
on retrieval efficiency.

• We propose an adaptive Masked Graph Train-
ing (MGT) Algorithm for our task to avoid
information leakage during GNN training.

• Experiments show that our model achieves
state-of-the-art performance on MSMARCO,
Natural Questions and TriviaQA datasets.

2 Related Work

Our work touches on two strands of research within
dense passage retrieval and graph neural network.

2.1 Dense Passage Retrieval

The dense passage retrieval approaches have been
proposed to map both questions and documents to
continuous vectors (i.e., embeddings), which has
achieved better performance than sparse retrieval
approaches (Chen et al., 2017; Dai and Callan,
2019). Existing approaches can be roughly di-
vided into two categories: pre-training and fine-
tuning. The first type of methods often explores
pre-training objectives/architectures designed for
retrieval. Lee et al. (2019) pre-trains the re-
triever with an unsupervised Inverse Cloze Task
(ICT). Condenser (Gao and Callan, 2021) proposes
a dense retrieval pre-training architecture which
learns to condense information into the dense vec-
tor through LM pre-training. coCondenser (Gao
and Callan, 2022) adds an unsupervised corpus-
level contrastive loss on top of the Condenser (Gao
and Callan, 2021) to warm up passage embeddings.

The second type of methods often fine-tunes
pre-trained language models on labeled data.
Karpukhin et al. (2020) proposes a dense embed-
ding model using only pairs of questions and pas-
sages, without additional pre-training. Xiong et al.
(2020); Qu et al. (2021) identify that the negative
samples during training may not be representative,
thus mechanism of selecting hard training nega-
tives is designed. Khattab and Zaharia (2020);
Humeau et al. (2019) incorporate late interaction
architectures into the learning process that indepen-
dently encode the query and the document firstly.
Tang et al. (2021) designs a method to mimic the
queries on each of the documents by clustering to
enhance the document representation. PAIR (Ren
et al., 2021a) leverages passage-centric similarity
relation into training object to discriminate between
positive and negative passages. RocketQAv2 (Ren
et al., 2021b) introduces dynamic listwise distilla-
tion to jointly train retriever and re-ranker.

2.2 Graph Neural Network

Graph neural network (GNN) captures the rela-
tionships between nodes connected with edges,
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Figure 1: Overview of GNN-encoder which can be divided into three parts: (1) Dual-encoder; (2) Cross-encoder;
(3) GNN on query-passage graph. Node and edge features of query-passage graph are initialized by dual-encoder
and cross-encoder, respectively. Only the parameters of dual-encoder and GNN will be updated during training.

which propagates features across nodes layer by
layer (Scarselli et al., 2008). Graph attention net-
work (GAT) (Veličković et al., 2018) leverages
masked self-attentional layers to address the short-
comings of prior work based on graph convolutions
or their approximations. GNN has demonstrated
effectiveness in a wide variety of tasks such as text
classification (Lin et al., 2021), question answer-
ing (De Cao et al., 2019), recommendation (Wu
et al., 2019) and relation extraction (Li et al., 2020).
For example, Yasunaga et al. (2021) connects the
question-answering context and knowledge graph
to form a joint graph, and mutually updates their
representations to perform joint reasoning over the
language and the knowledge graph.

Compared to existing work, our work serves the
dense passage retrieval and presents a novel fine-
tuning method to fuse query (passage) information
into passage (query) embeddings via GNN.

3 Methodology

3.1 Preliminary

Given a query q, dense retriever is required to re-
trieve k most relevant passages {pi}ki=1 from a
large corpus consisting of hundreds of thousands
of passages. For the sake of retrieval efficiency, the
dual-encoder architecture is widely adopted, where
query encoder EQ(·) and passage encoder EP (·)

are used to embed query q and passage p into d-
dimensional vectors, respectively. The similarity
between query q and passage p can be computed
as the dot product of their vectors:

s(q, p) = EQ(q)
T · EP (p). (1)

The training objective of the dual-encoder is to
learn embeddings of queries and passages to make
positive query-passage pairs have higher similarity
than the negative query-passage pairs in training
data. Hence, the contrastive-learning loss function
is adopted for the dual-encoder:

L(q, p+, {p−}, s) =

− log
es(q,p

+)

es(q,p+) +
∑

{p−} e
s(q,p−)

,
(2)

where q and p+ represent query and positive pas-
sage, respectively, and {p−} represents the set of
negative passages.

