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Abstract

Weakly supervised text classification methods

typically train a deep neural classifier based on
pseudo-labels. The quality of pseudo-labels
is crucial to final performance but they are in-
evitably noisy due to their heuristic nature, so
selecting the correct ones has a huge poten-
tial for performance boost. One straightfor-
ward solution is to select samples based on
the softmax probability scores in the neural
classifier corresponding to their pseudo-labels.
However, we show through our experiments
that such solutions are ineffective and unstable
due to the erroneously high-confidence predic-
tions from poorly calibrated models. Recent
studies on the memorization effects of deep
neural models suggest that these models first
memorize training samples with clean labels
and then those with noisy labels. Inspired by
this observation, we propose a novel pseudo-
label selection method LOPS that takes learn-
ing order of samples into consideration. We
hypothesize that the learning order reflects the
probability of wrong annotation in terms of
ranking, and therefore, propose to select the
samples that are learnt earlier. LOPS can be
viewed as a strong performance-boost plug-in
to most existing weakly-supervised text clas-
sification methods, as confirmed in extensive
experiments on four real-world datasets.

1 Introduction

Weakly supervised text classification meth-
ods (Agichtein and Gravano, 2000; Riloff et al.,
2003; Tao et al., 2015; Meng et al., 2018; Mekala
and Shang, 2020; Mekala et al., 2020, 2021) typi-
cally start with generating pseudo-labels, and train
a deep neural classifier to learn the mapping be-
tween documents and classes. There is no doubt
that the quality of pseudo-labels plays a fundamen-
tal role in the final classification accuracy, how-
ever, they are inevitably noisy due to their heuristic
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Figure 1: Distributions of correct and wrong instances
using different pseudo-label selection strategies on the
NYT-Coarse dataset for its initial pseudo-labels. The
base classifier is BERT. (a) is based on the softmax
probability of samples’ pseudo-labels and (b) is based
on the earliest epochs at which samples are learnt.

nature. Pseudo-labels are typically generated by
some heuristic, for example, through string match-
ing between the documents and user-provided seed
words (Mekala and Shang, 2020). Deep neural net-
works (DNNs) trained on such noisy labels have a
high risk of making erroneous predictions. More
importantly, when self-training is employed, such
error can be further amplified upon boostrapping.

To address this problem, in this paper, we study
the pseudo-label selection in weakly supervised
text classification, aiming to select a high quality
subset of the pseudo-labeled documents (in every
iteration when using self-training) that can poten-
tially achieve a higher classification accuracy.

A straightforward solution is to first train a deep
neural classifier based on the pseudo-labeled doc-
uments and then threshold the documents by the
predicted probability scores corresponding to their
pseudo-labels. However, DNNs usually have a poor
calibration and generate overconfident predicted
probability scores (Guo et al., 2017). For exam-
ple, on New York Times (NYT) coarse-grained
dataset, as shown in Figure 1(a), 60% of wrong
instances in the pseudo-labeled documents have a
predicted probability by BERT greater than 0.9 for
their wrong pseudo-labels.

Recent studies on the memorization effects of
DNNss show that they memorize easy and clean in-

4894

Findings of the Association for Computational Linguistics: EMNLP 2022, pages 4894—-4908
December 7-11, 2022 ©2022 Association for Computational Linguistics



Input

Unlabeled Documents
Text Label

?

?

Text
+ Tampa bay won NFL championship
* He was banned by football

= “citizen kane” film music is composed by ... 7

)
)
]
)
H
ain
.

v
Label Surface Names Seed Words
(Football ) | Football | | NFL | oA\
L.
B
o

‘Weak Supervision Probing Classifier

Pseudo-labeled Documents

+ Tampa bay won NFL championship
= He was banned by football federation..

= “citizen kane” film music is composed by ..

Soccer
Music

Movie

Learning Order-based Label Selection

Self-training

Deep Neural Classifier

Label
Foothal |y = Bootstrap =
Soccer @
Music X

»
>

Train W
A
'
!

Tr

n

LOPS (Our proposed method) f‘
i
50%

A Text Label

Football [0 /28 |

~ * Tampa bay won NFL championship  Football
= He was banned by football federation.. ~Soccer

28 |
vz 28

Selected Pseudo-labeled Documents

Figure 2: An overview of our proposed LOPS and how it plugs into self-training frameworks to replace the conven-
tional training step. Given pseudo-labeled samples, LOPS trains a probing classifier to obtain their learning order
and we stop the training when at least 7% of samples corresponding to each class are learnt and select the learnt
samples. The numbers shown are learnt epochs and the samples in the shaded part are selected. A text classifier is
trained on selected pseudo-labeled documents that is further used for inference and bootstrapping.

stances first, and gradually learn hard instances and
eventually memorize the wrong annotations (Arpit
et al., 2017; Geifman et al., 2019; Zhang et al.,
2021). We have confirmed this in our experiments
for different classifiers. For example, as shown
in Figure 1(b), BERT classifier learns most of the
clean instances in the first epoch and learns wrong
instances across all epochs. Although it also learns
good number of wrong instances in the first epoch,
it is significantly less than the probability-based
selection in Figure 1(a). Therefore, we define the
learning order of a pseudo-labeled document as the
epoch when it is learnt during training i.e. when the
training model’s prediction is the same as its given
pseudo-label. Since correct samples are learnt first,
we hypothesize that learning order-based selection
will be able to filter out wrongly labeled samples.

Inspired by our observation, we propose a novel
learning order inspired pseudo-label selection
method LOPS, as shown in Figure 2. Specifi-
cally, LOPS involves training a probing classifier
on pseudo-labeled data and tracking the learning
order of samples. We define a sample is learnt if
and only if the classifier trained on pseudo-labels
gives the same argmax prediction as its pseudo-
label at the end of an epoch. We stop the training
when at least 7% of samples corresponding to each
class are learnt and select all the learnt samples.
Then, we train a text classifier on these selected
pseudo-labeled documents that is further used for
inference. We empirically show that LOPS can
boost the accuracy of various weakly supervised

text classification methods and it is much more
effective and stable than probability score-based
selections.

Our contributions are summarized as follows:
* We propose a novel pseudo-label selection
method LOPS that takes learning order of sam-
ples into consideration.
We show that selection based on learning order
is much stable and effective than selection based
on probability scores.
Extensive experiments and case studies on real-
world datasets with different classifiers and
weakly supervised text classification methods
demonstrate significant performance gains upon
using LOPS. It can be viewed as a solid
performance-boost plug-in for weak supervision.
Reproducibility. We will release the code and
datasets on Github'.

