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Abstract

Few-Shot Text Classification (FSTC) imitates
humans to learn a new text classifier efficiently
with only few examples, by leveraging prior
knowledge from historical tasks. However,
most prior works assume that all the tasks are
sampled from a single data source, which can-
not adapt to real-world scenarios where tasks
are heterogeneous and lie in different distribu-
tions. As such, existing methods may suffer
from their globally knowledge-shared mech-
anisms to handle the task heterogeneity. On
the other hand, inherent task relation are not
explicitly captured, making task knowledge un-
organized and hard to transfer to new tasks.
Thus, we explore a new FSTC setting where
tasks can come from a diverse range of data
sources. To address the task heterogeneity, we
propose a self-supervised hierarchical task clus-
tering (SS-HTC) method. SS-HTC not only
customizes cluster-specific knowledge by dy-
namically organizing heterogeneous tasks into
different clusters in hierarchical levels but also
disentangles underlying relations between tasks
to improve the interpretability. Extensive exper-
iments on five public FSTC benchmark datasets
demonstrate the effectiveness of SS-HTC.

1 Introduction

Recent advances in deep learning highly rely on
massive human annotations. This reliance in-
creases the burden of data collection and mean-
while hinders its potentials to the low-data regime,
where the labeled data is scarce and difficult to ob-
tain. Inspired by human beings’ capabilities that
can quickly learn with a few examples, Few-Shot
Learning (FSL) (Vinyals et al., 2016; Finn et al.,
2017), which aims to learn a classifier that gener-
alizes well even with a few training instances per
class, has recently attracted much attention.
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Figure 1: Comparison of existing FSTC formulation
and our proposed practical problem setting.

In the NLP domain, Few-Shot Text Classifica-
tion (FSTC) (Han et al., 2018) has been actively
investigated in data-sparsity scenarios, e.g., rela-
tion classification (Han et al., 2018), event clas-
sification (Deng et al., 2020), and intent classi-
fication (Zhang et al., 2021), where new cate-
gories such as relations, events, or intent types
tend to emerge frequently and lack sufficient an-
notations. Meta-learning (a.k.a. learning to learn)
approaches (Finn et al., 2017), which transfer prior
knowledge from previous tasks to improve the ef-
fectiveness in learning new tasks, have achieved
superior performance for FSTC (Gao et al., 2019a;
Sun et al., 2019; Bao et al., 2020). The prior knowl-
edge can be instantiated as a transferable metric
space for retrieving nearest prototypes in (Gao
et al., 2019a; Sun et al., 2019), dynamic capsules
in (Geng et al., 2019), and distributional signatures
in (Bao et al., 2020), etc.

Despite their early success, such approaches
have two main drawbacks: (1) they assume that
all previous tasks are sampled from a single data
source or domain, leading to tasks with low inter-
task variance. As a consequence, these methods
globally share the prior knowledge across all tasks
but fail to handle real-world applications where
the historical tasks that potentially contribute may
come from diverse data sources in different distri-
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butions (a.k.a. task heterogeneity (Vuorio et al.,
2018)). For example, the knowledge learned from
categorizing different types of products or services
may be hardly transferred to classify public com-
ments or opinions among different topics, or to
determine users’ intent in dialogues with chatbot
services, with only limited labeled data; (2) han-
dling heterogeneous tasks for the better general-
ization ability exactly requires reliable knowledge
organization, which highly relies on disentangling
underlying task relations that are ignored by prior
works. Motivated by those, we study a new FSTC
setting where tasks come from a diverse range of
data sources with possibly different data distribu-
tions as shown in Figure 1. To embrace the skills
learned from multiple task sources to improve the
generalization ability, we propose a novel meta-
learning framework named Self-Supervised Hier-
archical Task Clustering (SS-HTC), which groups
tasks into different clusters based on inherent task
relations in multiple levels. When a new task ar-
rives, it can quickly take advantage of the historical
knowledge learned within the cluster it belongs to.

Specifically, learning a superior task embedding
is the cornerstone to disentangle underlying rela-
tions among tasks and group them into different
clusters. However, a FSL task is hard to represent,
as labeled training data in each FSL task are insuf-
ficient. To tackle this issue, we propose a label-
oriented masked language modeling to recover the
corresponding label texts using each training sam-
ple itself from the task. Such a self-supervised man-
ner, considering informative label text semantics,
encourages the model to generate more discrimi-
native task embedding to discover reasonable task
relationships even with limited label information.

After that, each task embedding is passed to a
hierarchical task tree to dynamically perform soft
task clustering in multiple levels, so that the knowl-
edge is shared among highly related tasks in the
same cluster but differentiated between different
clusters of tasks. Then, the updated task embed-
ding outputted by the task tree encodes the repre-
sentation of the cluster it belongs to. This cluster
representation is finally passed to modulate the
prior knowledge, a metric space for finding near-
est prototypes following (Snell et al., 2017), to be
cluster-specific. In a nutshell, SS-HTC not only
quickly accesses the most relevant cluster and tai-
lors the prior knowledge to address the challenge
of task heterogeneity, but also increases the model

interpretability by disentangling task correlations.
Empirically, extensive experiments on five public
FSTC benchmark datasets demonstrate that SS-
HTC significantly and consistently outperforms
state-of-the-art FSTC methods by a large margin.