In practical retrieval systems, passage embed-
dings are usually pre-computed offline, while query
embeddings are computed by the query encoder
in an ad hoc manner. Therefore we can obtain
better passage embeddings through a complicated
encoder as long as it does not increase the online
inference latency.
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3.2 Graph Construction

We use all the passages P = {pi}mi=1 and train-
ing queries Q = {qi}ni=1 as nodes to construct our
query-passage graph, where n and m denote the
number of training queries and passages, respec-
tively. Let G = (V, E) denote our graph, where
V = Vq ∪Vp is a node set and E = Epp ∪Epq ∪Eqq
is an edge set. Vp and Vq denote the passage node
set and the query node set, respectively. Epp, Epq,
and Eqq denote the edges between passage nodes,
between passage nodes and query nodes, and be-
tween query nodes, respectively. The edge between
node x and node y is denoted as e(x, y).

We retrieve the top-k candidate passages Pi =
{pij}kj=1 for each query qi from the corpus by the
dual-encoder. We add edges between qi and each
passage pij in the top-k retrieved passages Pi which
may be relevant to qi. These edges compose Epq
(i.e., Epq = {e(qi, pij)}n,ki=1,j=1). Since we can not
directly distinguish whether there is relation be-
tween the queries and between the passages, we
only add self-loops to each passage and query (i.e.,
Epp = {e(pi, pi)}mi=1 and Eqq = {e(qi, qi)}ni=1).
To summarize, our graph G has a total of (n+m)
nodes and (n× k +m+ n) edges.

Node Features We use the dual-encoder to get
query embeddings hqi = EQ(qi) and passage em-
beddings hpi = EP (pi) as our graph node features.

Edge Features Since the cross-encoder can bet-
ter capture the interactive information between
text pairs, we utilize the embeddings of text pairs
(x, y) by the cross-encoder as features hx−y of edge
e(x, y). We believe they will guide GNN model to
choose information of neighbor nodes.

In our experiments, both dual-encoder and cross-
encoder use [CLS] representations as embeddings.

3.3 GNN on Query-passage Graph

The most straightforward way to fuse query (pas-
sage) information into passage (query) embeddings
is directly adding query (passage) embeddings to
passage (query) embeddings. However, not all in-
formation is effective. Ideally, a model can choose
what information to utilize and how much such in-
formation should be retained, which is exactly what
our proposed model (Figure 1) does. Since GAT
(Veličković et al., 2018) can learn the attention
weights to neighbors (i.e., how to choose informa-
tion of neighbors), it suits well to our work. In our
graph, two nodes connected are considered to be

relevant, so we can utilize GAT to learn how to
exchange information between relevant nodes.

GAT Layer We apply multi-head attention in GAT
layer. But for simplicity, we only describe the
single-head situation below. Let Ni denote the
neighbors of node i in the graph. GAT layer com-
putes the importance of node j ∈ Ni to node i as:

eij = aT[Wthi||Wshj ||Wehi−j ], (3)

where hi ∈ Rdn , hj ∈ Rdn , hi−j ∈ Rde are
the features of node i, node j and edge e(i, j),
respectively, and Wt ∈ Rdn×d, Ws ∈ Rdn×d,
We ∈ Rde×d, a ∈ R3d are learnable model pa-
rameters, and || is concatenation operation. In our
experiments, we set dn = de = d which equals to
the dimension of BERT base (i.e.,768). Then the
attention weight of node j ∈ Ni to node i is cal-
culated by the softmax function and LeakyReLU
activation function:

αij =
exp(LeakyReLU(eij))∑

k∈Ni
exp(LeakyReLU(eik))

. (4)

The final output features for every node can be
computed as weighted sum of linear transformed
features of neighbor nodes, and optionally adding
an activation function σ:

h̃i = σ(
∑

j∈Ni

αijWshj). (5)

Considering only node features will change after
GAT layer, we define the above formulation as:
h̃i = GAT({hj}j∈Ni) for notation simplicity. We
use two GAT layers to implement the interaction
between nodes, because two-hop neighbors can
exactly establish the relation between the queries
and between the passages.