2 Related Work

Pseudo-Labels in Weakly Supervised Text Clas-
sification. Since the weakly supervised text clas-
sification methods lack gold annotations, pseudo-
labeling has been a common phenomenon to gener-
ate initial supervision. Pseudo-labeling depends on
the type of weak supervision. Mekala and Shang
(2020) and Mekala et al. (2020) have a few label-
indicative seed words as supervision and they gen-
erate pseudo-labels using string-matching where
a document is assigned a label whose aggregated
term frequency of seed words is maximum. (Meng

]https ://github.com/dheeraj7596/LOPS
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et al., 2018) generates pseudo-documents using the
seed information corresponding to a label. (Wang
et al., 2021) takes only label names as supervision
and generates class-oriented document representa-
tions, and cluster them to create a pseudo-training
set. Under the same scenario, (Mekala et al., 2021)
consider samples that exclusively contain the label
surface name as its respective weak supervision.
In (Karamanolakis et al., 2021b), pseudo-labels
are created from the predictions of a trained neural
network. (Arachie and Huang, 2021) combines
different weak signals to produce soft labels.

Label Selection. There are different lines of work
aiming to select true-labeled examples from a noisy
training set. One line of work involves training mul-
tiple networks to guide the learning process. Along
this direction, (Malach and Shalev-Shwartz, 2017)
maintains two DNNs and update them based on
their disagreement. (Jiang et al., 2018b) learns
another neural network that provides data-driven
curriculum. (Han et al., 2018; Yu et al., 2019)
use co-training where they select instances based
on small loss criteria and cross-train two networks
simultaneously. (Huang et al., 2019) considers
the training loss as the metric to filter out noise.
(Swayamdipta et al., 2020) uses model’s confi-
dence and its variability across epochs to identify
wrongly labeled samples. Another line of work
learns weights for the training data. Along this line,
(Ren et al., 2018) propose a meta-learning algo-
rithm that learns weights corresponding to training
examples based on their gradient directions. (Fang
et al., 2020) learns dynamic importance weight-
ing that iterates between weight estimation and
weighted classification. Recently, (Rizve et al.,
2021) propose utilizing uncertainty to perform la-
bel selection.

Training dynamics. In deep learning regime, mod-
els with large capacity are typically more robust to
outliers. Nevertheless, data examples can still ex-
hibit diverse levels of difficulties. Arpit et al. (2017)
finds that data examples are not learned equally
when injecting noisy data into training. Easy exam-
ples are often learned first. Hacohen et al. (2020)
further shows such order of learning examples is
shared by different random initializations and neu-
ral architectures. Toneva et al. (2019) shows that
certain examples are forgotten frequently during
training, which means that they can be first classi-
fied correctly, then incorrectly. Model performance
can be largely maintained when removing those

Table 1: Noise ratios of different pseudo-label heuris-
tics on NYT-Fine dataset.

Pseudo-label Heuristic Noise Ratio
vMF distribution modeling (Meng et al., 2018) 46.17%
String-Match (Mekala et al., 2020) 31.80%
Contextualized String-Match (Mekala and Shang, 2020) 31.24%
Exclusive String-Match (Mekala et al., 2021) 52.13%

Clustering (Wang et al., 2021) 15.64%

least forgettable examples from training.

3 Problem and Motivation

Weakly supervised classification refers to the
problem with inputs (1) a set of unlabeled text doc-
uments S = {x}, where x € X. (2) and M target
labels C = {1,..., M}. Our goal is to find a label-
ing function f : X — C that maps every document
z to its true label. Here we denote y™* as the un-
known true label of a document x. To cold start the
classification of unlabeled documents, a source of
weak supervision has to be introduced, which can
come from various sources such as label surface
names (Wang et al., 2021), label-indicative seed
words (Mekala and Shang, 2020), or rules (Kara-
manolakis et al., 2021a). Given a “weak” label-
ing function w : X — C, pseudo-labels are then
generated on a subset of the unlabeled documents,
which yields a labeled subset D = {(z,w(x))}.
For convenience, we denote D[ j] to be the set of
all documents that are pseudo-labeled as class j in
D, namely D[j] = {(z,w(z)) € D|w(x) = j}.
Pseudo-labels are noisy due to their heuristic
nature. For example, on the NYT fine-grained
dataset, we generate pseudo-labels using five dif-
ferent strategies (Meng et al., 2018; Mekala and
Shang, 2020; Mekala et al., 2020, 2021; Wang et al.,
2021) and compute their noise ratios. As expected,
no strategy is perfect and all of them generate noisy
labels, ranging from 15% to 50% (see Table 1).
When a classifier is trained on such noisy train-
ing data, it can make some high confident erro-
neous predictions. And, upon bootstrapping the
classifier on unlabeled data, it has a snowball effect
where such high confident erroneous predictions
are added to the training data, and thus corrupting
it more. As this process repeats for a few iterations,
it adds more noise and significantly affects the final
performance. Therefore, identifying and selecting
the correctly labeled samples is necessary and has
a huge potential for a boost in performance. Note
that, if the labels are not selected carefully, it could
instead hurt the performance.
Our pseudo-label selection problem. The weak
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supervision is likely to generate a noisy labeled
set, which means w(z) # y* for some docu-
ments z. We denote D, as the set of correctly
labeled documents and Dy = D \ D, as the
set of wrongly labeled documents, where D, =
{(z,w(z))|w(z) = y*}. The problem of pseudo-
label selection is thus to identify D /.

Note that pseudo-label selection is conceptually
related to failure prediction (Hecker et al., 2018;
Jiang et al., 2018a; Corbiere et al., 2019) and out-
of-distribution detection (Hendrycks and Gimpel,
2017; Devries and Taylor, 2018; Liang et al., 2018;
Lee et al., 2018). However, the major difference
here is for pseudo-label selection we have to detect
wrong annotations in the training phase instead of
inference phase.

4 Our LOPS Framework

In this section, we explain our framework LOPS
in detail. First, we give an overview of confidence
function-based pseudo-label selection and discuss
probability score as confidence function. Then,
we explain learning order as confidence function.
Finally, we show our algorithm that performs se-
lection based on learning order.

4.1 Overview: Confidence function-based
Pseudo-label Selection

In this section, we briefly introduce confidence
function and discuss commonly-used probability
score as confidence function.