Our contributions can be summarized as follows.
(1) A more realistic FSTC setting that allows di-
verse tasks with different distributions is investi-
gated; (2) A novel SS-HTC framework is proposed
to both tackle task heterogeneity and improve the
interpretability by hierarchical task clustering; (3)
Extensive experiments verify the effectiveness of
the proposed SS-HTC method.

2 Preliminaries

Few-shot learning (FSL) Considering a task T =
{S,Q} that contains the training set S and the test-
ing set Q, the objective of FSL is to learn a model G
for this task given only a few labeled samples in S .
Typically, FSL is characterized as a N -way K-shot
problem with S containing K labeled examples per
class for N classes, i.e., S={(xj

i , yi)}
N,K
i,j=1, where

xj
i is the j-th sample for the i-th class yi. Then

xQ denotes an unlabeled sample of Q belonging to
one of the N classes and ŷQ denotes the estimated
label of a model, i.e., G(S,xQ)→ ŷQ. In many
existing works on FSL, S and Q are also known as
the support set and query set, respectively.

Traditional deep learning models would severely
overfit on FSL tasks since only a few labeled sam-
ples cannot accurately represent the true data distri-
bution, which will result in learning classifiers with
high variance and generalizing poorly to new data.
In order to solve the overfitting problem in FSL,
Vinyals et al. (2016) proposed an effective episodic
meta-learning strategy that learns a generic classi-
fier from diverse few-shot classification tasks and
then employs the classifier to a new task. The
purpose of episodic training is to mimic the real
testing environment where tasks contain insuffi-
cient support sets and unlabeled query sets. The
consistency between training and testing environ-
ments alleviates the shift gap and boosts the gener-
alization. Specifically, using the episodic strategy,
the whole process of meta-learning can be divided
into three parts: meta-training with training tasks
{T k

train}Ntrain
k=1 = {Sk,Qk}Ntrain

k=1 , meta-validation
with validation tasks {T k

val}Nval
k=1 = {Sk,Qk}Nval

k=1,
and meta-testing with testing tasks {T k

test}Ntest
k=1=

{Sk,Qk}Ntest
k=1. Note that for meta-training and

meta-validation tasks, the label for the query set
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is available to train the model G and to select best
hyper-parameters, respectively. In this way, meta-
learning algorithms are capable of adapting to new
tasks effectively even with a shortage of training
data for each new task.

2.1 Problem Formulation

Multi-source FSTC Prior works assume that
all the tasks are sampled from a single dataset D,
making the tasks lying in the same distribution. In
this way, we usually split D into three parts: Dtrain,
Ddev, and Dtest in terms of class splits. Each part
has a specific label space and disjoints with other
parts. For each training episode, we first sample a
label set C with N classes from Dtrain, and then use
C to sample a task T k

train containing the support set
S and the query set Q. Finally, we feed S and Q
to the model and minimize the loss.

This assumption restricts the task diversity and
degrades the model’s out-of-distribution generaliza-
tion. To resolve it, we assume that the tasks can be
sampled from M diverse datasets {D1, . . . , DM}
with possibly different distributions. For each
dataset Dm, we use the same strategy to split Dm

into the training, validation, and testing parts. And
we sample the meta-training, meta-validation, and
meta-testing tasks based on the corresponding parts
of all the datasets. That is, we sample {Ttrain} from
{D1

train∪D2
train∪...DM

train}, while each task is sam-
pled to consist of only classes from a single dataset.

3 Method

SS-HTC aims to handle the task heterogeneity by
automatically organizing tasks into a hierarchical
task structure that explicitly tailors the transferable
knowledge to different task clusters.The overall
framework of SS-HTC is illustrated in Figure 2.

SS-HTC mainly consists of three components:

• Prototypical network (ProtoNet) (Snell
et al., 2017) is an advanced metric-based
model, which learns to predict by compar-
ing the distance between the labeled support
and unlabeled query sets. We choose it as the
building block (Base Model) since it is com-
putationally efficient and simple. More impor-
tantly, our framework is general and can be
easily compatible with any other metric-based
models, e.g., Matching Network (Vinyals
et al., 2016) and Signature (Bao et al., 2020).

• Label-Oriented Mask Language Modeling

(LOMLM) is a self-supervised learning ob-
jective to automatically learn the task embed-
ding of each few-shot task T by considering
informative label text semantics. LOMLM en-
courages the model to generate discriminative
task embeddings, which are the prerequisite
to identify underlying task relationships for
knowledge organization and reuse.

