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Abstract

Multimodal representation learning is a chal-
lenging task in which previous work mostly
focus on either uni-modality pre-training or
cross-modality fusion. In fact, we regard mod-
eling multimodal representation as building a
skyscraper, where laying stable foundation and
designing the main structure are equally es-
sential. The former is like encoding robust
uni-modal representation while the later is like
integrating interactive information among dif-
ferent modalities, both of which are critical to
learning an effective multimodal representation.
Recently, contrastive learning has been success-
fully applied in representation learning, which
can be utilized as the pillar of the skyscraper
and benefit the model to extract the most im-
portant features contained in the multimodal
data. In this paper, we propose a novel frame-
work named MultiModal Contrastive Learning
(MMCL) for multimodal representation to cap-
ture intra- and inter-modality dynamics simul-
taneously. Specifically, we devise uni-modal
contrastive coding with an efficient uni-modal
feature augmentation strategy to filter inherent
noise contained in acoustic and visual modality
and acquire more robust uni-modality repre-
sentations. Besides, a pseudo siamese network
is presented to predict representation across
different modalities, which successfully cap-
tures cross-modal dynamics. Moreover, we
design two contrastive learning tasks, instance-
and sentiment-based contrastive learning, to
promote the process of prediction and learn
more interactive information related to senti-
ment. Extensive experiments conducted on two
public datasets demonstrate that our method
surpasses the state-of-the-art methods.

1 Introduction

With the surge of user-generated videos, Multi-
modal Sentiment Analysis (MSA) have become
a hot research field, which aims to infer people’s
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sentiment based on multimodal data including text,
audio and video (Zadeh et al., 2017; Tsai et al.,
2019a, 2020; Poria et al., 2020). To successfully
understand human behaviours and interpret hu-
man intents, it is necessary to attain an effective
and powerful multimodal representation for the
model. However, two major challenges in learning
such multimodal representation exist: the accurate
extraction of uni-modal features and the hetero-
geneities across different modalities bring difficulty
of modeling cross-modal interaction.

To acquire powerful uni-modal features, Devlin
et al. (2019) presents a large-scale language model
named BERT for textual modality and Wu et al.
(2022) introduce an audio representation learn-
ing method for audio modality by distilling from
Radford et al. (2021) which targets at transferable
model for visual modality. In MSA, previous meth-
ods (Yuetal., 2021; Han et al., 2021) mainly utilize
BERT for textual modality while vague feature ex-
tractor such as COVAREP (Degottex et al., 2014)
and Facet (iMotions 2017) for acoustic and visual
modality, where the inherent noise contain in uni-
modal features may still exist. To avoid uni-modal
noise interfering downstream sentiment inference
task, we design Uni-Modal Contrastive Coding
(UMCC) which employs feature cutoff strategy in-
spired by (Shen et al., 2020) and generates augmen-
tation features to construct contrastive learning task
with origin uni-modal representation. As shown
in Figure 1, we then obtain robust and efficient
representations for acoustic and visual modalities.

To alleviate the impact of modality heterogeneity,
previous MSA models propose various modalities
fusion methods to learn cross-modality interaction
information (Hazarika et al., 2020; Rahman et al.,
2020). Modality translation is a popular method
to explicitly translate source modality to the target
one, which directly manipulates the commonali-
ties across modalities (Tsai et al., 2019a; Wu et al.,
2021; Zhao et al., 2021). However, due to the exis-
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tence of discrepancy modality-specific information
and huge modality gap, it is undesirable and ex-
tremely difficult to project the representations from
different modalities to the same one. Different
with these explicit modality translation methods,
we propose Cross-Modal Contrastive Prediction
(CMCP) composed of a pseudo siamese predic-
tive network and two designed contrastive learning
tasks to predict cross-modal representation in an
implicitly contrastive way. The predictive represen-
tation efficiently capture cross-modality dynamics
and concurrently preserve modality-specific fea-
tures for the modalities.