Confidence function  : X x C — [0, 1], assigns
a value to each labeled document, which represents
our confidence of its pseudo-label being correct.
Then, we can perform the selection by choosing a
threshold ~ on confidence function. We denote the
set of labeled documents selected based on x and
~v as Dy (k,~), namely

D/(5,7) = {(z,w(x)) € D | r(z, w(x)) >~}

An optimal confidence function x* should be able
to perfectly distinguish the correctly labeled doc-
uments from wrongly labeled ones, namely there
exists a threshold v* such that D, (k*,7*) = D, .
Probability score as confidence function. One
commonly-used intuitive confidence function for
pseudo-label selection is the model’s prediction
probability scores corresponding to the pseudo-
labels. Probability scores have been used as con-
fidence functions to select samples for bootstrap-
ping (Meng et al., 2018, 2019; Mekala and Shang,

2020). Specifically, let f : X — [0,1]! be a
probabilistic classifier trained on pseudo-labeled
documents and f(x)[j] represents the predicted
probability of document x belonging to class j,
f(x)[w(z)] is used as the confidence function.
However, due to the poor calibration of DNNs (Guo
et al., 2017), probability scores of wrongly labeled
documents are usually high. As a result, it might
be difficult to distinguish correctly- and wrongly-
labeled documents based on probability scores.

4.2 LOPS: Learning Order as Confidence
Function

Learning order. Learning order of a pseudo-
labeled document is the epoch when it is learnt
during training, or more specifically when its label
predicted by the model matches its given pseudo-
label. Recent studies show that a DNN learns clean
samples first and then gradually memorizes the
noisy samples (Arpit et al., 2017). We thus hypoth-
esize that learning order can reflect the probability
of wrong pseudo-label in terms of ranking.

We now utilize learning order to define a confi-
dence function. Specifically, let f'(-) be the clas-
sifier being trained at epoch ¢, and 7" as the total
number of epochs, the learning order of document
x can be defined as

n(,w(@)) =1 - 7 mingt | argmaxt'(2)[5] = w(2)},

(€]
where t € {1,...,T}. Here we have negated and
scaled the learning order to be complied with the
convention of confidence function i.e. higher confi-
dence implies higher probability of a correct label.
We calculate the learning order at the granularity
of epoch because the model would have seen all
the training data by the end of an epoch, and hence,
the learning order computed would be fair for all
documents. In case when the epoch number is not
sufficient to distinguish the documents, one can
increase the granularity of the learning order, for
example, the batch number at which the document
is learnt. Granularity higher than the epoch incurs
extra training cost as a document will be examined
more than once in each epoch.

4.3 LOPS: Putting it all together

Motivated by previous analyses, we utilize learn-
ing order to select pseudo-labels. We train a prob-
ing classifier on all pseudo-labeled documents and
track their first learnt epoch during training. The
confidence function can then be calculated based
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Algorithm 1: LOPS Method

Input: A set of documents D pseudo-labeled by w,
Probing Classifier f.
Output: Selected documents 15/
for epocht =1,2,...,7 do
Train f on D
for (z,w(x)) € D do
if arg max; f(z)[j] = w(z) then
it |D, [w(@)]|/|Dlw(z)]| < 7%
then
D =D v (@)
if |D,[7]1/1D[7]| = 7% for all j then
| Break
Return D,

Algorithm 2: Self-training with LOPS

Input: Unlabeled data D, Classifier C', Weak
Supervision w.
Output: Prediction labels predLabs
D = Generate Pseudo-labels for D, w
for iteration it = 1,2,...,n,,, do
D,.; =LOPS (D, C)
Train C on D,;
predLabs, predProbs = Predict(C, D)
D=D U {z|predProbs(z) > §}
Return predLabs

on Equation (1). Finally, we rank the documents
based on their confidence and select the top-7% for
each label independently.

To maximize the efficiency of LOPS, we utilize
the fact that the top-ranked documents are learned
earlier, and conduct the confidence calculation and
pseudo-label selection simultaneously during train-
ing. Specifically, for each label, a document is se-
lected once it is learnt, until the fraction of selected
documents exceeds 7% in this label. Whenever
the fractions of selected documents exceeds 7%
for all labels, we stop the training. The pseudo-
code is shown in Algorithm 1. Note that LOPS
can be plugged to any self-training based weakly-
supervised classification framework as shown in
Algorithm 2.

5 Experiments

We evaluate our label selection method based on
end-to-end classification performance using differ-
ent state-of-the-art classifiers and weakly super-
vised text classification frameworks. And also, we
evaluate learning order as a confidence function
and provide a comparison with probability score as
confidence function.

Table 2: Dataset statistics.

Dataset #Docs #labels Noise Ratio(%)
NYT-Coarse 13,081 5 11.47
NYT-Fine 13,081 26 31.80
20News-Coarse 17,871 5 12.50
20News-Fine 17,871 17 25.67
AGNews 120,000 4 16.26
Books 33,594 8 37.32

5.1 Datasets

We experiment on four datasets: New York
Times (NYT), 20 Newsgroups (20News), AG-
News (Zhang et al.,, 2015), Books (Wan and
McAuley, 2018; Wan et al., 2019). NYT and
20News datasets also have fine-grained labels
which are also used for evaluation. Initial pseudo-
labels are generated using String-Match (Mekala
and Shang, 2020). The dataset statistics and corre-
sponding noise ratios of initial pseudo-labels are
provided in Table 2 and more details are provided
in Appendix A.1.

5.2 Compared Methods

We compare with several label selection methods

mentioned below:

* O2U-Net: (Huang et al., 2019) trains a classifier
cyclically to make its status transfer from over-
fitting to underfitting and records losses of each
sample. They consider the normalized loss as the
metric to filter out the noise.

e MC-Dropout: (Mukherjee and Awadallah,
2020) performs pseudo-label selection based on
uncertainty estimates computed using probability
scores.

e Entropy: is similar to MC-Dropout, however
uses entropy to compute uncertainty scores.

* Probability: We sort the prediction probabilities
corresponding to pseudo-labels in descending
order and select the same number of samples as
LOPS in each iteration of bootstrapping.

* Random: We randomly select the same number
of samples as LOPS in each iteration of boot-
strapping. To avoid skewed selection, we sample
in a stratified fashion based on class labels.