• Hierarchical Task Clustering (HTC) can
automatically group task knowledge into a hi-
erarchical clustering tree, by softly assigning
highly correlated tasks into the same cluster,
while keeping irrelevant tasks apart. When a
new task arrives, it can leverage the histori-
cal knowledge within the clusters it belongs
to customize a cluster-specific metric for the
prototypical network.

3.1 Prototypical Network
The prototypical network (Snell et al., 2017) is
a simple yet effective metric-based method that
learns to predict the label of a query sample xQ by
comparing its distance with each class prototype
vector. Specifically, given a N -way K-shot task
T defined in Section 2, we use a prototype vector
pi as the representative feature of each class yi,
where pi is the average of all the embedded sup-
port samples {xj

i}Kj=1 that belong to class yi, i.e.,
pi=

1
K

∑K
j=1 fθ(x

j
i ), where fθ(x) denotes the em-

bedding of a sample. Here, we use the pre-trained
language model BERT (Devlin et al., 2019) as the
powerful encoder fθ. Then the probability distri-
bution over the N classes for the query sample xQ

can be calculated via a softmax function over dis-
tances between all the prototype vectors and the
embedding for xQ as

ŷQ=
exp(−d(fθ(x

Q),pi))∑N
i′=1 exp(−d(fθ(xQ),pi′))

, (1)

where d(·, ·) denotes the Euclidean distance. The
training objective is to minimize the N -way cross-
entropy loss ℓ for all the query samples in the query
set Q for each meta-training task as

Lcls=
∑

Q
ℓ(yQ, ŷQ).

However, the prototypical network relies on a glob-
ally shared metric (d, fθ), which may lack the abil-
ity to handle heterogeneous tasks lying in different
distributions. Thus, the proposed SS-HTC method
uses it as the base model and aims to improve it
with the cluster-specific metric to tackle the task
heterogeneity problem.
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Figure 2: The SS-HTC framework with a 3-way 1-shot classification task (i.e., crime, arts, book).

3.2 Label-Oriented Mask Language Modeling

Learning a superior task embedding is the prereq-
uisite to capture underlying correlations between
tasks. On the one hand, prior works rely on learn-
ing intermediate hidden representations and then
aggregate hidden representations of all the training
samples as the task embedding (Zamir et al., 2018).
This may be infeasible in the few-shot regime since
the labeled training data S (i.e., N ×K examples)
of each few-shot task T are insufficient. On the
other hand, existing methods for FSTC (Gao et al.,
2019a; Geng et al., 2019; Sun et al., 2019; Bao
et al., 2020) only treat each task as a simple N -way
classification by mapping informative class label
names of each task into indices {0, 1, ..., N−1}.
As such, the model can only focus on discriminat-
ing among classes instead of realizing what cate-
gories to be classified. Thus, each task is actually
underrepresented due to ignoring label semantics.

Inspired by those, we propose a Label-Oriented
Mask Language Modeling (LOMLM) that exploits
underused label semantics to enhance the task rep-
resentation learning. The LOMLM uses the same
denoising auto-encoding (Devlin et al., 2019) from
BERT as the self-supervised learning objective.
Specifically, we augment each support text sample
xj
i with the label name tokens x̃i of its correspond-

ing class yi (e.g., x̃i is “musical instruments” for
the class yi=0). We denote the augmented support
sample as [xj

i ; x̃i]. Then we mask each token in

the label name with a special symbol [MASK], and
use the remaining tokens to recover them.1

Let the masked tokens {[MASK]t}
T=|x̃i|
t=1 be ui.

Then, the training objective of LOMLM is to recon-
struct [xj

i ; x̃i] from [xj
i ;ui] over all support sam-

ples by minimizing Llomlm, which is formulated as

Llomlm=−
N∑

i=1

K∑

j=1

logP ([xj
i ; x̃i]|[xj

i ;ui]).

Under the LOMLM supervision, we simply use
an average pooling to aggregate the embeddings
of all augmented support samples [xj

i ; x̃i] as the
representation of the task T by

gin = PoolN,K
i,j=1(fθ([x

j
i ; x̃i])). (2)

3.3 Hierarchical Task Clustering

To cluster tasks into different groups, where the
knowledge from similar historical tasks can be ac-
cumulated together and transferred to newly re-
lated tasks, we propose a hierarchical task cluster-
ing (HTC) to dynamically locate which cluster the
task belongs to. The hierarchical structure adopts
the top-down hierarchy design to imitate the prod-
uct taxonomy from coarse to fine granularity (e.g.,
the “electronics” category has more specific sub-
categories such as “laptop”, “phone”, and “TV”).
Given complex dependencies among tasks, hierar-
chical levels of task clusters are more sufficient to

1We explain no information leakage in Appendix A.1.
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capture real-world task relations than the flat clus-
tering (Kim and Xing, 2010). This allows the task
organization and reuse in a coarse-to-fine manner,
which can better disentangle inherent task relations
such that transferable knowledge among tasks can
be maximally leveraged.