Aggregate We first get the aggregated contexts of
query neighbors via the first GAT layer:

h̃qi = GAT({hpij}pij∈Pi ∪ {hqi}), (6)

where Pi denotes the set of passages retrieved by qi.
Then we concatenate the aggregated contexts and
query node features, and apply a single linear layer
to get passage-interactive query embeddings:

h′qi = Wpq[h̃qi ||hqi ] + bpq, (7)

where Wpq ∈ Rd×2d and bpq ∈ Rd are weight
matrix and weight vector, respectively. Then we
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get the aggregated contexts of passage neighbors
via the second GAT layer:

h̃pi = GAT({h′qij}qij∈Qi ∪ {hpi}), (8)

where Qi denotes the set of queries retrieving pi.

Filter Gate We can not directly incorporate aggre-
gated contexts of passage neighbors into passage
embeddings for the noise in them. We utilize filter
gate to "clean"1 the aggregated contexts:

fpi = σ(Wqp[h̃pi ||hpi ] + bqp), (9)

where Wqp ∈ Rd×2d and bqp ∈ Rd are weight
matrix and weight vector, respectively and σ repre-
sents the sigmoid function. We get the final query-
interactive passage embeddings as follows:

h′pi = fpi · h̃pi + hpi . (10)

3.4 Training Procedure
In this section, we present the training procedure
of our model. Following Qu et al. (2021) and Ren
et al. (2021a), we first retrieve the top-k candidates
of each query from the corpus by DPR (Karpukhin
et al., 2020) and score them by a well-trained cross-
encoder Mce to obtain denoised positives and hard
negatives to train our initial dual-encoder Mde. We
utilize Mde and Mce to construct our query-passage
graph, including adding edges, initializing node
features and initializing edge features.

We adopt Eq.(2) as our basic loss function to
train the dual-encoder (initialized with Mde) and
GNN jointly. For each training step, we randomly
sample a subset of training queries Qb = {qi}bi=1,
getting their denoised positives and hard negatives
Pb = P+

b ∪ P−
b = {p+qi}bi=1 ∪ {p−qi}bi=1. We

compute query-interactive passage embeddings for
each passage in Pb, and then utilize them and query
embeddings to compute similarity and loss:

sG(q, p) = EQ(q)
T · h′p, (11)

LG =
∑

qi∈Qb

L(qi, p
+
qi , Pb − {p+qi}, sG). (12)

In this way, query encoder can learn how to produce
query embeddings with interaction information

1Since the passage-interactive query embeddings are not
directly involved in the similarity calculation, we should keep
as much information as possible for the subsequent calculation.
Therefore we do not apply the gate structure to filter noise in
the passage-interactive query embeddings, and the final gate
will filter all the noise.

by being involved in the computation of passage-
interactive query embeddings and similarity.

Ideally, we need to recompute the node features
by dual-encoder at each training step. However,
considering efficiency and hardware resources, we
utilize cache passage embeddings of Mde as pas-
sage node features to compute h̃qi in Eq.(6), while
node features in Eq.(7∼10) are recomputed by dual-
encoder. For retrieval, we utilize the similarity cal-
culated by Eq.(11) as score to rank all passages.

Masked Graph Training Algorithm The method
presented above is highly susceptible to informa-
tion leakage in training. Dropping labeled edges
is a common trick to avoid leakage information,
but it does not suit our task which will be analysed
in later experiments. The training queries are in-
volved in graph construction, while test queries are
not, which also leads to the gap between training
and inference. When constructing graph, positive
passage p+qi tends to be retrieved by query qi, which
may lead p+qi focus too much on qi. Based on these
considerations, we propose a Masked Graph Train-
ing (MGT) Algorithm which is applicable to other
tasks suffering the same dilemma. In every epoch,
we split the training queries into two parts Qg and
Qt which are utilized for constructing the graph
and training (i.e., masking some nodes in training),
respectively. By this means, we alleviate the gap
between training and inference . The proportion of
query masked β in the graph can not be too high,
otherwise it will cause the gap between training
graph and inference graph. For more details, you
can refer to appendix A.