* Learning Stability (stability): (Dong et al.,
2021) introduced a metric to measure the data
quality based on the frequency of events that an
example is predicted correctly throughout the
training. We sort the samples based on learning
stability in descending order i.e. most stable to
least stable and select the same number of sam-
ples as LOPS in each iteration of bootstrapping.
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Table 3: Evaluation results on six datasets using different combinations of classifiers and pseudo-label selection
methods. Initial pseudo-labels are generated using String-Match. Micro- and Macro-F1 scores are used as evalua-
tion metrics. Each experiment is repeated with three random seeds, mean and their respective standard deviations
are presented in percentages. For a fair comparison, we consider the same number of samples for all baselines as
LOPS in each iteration. Abnormally high standard deviations are highlighted in blue and low performances are
highlighted in red. LOPS outperforming Standard is made bold and baselines performing better than our method
are made bold. Statistical significance results are in Appendix A.5.

Coarse-grained Datasets

Fine-grained Datasets

NYT-Coarse 20News-Coarse AGNews Books NYT-Fine 20News-Fine

Classifier ~ Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1
Standard ~ 90.1(0.17) 80.3(0.91) 77.3(0.27) 76.4(0.76) 75.4(0.64) 75.4(0.47) 55.7(0.54) 57.9(0.82) 77.2(0.36) 71.6(0.43) 70.0(0.30) 69.6(0.25)
LOPS 94.6(0.36) 88.4(0.50) 81.7(1.00) 80.7(0.43) 79.5(0.86) 79.5(0.58) 57.7(0.87) 59.5(0.46) 84.3(0.54) 81.6(0.34) 73.8(0.61) 72.7(1.00)
BERT MC-Dropout 89.3(0.41) 79.3(0.45) 80.7(0.17) 77.7(0.24) 75.8(0.34) 75.0(0.41) 55.1(0.15) 56.7(0.61) 72.1(0.74) 69.0(0.41) 68.0(0.21) 68.7(0.26)
Entropy  91.2(0.41) 83.1(0.47) 80.4(0.23) 78.0(0.54) 80.4(0.47) 80.0(0.42) 55.2(0.74) 56.7(0.42) 43.4(9.84) 18.1(6.98) 64.3(0.74) 63.6(0.83)
O2U-Net  92.9(0.41) 85.9(0.69) 80.9(0.28) 78.5(0.19) 79.8(0.47) 79.8(0.53) 55.8(0.27) 56.8(0.36) 14.7(10.24) 8.70(7.31) 71.1(0.36) 71.2(0.75)
Random  90.3(0.47) 80.9(0.47) 79.0(1.00) 76.8(1.50) 76.3(0.35) 76.3(0.65) 56.1(0.18) 58.2(0.35) 78.4(0.94) 71.7(0.47) 71.4(0.50) 70.6(1.00)
Probability  92.3(1.50) 85.1(2.00) 78.6(2.50) 77.5(3.00) 77.4(1.25) 77.6(1.34) 54.3(1.12) 56.5(1.43) 46.6(2.50) 22.3(0.50) 47.8(23.50) 47.9(23.50)
Stability ~ 93.3(0.50) 86.5(0.50) 76.7(5.00) 75.4(5.00) 79.3(0.75) 79.5(0.35) 55.0(0.43) 57.0(0.19) 48.1(29.50) 35.5(33.50) 73.5(0.50) 72.5(1.00)
OptimalFilter 98.3(0.27) 96.4(0.37) 94.7(0.37) 94.9(0.61) 89.4(0.46) 89.3(0.76) 76.2(0.21) 76.7(0.19) 97.4(0.71) 92.2(0.62) 87.6(0.37) 86.5(0.36)
Standard ~ 89.2(0.74) 80.1(0.64) 77.6(0.39) 75.4(0.68) 72.7(0.97) 72.4(0.53) 57.6(0.31) 58.7(0.46) 77.4(0.34) 71.3(0.75) 60.7(0.74) 66.5(0.61)
LOPS 89.5(0.17) 81.4(0.90) 82.5(0.50) 81.2(0.20) 77.7(0.57) 77.7(0.54) 58.5(0.65) 59.4(0.67) 80.7(0.22) 77.4(0.83) 70.6(0.31) 70.4(0.27)
XLNet MC-Dropout 88.5(0.41) 80.4(0.38) 77.1(0.28) 73.2(0.53) 74.7(0.71) 73.2(0.36) 56.4(0.41) 58.0(0.74) 74.9(0.96) 68.9(0.84) 66.9(0.45) 68.5(0.62)
Entropy  92.4(0.42) 85.4(0.51) 78.2(0.36) 74.4(0.45) 72.9(0.67) 72.0(0.51) 54.5(0.74) 56.6(0.65) 77.9(0.67) 70.7(0.38) 68.8(0.65) 69.5(0.74)
O2U-Net  92.2(0.37) 84.6(0.24) 80.5(0.93) 77.4(0.57) 71.6(0.69) 68.8(0.61) 58.1(0.17) 59.9(0.52) 79.6(0.47) 76.8(0.59) 67.2(0.64) 69.0(0.26)
Random  90.7(0.03) 80.5(0.51) 78.6(0.50) 75.4(1.00) 67.5(0.22) 67.4(0.63) 57.5(0.43) 58.3(0.45) 76.6(0.94) 72.7(0.70) 67.3(0.49) 67.2(0.32)
Probability  91.3(0.29) 83.4(0.50) 77.4(1.00) 75.2(0.30) 70.1(1.09) 70.4(1.14) 54.6(1.42) 56.3(1.26) 38.2(6.50) 36.5(1.00) 69.5(0.82) 69.2(0.12)
Stability ~ 91.4(1.00) 82.3(1.50) 79.7(1.50) 77.6(1.50) 74.3(1.10) 74.5(0.87) 56.3(0.88) 58.1(0.97) 79.5(0.50) 76.3(1.10) 68.5(0.49) 68.4(1.00)
OptimalFilter 98.3(0.12) 96.5(0.21) 94.5(0.23) 94.4(0.29) 89.3(0.28) 89.7(0.39) 76.4(0.44) 76.3(0.43) 97.4(0.32) 93.6(0.38) 86.6(0.43) 86.4(0.35)
Standard ~ 91.1(0.24) 82.3(0.28) 78.4(0.26) 76.3(0.38) 61.3(0.28) 61.2(0.43) 51.6(0.41) 53.3(0.37) 76.2(0.41) 69.5(0.38) 70.5(0.46) 70.4(0.38)
LOPS 95.2(0.49) 89.1(0.51) 82.5(0.57) 80.3(0.63) 75.7(0.52) 75.3(0.31) 56.8(0.89) 58.6(0.63) 80.4(0.09) 76.3(0.21) 70.6(0.76) 70.5(0.48)
GPT-2 MC-Dropout 89.2(0.14) 79.8(0.51) 80.2(0.63) 77.1(0.57) 65.5(0.34) 65.1(0.94) 49.5(0.74) 51.5(0.54) 74.1(0.62) 68.2(0.21) 70.4(0.47) 70.8(0.65)
Entropy  93.1(0.32) 85.9(0.36) 80.8(0.65) 77.9(0.84) 65.4(0.85) 65.3(0.54) 54.3(0.32) 55.5(0.47) 77.4(0.42) 75.3(0.65) 69.1(0.62) 69.6(0.21)
O2U-Net  93.8(0.89) 87.5(0.24) 81.2(0.76) 77.9(0.37) 72.0(0.38) 70.7(0.75) 55.1(0.27) 57.2(0.67) 80.2(0.41) 79.4(0.58) 70.3(0.24) 71.4(0.16)
Random  90.2(0.42) 80.2(0.56) 79.7(0.46) 78.4(0.32) 68.2(0.18) 68.1(0.19) 53.4(0.46) 55.3(0.42) 77.5(0.52) 70.4(1.02) 69.4(0.21) 69.3(0.29)
Probability  93.3(1.04) 85.5(1.13) 80.4(1.49) 78.5(1.50) 66.2(0.69) 66.6(0.89) 51.7(1.11) 54.5(1.09) 76.7(0.57) 71.3(0.69) 69.4(1.21) 69.3(1.18)
Stability ~ 94.4(0.56) 88.6(0.59) 81.4(1.02) 78.6(1.50) 72.4(0.58) 72.3(0.53) 53.6(1.02) 55.3(1.13) 79.4(0.62) 75.3(0.65) 70.6(0.68) 70.4(0.63)
OptimalFilter 98.3(0.24) 96.2(0.21) 94.2(0.23) 93.3(0.27) 88.7(0.26) 88.4(0.28) 72.3(0.19) 73.7(0.22) 97.3(0.18) 92.4(0.19) 86.1(0.35) 85.5(0.38)