The novel contributions of our work can be sum-
marized as follows:

1) We propose a framework named MultiModal
Contrastive Learning (MMCL), consisting
of Uni-Modal Contrastive Coding (UMCC)
which mitigates the interference of modality
inherent noise and learns robust uni-modal
representations, and Cross-Modal Contrastive
Prediction (CMCP) with a pseudo siamese
predictive network which learn commonali-
ties and interactive features across different
modalities.

2) We design two contrastive learning tasks,
instance- and sentiment-based contrastive
learning, in order to improve the conver-
gence of the predictive network and capture
sentiment-related information contained in the
multimodal data.

3) We conduct extensive experiments on two
publicly available datasets, and gain superior
results to the state-of-the-art MSA models.

2 Related Work
2.1 Multimodal Sentiment Analysis (MSA)

MSA focus on integrating textual, acoustic and
visual modalities to comprehend varied human sen-
timent (Morency et al., 2011). Previous research
mainly comprises of two steps: uni-modal repre-
sentation learning and multimodal fusion. For uni-
modal representation, Tsai et al. (2019b) factor-
izes them into two independent sets while Haz-
arika et al. (2020) projects them into two distinct
subspaces. Large pre-trained Transformer-based
language models such as BERT have shown great
performance improvement on downstream NLP
tasks (Devlin et al., 2019). However, for acoustic

and visual modalities, the features are extracted by
CMU-MultimodalSDK with a vague description of
feature and backbone selection(Zadeh et al., 2018¢)
in MSA task. We argue that without powerful pre-
trained language tokenizer to extract features as
textual modality does, the inherent noise of acous-
tic and visual features may disturb the inference of
sentiment.

Different from direct processing the uni-modal
features, we present uni-modal features coding to
learn robust acoustic and visual representations.
For multimodal fusion, Zadeh et al. (2017); Liu
et al. (2018); Zadeh et al. (2018c) present early
fusion at the feature level while Poria et al. (2017);
Zadeh et al. (2018a); Yu et al. (2021) adopt late
fusion at the decision level. However, the former
methods limit capabilities in modeling cross-modal
dynamics due to the inconsistent space of differ-
ent modalities while the later methods suffer from
neglecting modality-specific information with the
absence of low-level feature process. To avoid the
respective issues from the two methods, Tsai et al.
(2019a,b); Hazarika et al. (2020) propose hybrid
fusion which perform multimodal fusion at both
input and output level. Guided by this thought, we
construct a cross-modal predictive network to pro-
cess representations from different modalities at
early and late fusion stage, which effectively ex-
ploit the intra- and inter-modality dynamics in a
prediction manner.

2.2 Contrastive Learning

The core idea of contrastive learning is to measure
the similarities of sample pairs in the representation
space (Hadsell et al., 2006), which is firstly adopted
in the field of computer vision (He et al., 2020) and
then extend to the field of nature language analysis
(Gao et al., 2021). Previous work based on con-
trastive learning mostly only consider uni-modal
data and utilize contrastive losses in a discrimina-
tion manner. Different with discrimination models,
Oord et al. (2018) combines predicting future ob-
servations named predictive coding with a proba-
bilistic contrastive loss called InfoNCE. Inspired
by but diverse from this work, we apply predictive
network with contrastive learning in multimodal
feature to capture cross-modal dynamics and en-
hance the interaction among different modalities.
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Figure 1: The overall architecture of our proposed MMCL framework.

3 Method
3.1 Problem Definition

In MSA task, the input is utterance consisting
of three modalities: textual, acoustic and visual
modality, where m € {t,a,v} . The sequences
of these three modalities are represented as triplet
(T, A, V), including T € RNtxde| A ¢ RNaxda
and V € RVo*d where N,,, denotes the sequence
length of corresponding modality and d,,, denotes
the dimensionality. The goal of MSA task is to
learn a mapping f(7', A, V') to infer the sentiment
score § € R.