In the hierarchical cluster tree, each task T is
soft-assigned into the clusters in each level to en-
courage less information loss compared with the
hard assignment and allow SS-HTC to be trained in
an end-to-end manner. Specifically, the assignment
score for the next level is a function of the task
embedding at the current level. For example, we
assign the task embedding g

(l)
o in the o-th cluster of

the (l)-th level to the o′-th cluster of the (l+1)-th
level with the probability po

′(l+1)

o(l)
, which is com-

puted by applying the softmax function over Eu-
clidean distances between g

(l)
o and all the (l+1)-th

level cluster centers {c(l+1)
o′ }O(l+1)

o′=1

po
′(l+1)

o(l)
=

exp(−||g(l)
o − c

(l+1)
o′ ||22/2σ2)

∑O(l+1)

o′=1 exp(−||g(l)
o − c

(l+1)
o′ ||22/2σ2)

,

where σ2 is a scaling factor to control the distance
between tasks and clusters and O(l+1) denotes the
number of clusters in the (l+1)-th level. Then, the
task embedding g

(l+1)
o′ of the o′-th cluster in the

(l+1)-th level can be calculated by the weighted
sum of all the task embeddings in the previous l-th
level as

g
(l+1)
o′ =

O(l)∑

o=1

po
′(l+1)

o(l)
tanh(W(l+1)

o′ g(l)
o + b(l+1)

o′ ),

where W(l+1)
o′ and b(l+1)

o′ are learnable parameters.
The full pipeline of HTC starts from l=0 and O(l)

= 1, where the initialization for g(0)
1 is the input

task embedding gin defined in Eq. (2), and ends
at O(L) = 1. The output embedding gout = g

(L)
1

from the tree encrypts the cluster-specific historical
knowledge that can be transferred to the input task.
Note that we provide more details for the working
mechanism of HTC in our Appendix A.2.
Cluster-specific feature transformation After
obtaining the cluster-specific knowledge gout from
the tree that is highly correlative and transferable to
the task, we concatenate the input and output task
embeddings for the tree as the final task embedding,
i.e., gT = gin ⊕ gout. The task embedding gT is
used to learn the cluster-specific feature transforma-
tion v(·|γ,β) for the augmented support samples
and query samples, which consists of two factors

γ and β both derived from gT as

γ = ρ(WγgT + bγ),

β = ρ(WβgT + bβ),

where ρ denote the ReLU function. γ and β
are learnable scaling and shift parameters of the
feature-wise transformation, which can dynami-
cally adjust feature representations to be more dis-
criminative based on the cluster-specific task em-
beddings such that it can well adapt to diverse task
distributions. Recall that fθ(x) is the BERT rep-
resentation of a sample x, where x can be an aug-
mented support sample [xj

i ; x̃i] or a query sample
xQ. For simplicity, let h = fθ(x), then the two
factors will make a residual affine transformation
v(·|γ,β) on h as

v(h|γ,β) = ρ((1+ γ)⊙ h+ β) + h,

where ⊙ is the element-wise multiplication.
With the aid of the proposed SS-HTC, we will
use the cluster-specific transformed embeddings
v(fθ(x)|γ,β) instead of the BERT feature embed-
ding fθ(x) for the inference of the prototypical
network as defined in Eq. (1).

3.4 Joint Training

We combine each component loss into an overall
object function as

L = Lcls + λLlomlm,

where λ is a hyper-parameter to balance the clas-
sification loss and the LOMLM loss. The goal of
joint learning is to learn superior task embeddings
to guide the cluster-specific discriminative learning
for the ultimate few-shot text classification.

4 Experiments

4.1 Setup

Datasets We evaluate SS-HTC on five FSTC
benchmark datasets: Amazon Product Review (He
and McAuley, 2016), 20 Newsgroups (Lang, 1995),
HuffPost (Misra, 2018), Reuters (Lewis, 1997),
and RCV1 (Lewis et al., 2004). Following (Bao
et al., 2020), we use the same class splits to divide
each dataset into meta-training, meta-validation
and meta-testing parts, from which N -way K-shot
tasks are randomly sampled.
Setting In experiments, tasks can be sampled
from multiple diverse datasets. Thus, all models are
trained and evaluated on the combination of the five
aforementioned benchmark datasets instead of each
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dataset separately. Following prior works on FSTC,
the classification accuracy is used as the evaluation
metric as each task is under the few-shot learning
setting and has no data imbalance issue. Moreover,
we use the average accuracy on randomly sampled
1, 000 meta-testing tasks for each dataset as the
final results to avoid the problem of randomness.
All the experiments repeat 3 times and average
results over 3 runs are reported.
Baselines For a fair comparison, we use the
BERT as the base encoder for all baselines.
• Supervised learning. BERT (FT) (Chen et al.,
2019) trains a BERT with a generic N -way classi-
fier on all meta-training tasks and finetunes it on
the support set and evaluate it on the query set of
each meta-testing task independently.
• Gradient-based meta-learning methods aim
to learn a well-generalized model initialization
that can be adapted to new tasks within a few
optimization steps. (i) Reptile (Nichol et al.,
2018) is a fast first-order gradient approximation
of MAML which could be hardly optimized based
on BERT (Finn et al., 2017). (ii) PMAML (Zhang
et al., 2019) employs the masked language model
pretraining before using the first-order MAML.
• Metric-based meta-learning methods are to
learn an invariant metric space where classes can
be differentiated between each other. (i) Match-
Net (Vinyals et al., 2016) uses an attention-based
scheme where the cosine distance is used as the
metric. (ii) ProtoNet (Snell et al., 2017) learns
a metric space by minimizing the Euclidean dis-
tance between class prototype and query samples.
(iii) InductionNet (Geng et al., 2019) encapsulates
different classes by a dynamic routing induction
method. (iv) HybridAPN (Gao et al., 2019a) is a
hybrid attention prototypical network that exploits
a hybrid attention mechanism. (v) HierAPN (Sun
et al., 2019) is a hierarchical attention prototypical
network that designs a hierarchical attention mech-
anism. (vi) Signature (Bao et al., 2020) utilizes
the distributional statistics to implement the atten-
tion transfer between tasks. (vii) DEM (Ohashi
et al., 2021) introduces a difference extractor to
derive distinctive label representations with multi-
task learning based on ProtoNet.