To perform controlled experiments with a fair com-
parison, we consider the same number of samples
as LOPS in each iteration for all above baselines
because we cannot tune individual thresholds for
each dataset since there is no human-annotated data
under the weakly supervised setting and one fixed
threshold for all datasets doesn’t work as distribu-
tion of prediction probability varies across datasets.

We also present experimental results without any
label selection in addition to the probability thresh-
old § while bootstrapping (denoted by Standard)
as lower bound and with all the wrongly annotated
samples removed as OptimalFilter.

5.3 Experimental Settings

For all our experiments, we consider seed words
used in (Mekala and Shang, 2020; Wang et al.,
2021) as weak supervision and generate initial
pseudo-labels using String-Match (Mekala et al.,
2020) unless specified. The average number
of seeds are 4 per class. We experiment on
three state-of-the-art text classifiers: (1) BERT
(bert-base-uncased) (Devlin et al., 2019),
(2) XLNet (x1net-base-cased) (Yang et al.,

Table 4: Evaluation results of weakly supervised text
classification frameworks with LOPS. This demon-
strates that LOPS can be easily plugged in and im-
proves the performance.

NYT-Coarse NYT-Fine 20News-Coarse 20News-Fine ~ AGNews Books
Method Mi-F1 Ma-FI Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

ConWea

74.6
78.4

X-Class

61.1
62.3

WeSTClass

532 494
533 515

LOTClass

35.0
326

Standard
LOPS

93.1 872 874 774
942 901 875 78.6

74.3
79.7

68.7
70.4

68.7 734
706 79.2

734
79.2

523
575

52.6
58.7

Standard 96.3
LOPS  96.2

933
93.3

86.6
86.8

74.7
73.8

582
60.7

70.4
71.2

70.4
71.2

82.4
83.6

82.3
82.7

53.6
54.2

542
56.3

Standard 92.3
LOPS 934

86.0
88.1

67.1
68.4

60.4
63.8

54.9
61.1

54.9
60.5

80.4
814

80.1
81.3

49.7
51.2

48.1
49.8

Standard 70.1
LOPS  70.1

30.3
30.3

53
35

4.1
2.9

47.0
45.7

12.3
7.8

10.6
4.1

84.9
86.2

84.7
86.1

19.9
15.8

16.1
10.3

2019), and (3) GPT-2 (Radford et al., 2019). We
follow the same self-training method for all clas-
sifiers that starts with generating pseudo-labels,
training a classifier on pseudo-labeled data, and
bootstrap it on unlabelled data by adding samples
whose prediction probabilities are greater than J.
Following (Mekala and Shang, 2020), we assume
that weak supervision W is of reasonable quality
i.e. majority of pseudo-labels are good. Therefore,
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we set 7 to 50%. While training the classifiers, we
fine-tune BERT, XLLNet, GPT-2 for 4 epochs. We
bootstrap all the classifiers for 5 iterations with the
probability threshold § as 0.6. We also experiment
on state-of-the-art weakly supervised text classifica-
tion methods: ConWea (Mekala and Shang, 2020),
X-Class (Wang et al., 2021), WeSTClass (Meng
et al., 2018), and LOTClass (Meng et al., 2020).
Three of them are self-training-based methods and
more details are mentioned in Appendix A.2.

5.4 End-to-End Classification Performance

5.4.1 Results: Different Classifiers

We summarize the evaluation results with different
combinations of classifiers and selection methods
in Table 3. All experiments are run on three random
seeds and mean, standard deviations are reported.

As shown in Table 3, upon plugging our pro-
posed method LOPS, we observe a significant
boost in performance consistently over Standard
with all the classifiers. We observe that LOPS al-
ways outperforms random selection which shows
that the selection in LOPS is strategic and princi-
pled. LOPS performs better than probability and
stability based selection methods in most of the
cases. This shows that LOPS is very effective
in removing wrongly labeled and preserving cor-
rectly labeled samples. LOPS also performs bet-
ter than O2U-Net (Huang et al., 2019) and MC-
Dropout (Mukherjee and Awadallah, 2020) in most
of the datasets demonstrating the effectiveness of
learning order as confidence function.