3.2 Overall Architecture

As shown in Figure 1, we firstly process raw in-
put into sequential feature vectors with fixed fea-
ture extractor for audio and vision data while pre-
trained BERT (Devlin et al., 2019) encoder for text.
Then we utilize contrastive learning in both uni-
modal coding and cross-modal prediction, which
are the two key modules in our proposed model.
The uni-modal coding drive the model to focus on
informative features which then implicitly filter out
inherent noise and produces robust and effective
uni-modal representation for acoustic and visual
modalities. The cross-modal prediction captures
commonalities among different modalities and out-
puts predictive representation full of interaction
dynamics. Lastly, we fuse predictive acoustic and
visual representations with textual representation
to derive the final multimodal representation which
contains both modality-specific and cross-modal
dynamics most related to sentiment.

3.3 Uni-Modal Contrastive Coding

For uni-modality, we encode the sequential
triplet (7', A, V') into corresponding representa-

tions. Specifically, we use BERT (Devlin et al.,
2019) to encode input sentences to obtain the hid-
den representations of textual modality. The em-
bedding from the last Transformer layer’s output
can be represented as:
Fy = BERT(T; 0pPFT) e RIx % (1)
To acquire more robust acoustic and visual repre-
sentations, we design Uni-Modal Contrastive Cod-
ing (UMCC) for both modalities. Firstly, we en-
code audio and vision inputs by two uni-modal
bi-directional LSTMs (Hochreiter and Schmidhu-
ber, 1997) to capture temporal characteristic:

hq = bLST M (A; Q2L5TM) ¢ REaxda

hy = bLSTM (V; 05F5TM) g REvxde @

To construct contrastive learning, we treat the
encoded acoustic and visual representations as
query samples g and get the corresponding pos-
itive key samples kT by feature augmentation strat-
egy. In natural language understanding and gen-
eration task, Shen et al. (2020) introduces an ef-
ficient data augmentation approach named cutoff
to erase part of the information within an input
sentence and yield its restricted views during the
fine-tuning stage. Inspired by this work, we uti-
lize random feature cutoff strategy on acoustic and
visual representations which randomly convert a
certain proportion of embedding dimensions of ev-
ery token within the sequence into a vector of zeros.
As shown in Figure 2, we then generate augmented
version of uni-modal representations, denoted as
h} and h}.

In order to fuse with textual representations in
the similar semantic space later, we design uni-
modal Transformer models for acoustic and visual
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Figure 2: Illustration of Uni-Modal Contrastive Coding.

modalities, respectively. For u € {a, v}, the query
sample ¢ and positive key sample k™ are respec-
tively denoted as F,, and F:

F, = Transformer(hy; Ggf) € Rbuwxdu
F! = Transformer(hl;017) ¢ RLu*du

ur U

3)

Given a batch set Fy,; = {F°, F! ... Fr—11,
noted that there is a single positive key F, (as
k) that each encoded query F! (as g, i € [1,n])
matches, while the other representations qu (J e
[0,n] and j # ©) in the same batch are considered
as negative key samples k~, as the instance dis-
crimination task (Wu et al., 2018; Ye et al., 2019)
does. With the similarity measured by dot product,
we present the uni-modal instance contrastive loss

Luni In InfoNCE (Oord et al., 2018) form:

exp(q- kT /1)
S exp(q-qi/T)
exp(Fy - FJ/T)
A ST exp(Fy - Fij7)

where 7 is a temperature hyper-parameter that
controls the probability distribution over distinct
instances (Hinton et al., 2015). Due to u €
{a, v}, the final uni-modal instance contrastive loss
£um' = ﬁZm + ﬁfmz

Since each dimension of representation contains
certain features, with a certain number of features
erased entirely, the UMCC can impel uni-modal
Transformer models to implicitly eliminate the in-
herent noise of uni-modal data and capture infor-
mative semantic information which are the most
essential to predict the sentiment. Doing so, we
can finally acquire a robust modality-specific rep-
resentation for acoustic and visual modalities.

u A
uni__l

“4)

3.4 Cross-Modal Contrastive Prediction

To further learn inter-modality dynamics and focus
on the commonalities related to sentiment among

different modalities, we present Cross-Modal Con-
trastive Prediction (CMCP) as shown in Figure 3.
Specifically, we construct a pseudo siamese pre-
dictive network to utilize two modalities to pre-
dict another one. Through the network we can
attain the original representation and the corre-
sponding predictive representation. For intra- and
inter-embedding of these two representations, we
design two contrastive learning tasks based on data
instances and sentiment labels, respectively. The
experiment in Section 4.3 indicate the effectiveness
of the designed contrastive learning tasks.