4.2 Implementation details

Environment Our proposed SS-HTC model and
baseline methods are implemented in TensorFlow
2.4.0 with CUDA 10.1, using Python 3.7.0 from

Anaconda 4.9.2. All the models are trained/tested
on a single TESLA V100-PCIE 32GB GPU with
Linux system.
Encoder We use the BERT-base model: bert-
base-uncased (Wolf et al., 2019) model as the en-
coder, which has 12 layers, 768-dimensional hid-
den representations, 12 heads, and 110M param-
eters in total. We use the pooled representation
(i.e., averaged token embeddings) as the sentence
embedding since we have found that [CLS] embed-
ding performs very poorly, even worse than CNN
encoders under the few-shot setting. The BERT is
jointly optimized with other parameters during the
training stage.
Initialization & Training For all the experi-
ments, SS-HTC is optimized by the Adam algo-
rithm (Kingma and Ba, 2014) for training. The
maximal sentence length is 450. The weight ma-
trices are initialized with a uniform distribution
U(−0.01, 0.01). Gradients with the l2 norm larger
than 40 are normalized to be 40. To alleviate over-
fitting, we perform early stopping on the meta-
validation tasks.
Hyperparameter The hyper-parameters are
manually tuned on the average accuracy of the
10% randomly held-out meta-training sets. The ini-
tial learning rate is 10−5, which is tuned amongst
{10−6, 5× 10−6, 1×10−5, 5× 10−5}. The weight
λ for Llomlm is 0.1, which is tuned amongst {0.01,
0.03, 0.1, 0.3}. The scaling factor σ2 is 2.0. Due
to the limited GPU memory, we only feed one task
to SS-HTC for each step.

4.3 Main Results

K-Shot Evaluation. We present in Table 1 exper-
imental results in terms of different shots under
the setting of five ways/classes. Based on the re-
sults, we can observe: SS-HTC: SS-HTC signifi-
cantly and consistently outperforms all the baseline
methods on five datasets by a large margin (i.e.,
1-shot:+9.81%, 5-shot:+5.19% average accuracy)
over the best baselines (i.e., Signature and DEM).
• Supervised method: Even with powerful pre-
trained language models (PLMs) like BERT, the
supervised method BERT (FT) still performs very
poorly in the few-shot regime. This circumstance
has also been shown in prior studies (Yogatama
et al., 2019), which shows that PLMs highly rely
on sufficient fine-tuning data for downstream tasks.
• Gradient-based methods: As gradient-based
methods, Reptile and PMAML show inferior per-
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Model 20 News Amazon Huffpost Reuters RCV1 Avg
1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

Supervised learning
BERT (FT) 28.30 34.01 34.35 43.93 23.50 28.11 37.01 51.35 30.42 39.88 30.72 39.46

Gradient-based meta learning
Reptile 33.78 40.23 39.86 55.01 25.69 36.20 47.55 64.56 40.02 56.33 37.38 50.47

PMAML 34.46 40.25 38.41 53.69 26.18 35.44 46.57 65.13 38.99 57.70 36.92 50.44
Metric-based meta learning

MatchNet 38.03 40.42 39.26 34.02 33.16 58.02 54.27 38.16 40.61 42.44 41.07 42.61
InductionNet 41.35 43.52 46.36 43.18 38.09 42.32 69.12 66.92 46.04 50.84 48.19 49.36

ProtoNet 49.30 65.51 68.91 84.79 46.54 65.55 73.46 87.45 49.32 69.70 57.51 74.60
HybridAPN 48.56 57.80 68.92 77.25 44.39 53.19 80.21 88.42 55.95 66.52 59.61 68.64