4 Experiments

4.1 Dataset

MSMARCO (Nguyen et al., 2016) is the dataset
introduced by Microsoft. It contains 0.5 million
queries that were sampled from Bing search logs,
while containing 8.8 million passages that were
gathered from Bing’s results to real-world queries.
Natural Questions (NQ) (Kwiatkowski et al.,
2019) is a large dataset from open-domain QA,
which consists of queries that were issued to the
Google search engine by real anonymized, and the
collection of passages is processed from Wikipedia.
TriviaQA (TQA) (Joshi et al., 2017) contains a
set of trivia questions with answers which were
originally scraped from the Web.

For both Natural Questions and TriviaQA, we
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Methods PLM MSMARCO Dev Natural Questions Test
MRR@10 R@50 R@1000 R@5 R@20 R@100

BM25 (anserini) - 18.7 59.2 85.7 - 59.1 73.7

DeepCT - 24.3 69.0 91.0 - - -
GAR - - - - - 74.4 85.3
COIL - 35.5 - 96.3 - - -

DPR (single) BERTbase - - - - 78.4 85.4
ANCE (single) RoBERTabase 33.0 - 95.9 - 81.9 87.5
ColBERT BERTbase 36.0 82.9 96.8 - - -
NPRINC BERTbase 31.1 - 97.7 73.3 82.8 88.4
RocketQA ERNIEbase 37.0 85.5 97.9 74.0 82.7 88.5
PAIR ERNIEbase 37.9 86.4 98.2 74.9 83.5 89.1
Condenser† - 36.6 - 97.4 - 83.2 88.4
RocketQAv2 ERNIEbase 38.8 86.2 98.1 75.1 83.7 89.0
coCondenser† - 38.2 - 98.4 75.8 84.3 89.0

GNN-encoder ERNIEbase 39.3 86.9 98.3 76.8 84.9 89.3

Table 1: Experimental results on MSMARCO dev set and Natural Questions test set. We copy the results from
original papers, while leaving it blank if unavailable. The best results are marked bold. †Note that Condenser and
coCondenser are pre-training methods.

reuse the version released by DPR (Karpukhin
et al., 2020) in our experiments. Following pre-
vious work, we use mean reciprocal rank (MRR)
and recall at top k ranks (R@k) to evaluate the
performance of passage retrieval.

4.2 Comparison Methods

To demonstrate the effectiveness of our model, we
adopt several state-of-the-art document retrieval
models for comparison as follows.

Sparse Retrieval Models We first compare our
model with sparse passage retrieval models, includ-
ing traditional retriever BM25 (Yang et al., 2017),
and three retrievers enhanced by neural networks,
DeepCT (Dai and Callan, 2019), GAR (Mao et al.,
2021) and COIL (Gao et al., 2021).

Dense Retrieval Models We compare with sev-
eral dense passage retrieval models, including
DPR (Karpukhin et al., 2020), ANCE (Xiong
et al., 2020), ColBERT (Khattab and Zaharia,
2020), NPRINC (Lu et al., 2020), RocketQA (Qu
et al., 2021), PAIR (Ren et al., 2021a) and Rock-
etQAv2 (Ren et al., 2021b). For PAIR and Rock-
etQAv2, we initialize them with BERTbase and re-
produce their results on TQA. And we also com-
pare with some pre-training methods, including
Condenser (Gao and Callan, 2021) and coCon-

denser (Gao and Callan, 2022).

4.3 Implementation Details

For fair comparison with baseline models, the dual-
encoder is initialized with ERNIE-2.0 base (Zhang
et al., 2019) which is a BERT-like model with 12-
layer transformers on MSMARCO and NQ, and
is initialized with BERTbase on TQA. Our initial
dual-encoder Mde is trained with the batch sizes
of 2048× 2 on MSMARCO, and 256× 4 on NQ
and TQA. The number of epoch, the rate of linear
scheduling warm-up and the learning rate are set to
10, 0.1 and 2e-5, respectively on all datasets.