3.4.1 Pseudo Siamese Predictive Network

The proposed pseudo siamese predictive network
consists of a bi-modal fusion network, pseudo
siamese convolutional neural networks (CNNs), an
auto-regressive model and a cross-modal predictor.

As shown in Figure 3, we take acoustic and tex-
tual modalities to predict visual modality as an
example. Firstly, on account of various feature di-
mensions of different modalities, we utilize a linear
layer to project three representations to the same
dimension.

Secondly, we concatenate acoustic and textual
representations and feed them into the bi-modal
fusion network, which is a multilayer percep-
tron (MLP). After that, we can obtain the bi-
modal representation denoted as F},, where Fy, =
MLP({F;; F,}). To mine out the commonalities
among three modalities, the bi-modal representa-
tion Fj, are utilized to predict the visual modality
representation F;, subsequently.

Thirdly, compressing high-dimension embed-
ding into a more compact latent representation
space can make conditional predictions easier to the
predictive network (Oord et al., 2018). To project
F;, and F), into the same compact space, we design
two CNNs encoders in pseudo siamese structure
(Bromley et al., 1993). As shown in Figure 3, the
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Figure 3: Illustration of Cross-Modal Contrastive

pseudo siamese CNNs means that two CNNs have
the same architecture setting but with unshared pa-
rameters, which can model the inputs in the same
way while with different neuron weights accord-
ing to their own characteristics. In this compact
latent space, visual representation is denoted as G,
which is the prediction target subsequently.

After mapping the bi-modal representations Fi,
by CNN encoder, an auto-regressive model is ap-
plied to summarize and produce a context latent
representation Py,, where Py, = sLSTM (Fy,).
We regard P4, as an inter-modality dynamics con-
tainer which covers common features shared by
bi-modalities and visual modality.

At last, we use a linear projection layer as a
cross-modal predictor and get the predictive visual
representation P,, where P, = Linear(P,). For
u € {a,v}, Now the problem has become how to
make the prediction P, more consistent with the
target GG, while retaining the most useful informa-
tion for downstream tasks.

3.4.2 Instance-based Contrastive Learning

To maximize the similarity between the prediction
representation P, and target representation G,,, we
propose the Instance-based Contrastive Learning
(ICL) to force the predictive network learning ef-
fective features in the original representation.

In details, we firstly perform L2-normalization
on both P, and G, to restrict the predictive space
to the unit hypersphere (Wang and Isola, 2020),
as shown in Figure 3 with u = v as an example.
Considering the instability of prediction training

Prediction along with two contrastive learning tasks.

at the beginning, we then successively take the
combination of original and prediction representa-
tion as query and key, meaning that {query, key}
can be {origin, origin}, {predict, predict} and
{origin, predict}. The reason of this setting will
be further discussed with experiment evidence in
Section 5.1. In ICL, each query ¢ has a correspond-
ing key as k™t while the other representations in the
same batch are seen as £~. Similar with uni-modal
instance contrastive loss L,,,;, the cross-modal in-
stance contrastive 10ss Lyqss is presented as:

exp(F. - F.r/T)
>y exp(Fe - FY/7)

)
where F\F € {P,,G.}, v € {a,v} and
Fcross = {Fc17 7Fcn}

Due to the discrepancy modality-specific infor-
mation contained in different modalities, there ex-
ists huge modality gap across the representations
of modalities. Intuitively, contrastive learning task
on cross-modal prediction is far more difficult than
on uni-modal coding. Inspired by (Wang and Isola,
2020) which identifies two key properties related to
contrastive loss, we introduce two more contrastive
loss for better optimization of the predictive cross-
modal instance-based contrastive learning:

E

FCTOS.S

log

A
Lcross = -

* Cross-modal alignment loss L4, to map
query sample ¢ and positive key sample k™
from different modalities to nearby features
and thus be mostly invariant to the modality
gap, straightforwardly defined with the ex-
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pected distance among two samples:

Latign 2 B[Py — Gull3], A>0  (6)

* Cross-modal uniformity 10ss L, form to dis-
tribute predictive and target representations
roughly uniformly on the unit hypersphere
and preserve as much modality-specific infor-
mation as possible, defined as the logarithm of
the average pairwise Gaussian potential(Cohn
and Kumar, 2007):

k>0
(N

3.4.3 Sentiment-based Contrastive Learning

Louniform 2 10g E [67”‘|PH*GuH§} 7

For the purpose of concentrating on sentiment re-
lated features contained in multimodal representa-
tions, we construct Sentiment-based Contrastive
Learning (SCL) to help the modal learn more dis-
criminative representation for different polarities
of sentiments.

Firstly, according to the sentiment labels, we
divide the representations into three sentiment
classes {positive(+), neutral(0), negative(—)}.
Then, we treat the representations from the same
sentiment class as positive pairs, represented as
{¢°, k3, ..., k3} where s € {+,0,—} and z < n.
The other representations from different sentiment
classes in the same batch are treated as negative
samples. At last, the sentiment-based contrastive
learning loss Lsent can be given by:

> 5o exp(gs - k3/7)
> iy exp(gs - kf/T)

8)
where Fi.,;: denotes original and corresponding
predictive representations divided by sentiment
classes. Here we consider both original and predic-
tive representations which is conducive to guide the
predictive network to preform hard sample mining
when the sentiments across different modalities are
variant.

By means of the sentiment-based contrastive
learning, we extend contrastive learning approach
to a fully-supervised setting as (Khosla et al., 2020)
does and effectively leverages sentiment label in-
formation for better downstream sentiment classifi-
cation performance.

Lsent £ — E 10g

Fsent

3.5 'Total Training Loss

At last, we fuse the predictive acoustic and visual
representations along with the textual representa-
tion to attain the final multimodal representation,

represented as Fyy = MLP({F;; Py; P,}), and
predict the final sentiment score ¢. Along with the
truth sentiment label y, we can have the regression
task loss L;.q as:

1< .
['reg = E Z ’yl - yl‘ (9)
=1

where n is the number of training samples. Com-
bined with the designed contrastive losses, the total
loss for training is formulated as:

Liotal :‘Creg + ,Uﬁunz + nﬁsent
+ aﬁcross + Bﬁalign + Vﬁuniform
(10)
where u, 1, «, 8 and - are weighted hyper-
parameters that adjust the impact of various loss
functions.

4 Experiments

We conduct extensive experiments on two pub-
lic datasets which offer both token-aligned and -
unaligned data for multimodal sentiment analysis.
The details about the datasets, evaluation metrics
and baseline methods are provided subsequently.

4.1 Datasets and Evaluation Metrics

CMU-MOSI (Zadeh et al., 2016) is a popular
benchmark dataset collected from YouTube in
MSA research, including 93 monologues where
speakers make their comment on a specific top-
ics. The dataset consists of 2,199 opinion video
segments with a total of 26,295 words in the ut-
terances and is annotated with sentiment inten-
sity label ranged from -3 (strongly negative) to
+3 (strongly positive).

CMU-MOSEI (Zadeh et al., 2018b) is a large
dataset of multimodal sentiment analysis and emo-
tion recognition, containing 23,454 YouTube mono-
logues video segments covering 250 distinct topics
from 1,000 distinct speakers. The utterances in
the dataset are randomly chosen on various movie
review topics, annotated with sentiment scores be-
tween -3 and +3 and 6 different emotion classes.

Both of the datasets are split into train, validation
and test sets as Han et al. (2021) does.