We also observe a significant boost in perfor-
mance over Standard with all the classifiers in
the case of fine-grained datasets as well. In some
cases like BERT on NYT-Fine, the improvement
is as high as 7 points on micro-fl and 10 points
on macro-f1. We observe abnormally low perfor-
mances of probability and stability based selection
methods in some scenarios (highlighted in red).
This is because the number of noisy labels are more
in fine-grained datasets and gets amplified with self-
training and resulting in high noise. Moreover, we
also observe that probability and stability based
selections are biased towards majority labels and
select wrong majority labels over correct minority
labels. For example, the precision of pseudo-labels
belonging to minority classes like cosmos, gun con-
trol, and abortion in NYT-Fine before selection is
100% and it selected almost none of these whereas
it selected 700 wrong documents belonging to a ma-

jority labels like, international business. Although
stratified selection can be employed to address this
problem, this ends up having a same threshold and
selecting a fixed ratio of samples for every dataset,
which might not be optimal for every dataset.

We have to note unusually high standard de-
viation for probability and stability in some
cases (highlighted in blue). This demonstrates
that these selection methods are unstable. LOPS
is comparatively more stable and its effectiveness
is largely due to its invariance. Although these
methods outperform LOPS in a few cases, their un-
stable nature makes them unreliable. Therefore, we
believe LOPS is superior than compared methods.

5.4.2 Results: Different Weakly-Supervised
Text Classification Methods

We summarize the evaluation results with differ-
ent weakly supervised methods in Table 4. The
results demonstrate that LOPS improves the perfor-
mance of ConWea and WeSTClass significantly on
all datasets and X-Class sometimes. Note that, X-
Class sets a confidence threshold and selects only
top-50% instances, which provides a hidden ad-
vantage and LOPS improves the performance on
top of it for some datasets. We have to note the
significantly low performance of LOTClass. It is
observed that LOTClass requires a wide variety of
contexts of label surface names from the input cor-
pus to generate high quality category vocabulary,
which plays a key role in performance (Wang et al.,
2021). The performance is comparitively worse in
fine-grained classes than coarse-grained classes be-
cause LOTClass assumes that the replacements of
label surface names are indicative of its respective
label. However, this might not be a valid assump-
tion for fine-grained classes (Mekala et al., 2021).
Among the datasets we experimented on, these re-
quirements are satisfied only by AGNews dataset
where there are many documents(120000) classi-
fied broadly into 4 categories and we observe a per-
formance boost using LOPS on this dataset. Due
to poor quality of pseudo-labels for other datasets,
there is no increment in performance with LOPS.

5.5 Learning Order vs Probability Score:
Evaluating Confidence Functions

In this section, we define evaluating a confidence
function and compare learning order and probabil-
ity score as confidence functions.

Evaluation of a confidence function. Ideally,
there exists a threshold for a given confidence
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Figure 3: NC-curves of learning order and probability
score with BERT as the classifier.
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Figure 4: Macro-F; vs Coverage on NYT-Coarse &
20News-Fine using BERT with LOPS and Probability
score based selection.

function that perfectly distinguishes correctly and
wrongly labeled samples. However, in practice,
confidence functions may not suffice such ideal
condition. There always exists a trade-off between
noise €(k, ) and coverage ¢(k,~), defined as:

_ |,15\/(/€5'Y) N Dxl

= 1P _ 1Bl
’ 1D/ (s,

The coverage is the fraction of labeled documents
being selected and the noise is the fraction of
wrongly labeled documents within selected doc-
uments. A small threshold leads to high cover-
age i.e. most labeled documents will be selected,
thus being more noisy. And a high threshold leads
to an opposite situation. Therefore, to evaluate
a confidence function, we plot noise and cover-
age at various thresholds, which we refer as the
noise-coverage curve (NC-curve) and compute the
area under the noise-coverage curve (AUNC). As
shown in figure 3, an optimal confidence function
selects wrongly labeled documents only after se-
lecting all the correctly labeled documents, hence
generates a NC-curve in the shape of a rectifier,
namely ¢ = max(0,¢ — |D/|/|D|). A random
confidence function always selects the same frac-
tion of wrongly labeled documents, hence an NC-
curve with a constant value. An ideal confidence
function should minimize AUNC.

Learning Order vs Probability Score. We plot
NC-curves of learning order and probability scores
in Figure 3 with BERT classifier on NYT-Coarse,
20News-Fine datasets. To isolate them from the ef-
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Figure 5: Macro-F; vs 7 on 20News-Coarse & Books
using GPT2 and BERT with LOPS. The dashed lines
represent performance with no label selection.
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Figure 6: Macro-F; vs iteration on 20News-Fine &
Books using BERT, XLNet, GPT2 with LOPS.

fects of bootstrapping, we don’t perform any boot-
strapping. We also plot the end-to-end performance
vs coverage in Figure 4. From Figure 3, we observe
that learning order has significantly smaller AUNC
compared to the probability score. In some datasets
such as NYT-Coarse, it even approaches optimal
confidence function. In fine-grained datasets like
20News-Fine, the calibration is so poor that the
probability score is even worse than random, which
explains poor empirical results of Probability-based
selection on fine-grained datasets. From Figure 4,
we observe that the performance with LOPS is sig-
nificantly better and more stable than Probability.

5.6 Performance vs 7

To study the effect of 7 on performance, we
plot macro-f1 vs 7 on 20News-coarse and Books
datasets using GPT2 and BERT classifiers, shown
in Figure 5. We observe that the performance in-
creases initially and gradually drops down at higher
7 values. The lower 7 values imply being highly
selective and thus the few number of selected sam-
ples are not enough for the model to generalize.
The higher 7 values imply poor selection with
many noisy labels, making the performance to drop.
From the plot, we can observe that the performance
is robust for middle 7 values i.e. 50 — 70%.

5.7 Performance vs iteration

The plot of performance vs the number of iteration
of bootstrapping is shown in Figure 6. We observe
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that the macro f1 increases initially and gradually
converges at the later iterations.

6 Conclusion and Future Work

In this paper, we proposed LOPS, a novel learning
order inspired pseudo-label selection method. Our
method is inspired from recent studies on memo-
rization effects that showed that clean samples are
learnt first and then wrong samples are memorized.
Experimental results demonstrate that our method
is effective, stable and can act as a performance
boost plugin on many text classifiers and weakly
supervised text classification methods. In the fu-
ture, we are interested in automatically identifying
the right granularity to measure learning order for
a given dataset. Moreover, we are also interested in
analyzing the learning order in classification tasks
in image and speech domains.