While jointly training dual-encoder and GNN,
we set the learning rate to 2e-6 and 5e-5 for dual-
encoder and GNN, respectively, the batch size to
1024× 4 and the number of epoch to 5. Since dif-
ferent network structures are suitable for different
learning rate, it is necessary to set them different.
We retrieve the top-25 candidate passages for each
query by Mde to create edge set Epq. For each
epoch, we randomly select 5% of the queries for
training while others and their relevant edges for
constructing graph. During the inference, we use
the query encoder to predict query embeddings, and
use FAISS (Johnson et al., 2019) to index the dense
representations of all passages via GNN-encoder.
We implement all experiments with the deep learn-
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Methods R@5 R@20 R@100

BM25 (anserini) - 66.9 76.7
DPR (single) - 79.4 85.0
ANCE (single) - 80.3 85.3
GAR 73.1 80.4 85.7
PAIR 76.3∗ 82.4∗ 86.9∗

Condenser - 81.9 86.2
RocketQAv2 76.4∗ 82.6∗ 86.7∗

coCondenser 76.8 83.2 87.3

GNN-encoder 77.7 83.3 87.2

Table 2: Experimental results on TriviaQA test set.
The results of PAIR and RocketQAv2 are reproduced
(marked with ∗), while others are copied from the origi-
nal paper. All dense retrieval models are initialized with
BERTbase.

ing framework PyTorch on up to four NVIDIA
Tesla A100 GPU (80GB memory).

4.4 Experimental Results
The detailed experimental results of passage re-
trieval tasks on MSMARCO and NQ are shown in
Table 1, while the results of TQA are shown in Ta-
ble 2. We can observe that our model outperforms
other fine-tuning methods by a large margin, es-
pecially on MRR@10 (+0.5%), R@50 (+0.5%) of
MSMARCO, R@5 (+1.7%), R@20 (+1.2%) of NQ
and R@5 (+1.3%), R@20 (+0.7%) of TQA. This
phenomenon reflects that our model can build bet-
ter query and passage representations to improve
the ability of passage ranking at top ranks, which is
due to our interaction between query embeddings
and passage embeddings. When compared to pre-
training methods like coCondenser, our model still
performs better in general on all datasets. Note
that pre-training methods are not comparable to
our method in practice, but complementary work.

4.5 Ablation Study
We perform an ablation study to investigate where
the improvement mainly comes from. We only
report the results on NQ which are shown in Ta-
ble 3, while the results on MSMARCO and TQA
are similar and omitted here due to limited space.

First, we use Eq.(1∼2) to train a dual-encoder
without GNN on query-passage graph and com-
pare it with our model to explore how much perfor-
mance improvement is introduced by GNN. The
performance of our model notably drops in terms of
R@5 and R@20 without GNN. It indicates that our

Methods R@5 R@20 R@100

GNN-encoder 76.8 84.9 89.3

w/o GNN 75.1 83.6 89.1
w/o MGT 76.0 84.4 89.1
w/o filter gate 76.3 84.6 89.2
w/o edge features 76.5 84.7 89.2
w/ one layer 76.3 84.5 89.2

Table 3: Ablation study of different components of
GNN-encoder on Natural Questions.

Figure 2: Attention scores in Eq.(4) for w/o MGT (left)
and w/ MGT (right). We illustrate a passage and queries
connecting to it in G, and mark labeled positive queries
in training dataset and potentially relative queries in red
and blue, respectively.

model builds better query and passage embeddings
by GNN interaction, which improves the perfor-
mance at top ranks.

We use the whole training queries to both con-
struct the graph and train GNN-encoder at the same
epoch and drop edges between training queries and
their positive passages to avoid information leak-
age like DGL (Wang, 2019) instead of MGT Algo-
rithm. However, it leads to a considerable drop in
performance as shown in Table 3. We conclude the
reason as in-batch negatives information leakage.
As illustrated in Figure 2, w/o MGT can lead to
information leakage, because the passage embed-
dings will be more inclined to integrate the queries
labeled positive in training dataset but ignore po-
tentially relative queries 2 (as left attention scores
show scores of labeled positive queries are much
bigger than the others). However, our algorithm
can solve this problem, due to queries for training
are not used to construct graph in the same train-
ing epoch (as right attention scores show scores of
potentially relative queries become larger).

2If query q is supposed to have positive passage p, but for
some reason it is not labeled, we consider q to be a potentially
relative query of p.
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Figure 3: R@5 (left) and R@20 (right) results of pas-
sage retrieval on NQ with different numbers of edges
per query node.