HierAPN 52.88 57.66 66.35 75.64 41.87 51.62 80.28 92.58 54.83 61.54 59.24 67.81
Signature 52.48 66.20 66.64 84.44 45.32 63.20 83.52 93.20 53.58 69.20 60.31 75.25

DEM 49.88 57.93 54.96 73.56 52.34 69.66 87.27 95.21 58.18 76.07 60.53 74.49
SS-HTC 58.77† 69.24† 75.92† 86.84† 63.72† 71.88† 89.36† 95.98† 63.91† 78.24† 70.34† 80.44†

∆ (+6.29) (+3.04) (+8.65) (+2.40) (+11.38) (+2.22) (+2.09) (+0.77) (+5.73) (+2.17) (+9.81) (+5.19)

Table 1: Main results: 5-way K-shot evaluation. ∆ refers to the improvements over the best baseline. † means the
statistically significant improvement with paired sample t-test with p-value < 0.01.

formance to metric-based baselines in FSTC. This
phenomenon has also been observed in recent
FSTC works (Gao et al., 2019a; Bao et al., 2020).
The gradient-based methods mainly focus on low-
noise vision tasks, which makes them hard to di-
rectly deal with diverse and noisy text data in FSTC
tasks, especially for our setting that tasks are com-
ing from multiple resources with large diversity.
• Metric-based methods: (i) Compared with
gradient-based methods, most metric-based base-
lines can generally obtain better results for FSTC.
(ii) Recent proposed text-specific metric-based
methods like HybridAPN and HierAPN have better
performance than their base model - ProtoNet when
tasks are all sampled from a single dataset (Gao
et al., 2019a; Sun et al., 2019). However, when
tasks are heterogeneous from diverse datasets in
our setting, they do not outperform ProtoNet. This
indicates that their sophisticated metric designs
may not be able to handle the task heterogeneity
due to the global knowledge-sharing strategies used.
(iii) SS-HTC can outperform those metric-based
baselines. This is because that SS-HTC can cus-
tomize the transferable knowledge to be cluster-
specific and preserve knowledge generalization
among highly related tasks by taking advantage
of the dynamic task clustering.
N -way Evaluation. We present in Figure 3 the
results in terms of different ways with a fixed num-
ber of shots. We report the average accuracy across
all the five datasets with N=2, 3, ..., 7. Generally,
as the number of ways increases, the performance
degrades as the FSTC tasks become more diffi-
cult. We can observe that SS-HTC performs better
than other baselines and that the gap among them
becomes larger as the number of ways increases.
This indicates the proposed SS-HTC method is less

sensitive to the difficulty of the FSTC task by lever-
aging the knowledge from the most similar tasks
based on hierarchical task clustering.

4.4 Ablation Study

To verify the efficacy of each component, we pro-
gressively incorporate the hierarchical task clus-
tering (HTC) and label-oriented masked language
modeling (LOMLM) into the base model (i.e., Pro-
toNet). We present the ablation results in Table 2.
• w/ HTC v.s. w/o HTC: For ProtoNet+HTC, we
use the proposed HTC method to dynamically or-
ganize tasks into hierarchical clusters, where the
knowledge from similar tasks can be accumulated
together. As such, each new incoming task can
leverage the transferable knowledge within the clus-
ter it belongs to and customize the cluster-specific
metric for few-shot learning. We observe HTC can
bring a significant gain (i.e., 2.45%) over ProtoNet
in terms of the average accuracy. This shows the ef-
fectiveness of HTC to handle heterogeneous tasks
lying in different distributions.
• w/ LOMLM v.s. w/o LOMLM: For Pro-
toNet+HTC, we simply average embeddings of all
support samples and their corresponding label texts
as the embedding of a task without any supervision.
Thus, this task embedding could be underrepre-
sented. By incorporating the LOMLM, the task
embedding is enhanced to be more label-aware to
discriminate among classes. According to Table 2,
we observe that adding LOMLM can achieve an
additional 6.88% gain in terms of the average ac-
curacy, which is a very large improvement over
ProtoNet+HTC. This implies that a superior task
embedding is critical to better disentangling task
relations and customize the cluster-specific metric.
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Figure 3: Main results: Average performance for N -way evaluation with the fixed numbers of shots.

Model 1-shot 5-shot Avg Gain
ProtoNet 57.51 74.60 66.06 -
ProtoNet+HTC 60.98 76.04 68.51 + 2.45
ProtoNet+LOMLM+HTC
- a.k.a SS-HTC 70.34 80.44 75.39 +6.88

Table 2: Average results for 5-way classification.

4.5 The Effect of Tree Structure

We further study the effect of tree structure to the
performance. We vary the tree structure and record
the results in Table 3. From the results, we can
observe that the proposed hierarchical clustering
shows the superiority over the flat task clustering.
For the hierarchical clustering, we can see that
too few clusters may be insufficient to learn the
task clustering characteristic (e.g., the case (2,2,1)).
When we increase the number of clusters, SS-HTC
can achieve better results (e.g., case (5,3,1)) until
reaching a stable status (e.g., case (5,5,1)). This
indicates that more clusters introduce more param-
eters and may result in the overfitting problem.