7 Limitations

Since we select 50% of the samples based on learn-
ing order, our method requires the absolute number
of pseudo-labeled samples to be high enough so
that the final classifier has significant number of
selected samples to learn and generalize on. For
example, we experimented on a subset of 2613 sam-
ples from 20news-fine dataset with noise rate 20%.
With LOPS, the macro f1 is 68.3% and without
any selection the macro-f1 is 70.1%. We attribute
this performance drop to the lack of generalization
using the few selected samples from LOPS. Since
in real-life scenario, obtaining noisy annotations is
cheaper, we believe this limitation can be addressed
comfortably.
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A Appendix

A.1 Datasets

The details of datasets are provided below:

¢ The New York Times (NYT): The NYT dataset
is a collection of news articles published by The
New York Times. They are classified into 5
coarse-grained genres (e.g., science, sports) and
25 fine-grained categories (e.g., music, football,
dance, basketball).

* The 20 Newsgroups (20News): The 20News
dataset’ is a collection of newsgroup documents
partitioned widely into 6 groups (e.g., recre-
ation, computers) and 20 fine-grained classes
(e.g., graphics, windows, baseball, hockey). Fol-
lowing (Wang et al., 2021), coarse- and fine-
grained miscellaneous labels are ignored.

* AGNews (Zhang et al., 2015) is a huge collec-
tion of news articles categorized into four coarse-
grained topics such as business, politics, sports,
and technology.

* Books (Wan and McAuley, 2018; Wan et al.,
2019) is a dataset containing description of books,
user-book interactions, and users’ book reviews
collected from a popular online book review
website Goodreads”. Following (Mekala et al.,
2020), we select books belonging to eight popu-
lar genres. Using the title and description as text,
we aim to predict the genre of a book.

A.2 Compared Weakly Supervised Text
Classification Methods

We compared with following state-of-the-art
weakly supervised text classification methods de-
scribed below”:

* ConWea (Mekala and Shang, 2020) is a seed-
word driven iterative framework that uses pre-
trained language models to contextualize the
weak supervision.

¢ X-Class (Wang et al., 2021) takes only label
surface names as supervision and learns class-
oriented document representations. These docu-
ment representations are aligned to classes, com-
puting pseudo labels for training a classifier.

* WeSTClass (Meng et al, 2018) generates
pseudo documents using seed information and
refines the model through a self-training module

2http ://gwone.com/~jason/20Newsgroups/
3https ://www.goodreads.com/

*We also considered experimenting on ASTRA, however
the instructions to run on custom datasets were not made
public yet.

that bootstraps on unlabeled documents.

* LOTClass (Meng et al., 2020) queries replace-
ments of class names using BERT (Devlin et al.,
2019) and constructs a category vocabulary for
each class. This is used to pseudo-label the
documents via string matching. A classifier is
trained on this pseudo-labeled data with further
self-training.

We use the public implementations of these
methods and modify them to plug-in our filter.
Specifically, in WeSTClass and LOTClass, we add
our filter after generating the pseudo documents; in
ConWea, we add our filter before training the text
classifier; and for X-Class, we plug-in our filter
after learning the document-class alignment.

A.3 Experimental Settings

Train-Test sets. We remove the labels in the whole
dataset and our task is to assign labels to these
unlabeled samples. We measure our performance
on the whole dataset by comparing it with their
respective gold labels.

Computation Infrastructure. We performed our
experiments on NVIDIA RTX A6000 GPU. The
batch size for training BERT is 32, RoBERTa is 32,
GPT2 is 4, XLNet is 1. The running time for BERT
and RoBERTa took 3 hrs, GPT2 took 6 hours, and
XLNet took 12 hrs.

A.4 Additional Experiments

We also compare with RoBERTa
(roberta-base) (Liu et al.,, 2019) as text
classifier. We fine-tune it for 3 epochs. The results
are shown in Table 5.

A.5 Statistical Significance Tests

We perform a paired t-test between LOPS and each
of the other baseline filtering techniques for all clas-
sifiers and on all datasets. The results are showed
in Table 6. From these p-values, we can conclude
that the performance improvement over baselines
is significant.

A.6 Example samples

A few incorrectly pseudo-labeled samples from
NYT-Fine dataset that are selected by probability-
based selection by BERT are shown in Table 7 We
observe a high probability assigned to each incor-
rect pseudo-label whereas these are learnt by the
classifier at later epochs. These wrongly annotated
samples induce error that gets propagated and am-
plified over the iterations. By not selecting these
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Table 5: Evaluation results on six datasets using RoOBERTa classifier and pseudo-label selection methods. Initial
pseudo-labels are generated using String-Match. Micro- and Macro-F1 scores and their respective standard devia-
tions are presented in percentages. For a fair comparison, we consider the same number of samples for all baselines
as LOPS in each iteration. Abnormally high standard deviations are highlighted in b/ue and low performances are
highlighted in red. Baselines performing better than our method are made bold.

Coarse-grained Datasets Fine-grained Datasets

NYT-Coarse 20News-Coarse AGNews Books NYT-Fine 20News-Fine
Classifier Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-Fl Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1
Standard 90.2(0.41) 82.1(0.24) 76.5(0.41) 75.7(0.58) 74.4(0.44) 74.2(0.71) 57.6(0.29) 58.6(0.53) 79.4(0.65) 76.6(0.54) 67.4(0.67) 67.3(0.87)
LOPS 92.4(2.99) 85.6(3.00) 77.5(2.00) 75.8(2.00) 75.6(0.22) 75.5(0.27) 59.7(0.41) 60.5(0.45) 81.8(0.90) 80.7(0.50) 70.7(0.68) 70.8(0.34)
g O2U-Net  93.1(0.14) 86.3(0.26) 76.5(0.19) 73.4(1.47) 77.6(0.36) 77.1(0.54) 58.5(0.64) 59.9(0.32) 79.2(0.28) 77.5(1.17) 68.4(0.47) 68.3(0.15)
RoBERTa
Random 92.3(0.21) 84.4(0.82) 76.5(1.00) 74.5(1.00) 74.6(0.32) 74.2(0.27) 56.4(0.57) 58.7(0.32) 76.6(1.25) 74.8(0.34) 68.4(0.23) 68.5(0.23)
Probability  93.4(0.48) 87.5(1.00) 76.7(0.50) 75.4(1.00) 76.2(0.89) 76.3(1.12) 56.2(1.28) 57.4(1.85) 26.6(23.00) 14.4(11.50) 46.2(23.00) 45.3(23.50)
Stability 90.5(1.09) 83.3(0.50) 78.5(1.00) 76.0(1.50) 76.5(0.48) 76.5(0.64) 58.5(1.18) 59.5(1.06) 21.5(12.50) 9.2(5.00)  70.3(1.00) 70.6(1.00)
OptimalFilter 98.2(0.17) 96.1(0.16) 94.3(0.74) 94.5(0.35) 89.7(0.17) 89.3(0.28) 76.5(0.29) 77.7(0.22) 97.4(0.34) 92.8(0.26) 85.3(0.32) 85.5(0.65)
Table 6: Statistical significance results.
Classifier Method NYT-Coarse NYT-Fine 20News-Coarse | 20News-Fine AGNews Books