And then, we remove the filter gate in Eq.(10)
and calculate query-interactive passage embed-
dings directly with a constant α, i.e., h′pi = α·h̃pi+
hpi . For a more fair comparison, we searched for α
from 0 to 1 by setting an equal interval to 0.1, and
release the best result in Table 3 where α is set to
0.2. However, the best result of replacing filter gate
with constant α is still lower than that of filter gate.
A potential reason is that the value of α should not
be the same for different passages.

We also investigate whether the embeddings of
cross encoder as edge features can effectively guide
model to learn attention mechanism. As shown
from results, the performance slightly drops when
we remove the edge features. It indicates that GAT
layer can learn how to select information from
neighbors by only relying on passage embeddings
and query embeddings, but the embeddings of cross
encoder help it learn better.

We utilize one GAT layer instead of two layers
to examine the effect of two-hop neighbors. As
shown in Table 3 (w/ one layer), the performance
of one layer drops compared to that of two layers.
We think that the passages retrieved by a query
which are also part of the query information, will
complement the query embeddings. That is also
the reason why two layers have better performance.

4.6 Detailed Analysis

Apart from the above illustration, we also imple-
ment detailed analysis on different settings of GNN-
encoder’s training and efficiency.

The number of edges in Graph For graph con-
struction in section 3.2, the more candidate pas-
sages are retrieved, the more edges there will be,
which means that more queries connect to a pas-
sage and more query information could be incorpo-
rated into passage embeddings. However, Figure 3
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Figure 4: R@5 (left) and R@20 (right) results of pas-
sage retrieval on NQ with different masked ratios.

Methods Doc Encoding Retrieval

DPR 0.41ms 1.9ms
ColBERT 0.41ms 90ms
RocketQAv2 0.41ms 1.9ms
GNN-encoder 0.46ms 1.9ms

Table 4: Time cost of online retrieval and offline docu-
ment encoding for Natural Questions test set.

indicates that more edges do not bring further per-
formance improvements, because excessive edges
might introduce noise that increases the difficulty
of model learning and leads to performance drop.

Masked Ratio In this part, we conduct an experi-
ment to analyze the impact of the masked ratio on
retrieval performance. As shown in Figure 4, high
masked ratio β has poor performance, because it
causes the discrepancy between the training graph
and the inference graph (the large β means a few
training queries used to construct graph in a train-
ing epoch). But it is also not necessary to set β
too small, since it will bring overhead for frequent
constructing graph without any performance im-
provement (the small β means a few queries used
to train which leads to more training epochs).

Efficiency We test the efficiency of our model on
a single NVIDIA Tesla A100 80GB GPU for the
NQ test set, and record the encoding time per docu-
ment and retrieval time per query (including query
encoding time), as shown in Table 4. Since we
need to additionally compute query-interactive pas-
sage embeddings via GNN, the document encoding
time is slightly longer than dual-encoder models.
Since query-interactive passage embeddings can
be pre-computed offline once obtained from GNN-
encoder , we only need to encode query. Therefore
we do not bring additional computation overhead
to online retrieval (same as dual-encoder models).
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5 CONCLUSION

In this paper, we introduced GNN-encoder for pas-
sage retrieval tasks and demonstrated its effective-
ness on MSMARCO, Natural Questions and Triv-
iaQA datasets. The existing dual-encoder archi-
tecture, although very efficient, ignores interac-
tion during passage (query) encoding due to its
independent architecture. Therefore we attempted
to fuse query (passage) information into passage
(query) representations via graph neural networks
and maintain online efficiency of the dual-encoder.
However, we may retrieve irrelevant passages for
queries by dual-encoder when constructing the
query-passage graph, which introduces noise in
information propagating. Hence we utilize GAT
layers and filter gate to reduce the noise, which
are proved necessary by our various experiments.
In the future, we will explore how to fuse more
interaction information into GNN structure.

Limitations

In this section, we will discuss the limitations of
our work, which we consider as two major points:
the requirement of more physical memory and uti-
lizing cache passage embeddings as passage node
features.