Num. of Clu. 1-shot 5-shot Avg
Flat clustering

(5,1) 68.18 79.12 73.65
(15,1) 68.41 79.41 73.91

Hierarchical clustering
(2,2,1) 68.14 79.20 73.67
(3,2,1) 68.03 79.51 73.77
(5,3,1) 70.34 80.44 75.39
(5,4,1) 70.12 80.18 75.15
(5,5,1) 70.30 80.38 75.34

Table 3: Comparison among different cluster #. (·, ·, ·)
denotes the cluster # from the bottom to the top layer.
Average accuracy for 5-way classification is reported.

4.6 Visualization of Hierarchical Task Tree

To demonstrate that the proposed SS-HTC method
can automatically disentangle the underlying task
relationship, we visualize the SS-HTC with clus-

ter structure (5, 3, 1) for tasks from each dataset.
Specifically, we first select 1,000 5-way 1-shot
tasks randomly from each dataset and show their
averaged soft-assignments of clusters (C1, C2, C3,
C4, C5) in the first layer. As illustrated in the left
subfigure in Figure 4 where a darker color means a
higher probability, we can see that different datasets
mainly activate different clusters: Reuters→C2,
Amazon→C3, RCV1→C4, and 20News→C1. Par-
ticularly, Huffpost activates both C2 and C4, which
indicates that the Huffpost and Reuters datasets
may have a large overlap. By checking the classes
sets of both datasets, we have found that sev-
eral classes in the two datasets are highly-related
(e.g., Huffpost: “taste” and “word news”, Reuters:
“sugar” and “wholesale price Iindex”).

Besides, we also explore the activated task clus-
ters (A, B, C) in the second layer which further
accumulates the transferable knowledge among
tasks from different datasets. We observe tasks
from different datasets that have similar classes
are highly aggregated into the same cluster. Mean-
while, tasks from the same dataset that contains
different classes can activate different clusters. For
example, in the #1 case of Figure 4 Right, a 5-
way task from 20News with the class set {“alt
atheism”, “soc religion christian”, “talk politics
guns”, “talk politics misc”, “talk religion misc”}
and a 5-way task from RCV1 with the class set
"{“religion”, “equity markets”, “domestic politics”,
“interbank markets”, “money markets”}" both acti-
vate the first cluster A, since the two tasks are all
related to religion and politics. Similarly, in the
#2 case, a 5-way task from 20News with the class
set {“books”, “clothing shoes jewelry”, “electron-
ics”, “musical instruments”, “tools home improve-
ment”} and a 5-way task from Huffpost with the
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Figure 4: Left: visualization of average soft-assignment po
′(l+1)

o(l)
of 1000 random tasks for each dataset. Right:

hierarchical structure learned from different tasks. The most activated cluster is marked in yellow.

class set {“arts culture”, “good news”, “environ-
ment”, “tech”, “style”} both activate the second
cluster B because they are all about culture and
life-related stuffs. In the #3 case, a 5-way task
from Amazon with the class set {“Books”, “kindle
store”, “movies tv”, “office products”, “tools home
improvement”"} and a 5-way task from RCV1 with
the class set {“economics”, “government finance”,
“management”, “performance”, “share listings”}
are both assigned to the third cluster C as they both
concern the economy and education. Those qual-
itative results indicate that the proposed SS-HTC
model can capture the latent relations between di-
verse tasks to improve the model interpretability.

5 Related Work

Meta-Learning Inspired by human beings’ abil-
ity to transfer knowledge from previous experi-
ences (Pan and Yang, 2009; Li et al., 2017, 2018,
2019b,a), meta-learning (Vinyals et al., 2016; Finn
et al., 2017) has become the mainstream paradigm
to resolve few-shot learning problems. Prior stud-
ies mainly focus on low-noise vision tasks (Snell
et al., 2017; Sung et al., 2018; Nichol et al., 2018;
Oreshkin et al., 2018; Liu et al., 2019). Re-
cently, those techniques have been initiated to low-
resource NLP problems such as few-shot text clas-
sification (Yu et al., 2018; Wu et al., 2019; Geng
et al., 2019; Sun et al., 2019; Geng et al., 2020;
Bao et al., 2020; Wang et al., 2021; Ohashi et al.,
2021), relation classification (Han et al., 2018; Gao
et al., 2019a; Obamuyide and Vlachos, 2019; Gao
et al., 2019b), machine translation (Gu et al., 2018),
knowledge graph completion (Huang et al., 2022;
Wang et al., 2022), and natural language under-
standing (Dou et al., 2019; Bansal et al., 2020a,b;
Li et al., 2021) with minimal supervision. Different
from them that globally share the prior knowledge