Standard | 1.93x 10 72 [ 1.92x 10 [ 7.08 x 10 | 9.37x 107" | 1.05x 10 * | 7.15%x 10°°

Random | 1.58 X 1077 [ 201 x 107" | 598 x 107" | 7.32x 107> | 426 x 10°" | 3.25 x 1077

BERT | Probability [ 1.69 x 107" [ 6.25 x 107" | 419x 107" [6.71x 107" | 513x 107" [ 8.72x 10"

Stability | 2.63x 107 | 241x 10 77 | 2.78 x 107" 4.07x1077 | 1.36x10°" | 1.24x 107"

Standard | 6.06 x 1077 | 1.82x 10° % 54x107° [3.09x107 | 213x 107 | 1.15 x 10”2

Random | 8.38x 107" | 355x 10" | 326x10 > [520x10 " | 512%x 10~ | 1.75x 10 "

ROBERTa | Probability | 5.27 x 1077 [ 9.18 x 10™° | 1.39x 107" | 1.13x 10" [ 4.03x 10" | 216 x 10"~

Stability | 146 x 107 | 3.39x 10" | 6.28x10° | 871 x10 ' | 1.17x 10" ° | 1.81x 10 >

Standard | 3.14x 1077 | 4.68x 10 | 542x 10712 [ 417 x 107 [ 1.69 x 10° 7 | 5.63 x 107"

Random | 3.26x 107" | 297x10° ™ | 256x 107 | 532x10°"° | 6.38x 10 °° | 4.38x 10 °

XLNet | Probability | 4.12x10™7 [ 1.36 x 107> | 7.25x 10" | 6.27x 10 | L57x10 " | 6.23x 10

Stability | 6.17 x 10> | 427 x 10 " | 147x10 ° | 357x 107" | 1.79x10°°° | 3.48x 10 °°

Standard | 6.09x 107" | 1.10x 107 | 2.05x 107" | 1.22x107° | 468x10°F | 1.56 x 10

Random | 2.54x 10 2% | 6.97x 10> | 425x 107" | 9.89x 107> | 6.39x 10 ' | 870 x 10 >

GPT2 | Probability [ 552 x 107" [ 237 x 10" | 7.02x 107> | 1.05x 10> | 1.99x 10™> | 3.44x10°"

Stability | 6.15x 100 | 3.88x 10°" | 340x10°°° | 6.27x10 ° | 221x 10" | 236 x 10

wrong instances, LOPS curbs this and boosts the
performance.

A.7 Learning Order vs Probability Score:
Threshold Analysis

Ideally, there exists a threshold for a given con-
fidence function that perfectly distinguishes the
correctly and wrongly labeled samples. However,
in practice, confidence functions may not be pos-
sible to suffice such ideal condition. For a given
confidence function, one wishes to select pseudo-
labels based on a threshold such that the noise
is low and the coverage is high. We define ratio
between noise and coverage as NC-ratio, namely

r(k,y) = ;((1'1—7) An optimal threshold has the
lowest NC-ratio. Therefore, we evaluate confi-
dence function by plotting NC-ratio at different
thresholds.

We plot NC-ratios of learning order and prob-
ability scores with BERT classifier in Figure 8
on NYT-Coarse, 20News-Fine datasets. To iso-

late them from the effects of bootstrapping, we

don’t perform any bootstrapping. As shown in Fig-
ure 8, when selecting the optimal threshold, learn-
ing order has significantly lower NC-ratios for all
datasets compared to probability score. Further-
more, the optimal thresholds of learning order for
all datasets are almost the same. In contrast, the
optimal thresholds of probability score vary greatly
across different datasets due to the poor calibration
of DNNs. Finally, we also observe that the NC-
ratio for probability score often changes greatly
around the optimal threshold, which poses diffi-
culty in locating the optimal threshold. In contrast,
since there are only few possible thresholds for
learning order, it is easier to find the optimal thresh-
old. From the performance vs threshold plot in Fig-
ure 9, we can observe that learning order performs
better than Probability score across multiple thresh-
olds. Therefore, in terms of both performance and
robustness, learning order is a more effective confi-
dence function than probability score.
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Table 7: Incorrectly pseudo-labeled samples selected
by probability-based selection are shown below. These e iy 080010 P e
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Corinthians have received offer from tottenham

hotspur fpr brazil’s paulinho although thp miFI— Football
fielder said on saturday he would not decide his .

future until after the confederations cup ."there Softmax Prob: 0.96
is an official offer from tottenham to corinthians Learnt EPOChZ 2
but, as i did when there was an inter milan offer,
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any decision," paulinho told reporters.
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poised to make history as the first pair of rook- Baseball Prediction Probability Distribution Proportion of Samples vs Learnt Epoch
ies from same class to start wnba all-star game. '
Now, neither will be playing as both aregside— Softmax Prob: 0.96
lined with injuries. It’s a tough blow for the Learnt Epoch: 2
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our-year deal. Lille paid two million euros. i
million pounds for the 24-year-old kjaer, who Softmax Prob: 0.94 (g) (h)
has won 35 caps for his country. He joined Learnt Epoch: 2

wolfsburg from palermo for 12 million euros.
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Fiorentina striker giuseppe rossi is quickly mak-

ing up for lost time after suffering successive Football

knee ligament injuries which kept him out of ac- X
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Figure 7: Distributions of correctly and wrongly la-
beled pseudo-labels using different selection strategies
on all datasets for its initial pseudo-labels. The base
classifier is BERT. Each row represents a dataset. Fig-
ure (a), (b) represents NYT-Fine, (c), (d) represents
20News-Coarse, (e), () represents 20News-Fine, (g),
(h) represents Books, and (i), (j) represents AGNews
datasets respectively. Left column is based on the soft-
max probability of samples’ pseudo-labels and right
column is based on the earliest epochs at which sam-
ples are learnt.
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Figure 8: NC-ratios of learning order and probability
score with BERT as the classifier.
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Figure 9: Macro-F; scores vs Threshold on NYT-
Coarse & 20News-Fine datasets using BERT classifier
with LOPS and Probability score based selection.
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