In both training and document encoding pro-
cess of GNN-encoder , we need cache passage
embeddings of Mde (m passage nodes) and em-
beddings of cross-encoder ((n × k + m + n)
edges), which should be calculated and stored in
advance. It means that we need to store at least
((n × k + 2m + n) × d) floating-point numbers,
where d is the dimension of BERT base. In prac-
tice, the number of passages m is often very large,
for example, the NQ dataset has about 20 million
passages. Feature compression may be a good so-
lution, but it may lead to performance drop.

As mentioned in Section 3.4, we utilize cache
passage embeddings of Mde as passage node fea-
tures to compute h̃qi in Eq.(6) instead of recomput-
ing them by passage encoder. It may be not the
best approach for joint training dual-encoder and
GNN, but it is a more practical way considering
efficiency and hardware resources. We have tried
to update cache passage embeddings, but it brings
very little improvement and increases convergence
difficulty.
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A Masked Graph Training Algorithm

Algorithm 1 is a more detailed and complete de-
scription of jointly training dual-encoder and GNN
by our proposed Masked Graph Training Algo-
rithm.

Algorithm 1 Masked Graph Training Algorithm

Require: Training queries Q; Passages P ; Dual-
encoder (EQ(·), EP (·)) initialized with Mde;
Cross-encoder Mce; Training data C.

1: Get cache passage embeddings: hpi = EP (pi),
and retrieve the top-k passages Pi for each
query qi by Mde to get edge set E .

2: Get edge features: hx−y = Mce(x, y) for each
edge e(x, y) in E .

3: for each epoch do
4: Split Q into Qg and Qt by masked ratio β.
5: Use node sets Qg ∪ P and their relevant

edges to construct graph G.
6: for each batch Qb ∈ Qt do
7: Get denoised positives and hard negatives

of Qb from C: Pb = P+
b ∪ P−

b .
8: Utilize query embeddings recomputed by

EQ(·) and cache passage embeddings as
node features and edge features to com-
pute h̃qi by Eq.(6) for each query which
has an edge with the passage in Pb.

9: Utilize embeddings recomputed by dual-
encoder as node features, h̃qi and edge
features to compute h′pi by Eq.(7∼10) for
each passage in Pb.

10: Utilize EQ(qi) and h′pi to compute simi-
larity and loss by Eq.(11) and Eq.(12).

11: Update parameters of dual-encoder
(EQ(·), EP (·)) and GNN.

12: end for
13: end for

B Case Study

We also analyze the reasons why GNN-encoder out-
performs RocketQAv2 by case study. As Table 5
shows, we display the example of the MSMARCO
top-1 retrieval results from our model which is
not retrieved by RocketQAv2 to further illustrate
how GNN integrates query information into pas-
sage embeddings effectively. We can observe that
the passage are too long to be retrieved by the dev
query, and we conclude the reasons as the fact that
the long passage embeddings contain too much in-
formation to be focused on the key information.
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# Dev Query Training Query Relevant Passage

1 how long do items
take that come from
china

how long does a
seller on ebay have
to ship

The main risks I have encountered is that it takes about 10
days to 2 weeks for things to arrive from China to the US
once they are mailed. eBay allows 30 days however. If a
seller ships quickly, your items will arrive quickly and all
will be well. However, be aware if your items do not arrive
within that time frame.

Table 5: The example of MSMARCO retrieval result from GNN-encoder . We select a dev query which our model
retrieves a positive passage at top-1 rank, and display a training query that have the same positive passage.

Datasest #q in train #q in dev #q in test #p

MSMARCO 502,939 6,980 6,837 8,841,823
NQ 79,168 8,757 3,610 21,015,324
TQA 78,785 8,837 11,313 21,015,324

Table 6: The statistics of datasets MSMARCO, NQ and
TQA. Here, #q and #p denote the number of query in
set and all passage.

Correspondingly, our model can incorporate the
training query information into relevant passage
embeddings, thus for a dev query that is similar
to the training query, it is easier to retrieve this
relevant passage. For example, the dev query in
Table 5 is similar to training query, so our model
can easily retrieve the relevant passage and rank it
at the first place.

C Data Statistics

Table 6 shows the statistics of datasests MS-
MARCO, NQ and TQA. Following DPR
(Karpukhin et al., 2020), we discard the queries
without golden passage for NQ and TQA.
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