across homogeneous tasks within a single source,
SS-HTC can embrace the skills learned from mul-
tiple heterogeneous sources to improve the out-
of-distribution robustness More importantly, they
neglect underlying task relations in the low-data
regime, which is imperative to automatically orga-
nize knowledge from heterogeneous tasks.
Label-aware Modeling To alleviate data
scarcity, label-aware methods are recently inves-
tigated (Yin et al., 2019; Puri and Catanzaro, 2019;
Meng et al., 2020; Halder et al., 2020) to incorpo-
rate label semantics into text representation learn-
ing. Yin et al. (Yin et al., 2019) incorporate la-
bel texts into text samples and convert the text
classification into a text entailment task. Yu et
al. (Meng et al., 2020) propose the category vocab-
ulary, which can be good label supplements for our
LOMLM to enrich the label semantics in the future
work. However, those methods are less investigated
in task adaptation for FSTC. More importantly, our
ultimate goal aims to leverage label information to
enhance few-shot task representations for discov-
ering and disentangling inherent and complicated
task correlations. This can facilitate the knowledge
organization and handle heterogeneous new tasks
as well as improving the model interpretability.

6 Conclusion

In this paper, we propose the self-supervised hier-
archical task clustering (SS-HTC) method to tackle
the task heterogeneity for FSTC by dynamically or-
ganizing the tasks into hierarchical clusters and cus-
tomize the cluster-specific knowledge. Extensive
experiments on various FSTC benchmark datasets
quantitatively and qualitatively demonstrate the ef-
fectiveness of SS-HTC. In the future, the proposed
SS-HTC can be potentially generalized to the mul-
tilingual few-shot setting (Hu et al., 2020).

5244



7 Limitations

Although we introduce a more realistic and practi-
cal problem setting for few-shot learning and verify
the proposed SS-HTC method on extensive exper-
iments, there are still some future directions that
need further investigation and exploration. Firstly,
our proposed setting is supposed to generalize to
more heterogeneous NLP tasks under the few-shot
regime instead of restricting to text classification.
Secondly, how to dynamically adapt the task orga-
nization structures like humans in terms of input
tasks is still underexploited. We view our works
as the start point and will further explore those
interesting problems in the future work.
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A Clarification

In this section, we give more clarification regarding
the details of problem setting, framework as well
as hierarchical task clustering.

The proposed SS-HTC framework exactly
comes from the collective power of self-supervised
LOMLM and HTC. By this means, SS-HTC bal-
ances between globally shared meta-knowledge
and cluster-specific meta-knowledge, where the
transferable knowledge can be adapted to differ-
ent clusters of tasks, while it is still shared among
highly correlated tasks within the same cluster.

A.1 No Information leakage claim
There is no information leakage for the pro-
posed Label-Oriented Mask Language Modeling
(LOMLM) module. We only utilize masked label
tokens for support samples (training set) instead of
query samples (testing set) in each task. For meta-
learning, the final performance evaluation is based
on query samples of each meta-testing task that has
disjoint classes with all meta-training tasks.

A.2 Hierarchical Task Clustering
The characteristics of HTC can be summarized
as two aspects: (1) the hierarchical task clusters
{c(l)o }O(l)

o=1 in each (l)-th level of the tree are learn-
able and randomly initialized, which are shared
by all tasks. We only need to feed each task em-
bedding into the tree, automatically obtain the soft
assignment to each cluster, and output the cluster-
specific historical knowledge used for the proto-
typical network. The structure of the hierarchical
tree is predefined since we found that jointly learn-
ing with additional structures can bring more chal-
lenges into the optimization. Despite that, the clus-
ter representations and their connection weights are

jointly learned with other parameters in an online
manner to model complex task relationships; (2)
hierarchical clustering tree is optimized on the task
level instead of the class level, which can capture
more enriched task-specific information beyond
the class itself. We found this information is par-
ticularly useful to handle the diversity of few-shot
tasks, as our practical setting allows tasks to be
sampled from a diverse range of data sources with
possibly different data distributions.

B Baselines

We provide the available open source code for the
baseline methods we compare with, including:

• Supervised learning.

– BERT (FT) (Chen et al., 2019)2

• Gradient-based meta-learning

– Reptile (Nichol et al., 2018)3

– PMAML (Zhang et al., 2019)4

• Metric-based meta-learning

– MatchNet (Vinyals et al., 2016)5

– ProtoNet (Snell et al., 2017)6

– InductionNet (Geng et al., 2019)7

– HybridAPN (Gao et al., 2019a)8

– Signature (Bao et al., 2020)9

– DEM (Ohashi et al., 2021)10

For HierAPN (Sun et al., 2019), we reimplement
it according to the original paper since the source
code is not publicly available.

2https://github.com/wyharveychen/
CloserLookFewShot

3https://github.com/openai/supervised-reptile
4https://github.com/zxlzr/FewShotNLP
5https://github.com/gitabcworld/

MatchingNetworks
6https://github.com/jakesnell/

prototypical-networks
7https://github.com/YujiaBao/

Distributional-Signatures
8https://github.com/thunlp/HATT-Proto
9https://github.com/YujiaBao/

Distributional-Signatures
10https://github.com/21335732529sky/difference_

extractor
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