We use public evaluation metrics of classifica-
tion and regression to demonstrate the performance
of our proposed framework and further compare
with baselines: seven-class classification accuracy
(Acc7) indicating the correct sentiment label predic-
tions in the range of [-3, +3], binary classification
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Models CMU-MOSI CMU-MOSEI
Acc7t  Acc2t F11  MAE] Corrft Acc7t Acc2?t F11 MAE/| Corrt
TFN* 33.7 78.3/80.2 78.2/80.1 0.925 0.662 52.2 81.0/82.6 81.1/82.3 0.570 0.716
LMF* 32.7 77.5/80.1 77.3/80.0 0.931 0.670 52.0 81.3/83.7 81.6/83.8 0.568 0.727
MFEN 342 77.9/80.0 77.8/80.0 0.951 0.665 51.1 81.8/84.0 81.9/83.9 0.575 0.720
MEFM 33.3 77.7/80.0 77.7/80.1 0.948 0.664 50.8 80.3/83.4 80.7/83.4 0.580 0.722
MulT 35.0 79.0/80.5 79.0/80.5 0.918 0.685 52.1 81.3/84.0 81.6/83.9 0.564 0.732
MISA 43.5 81.8/83.5 81.7/83.5 0.752 0.784 52.2 81.6/84.3 82.0/84.3 0.550 0.758
MAG-BERT 45.1 82.4/84.6 82.2/84.6 0.730 0.789 52.8 81.9/85.1 82.3/85.1 0.558 0.761
Selt-MM  45.8 82.7/84.9 82.6/84.8 0.731 0.785 53.0 82.6/85.2 82.8/85.2 0.540 0.763
MMIM 45.0 83.0/85.1 82.9/85.0 0.738 0.781 53.1 81.9/85.1 82.3/85.0 0.547 0.752
MMCL(ours) 46.5 84.0/86.3 83.8/86.2 0.705 0.797 53.6 84.8/85.9 84.8/85.7 0.537 0.765

Table 1: Performance Comparison between MMCL and baselines on CMU-MOSI and CMU-MOSEI datasets. The
multimodal data are token-aligned except for unaligned models with *.

(Acc2) and Fl1-score using two calculation settings
marked as segmentation symbol ’-/-’ where left
represents non-negative /negative (has-0) and right
denotes positive /negative (non-0); mean absolute
error (MAE) computing the average absolute differ-
ence between predicted and truth labels, Pearson
correlation (Corr) measuring the degree of predic-
tion skew.

4.2 Baselines

The mentioned baselines in the experiment are in-
troduced in detail in the following.

TFN (Zadeh et al., 2017) Tenser Fusion Network
introduces a multi-dimensional tensor by calculat-
ing the outer-product among different modalities
to capture uni-modal, bi-modal and tri-modal inter-
actions.

LMF (Liu et al., 2018) Low-rank Multimodal
Fusion decomposes stacked high-order multimodal
tensors into low-rank weight tensors to reduce com-
putational complexity and perform efficient fusion.

MEFN (Zadeh et al., 2018a) Memory Fusion Net-
work separately leverages LSTM to encodes in-
formation from each modality and utilizes a delta-
memory attention network with a multi-view gated
memory to explicitly accounts for the cross-view
interaction.

MFM (Tsai et al., 2019b) Multimodal Factoriza-
tion Model presents jointly optimize multimodal
discriminative factors and modality-specific gener-
ative factors to reconstruct missing modalities and
interpret the interactions that influence multimodal
learning.

MulT (Tsai et al., 2019a) Multimodal Trans-

former extends three sets of Transformers with di-
rectional pairwise cross-modal attention which la-
tently adapts streams from one modality to another.

MISA (Hazarika et al., 2020) Modality-Invariant
and -Specific Representations projects modalities
to two distinct subspaces, modality-invariant and
-specific subspace, to provide a holistic view of
multimodal data.

MAG-BERT (Rahman et al., 2020) Multimodal
Adaption Gate for BERT applies multimodal adap-
tation gate to generate a shift for the internal repre-
sentation of pre-trained Transformer models.

Self-MM (Yu et al., 2021) Self-Supervised
Multi-Task Learning automatically generates uni-
modal labels which are weight-adjusted by multi-
modal labels to learn consistency and difference
across modalities.

MMIM (Han et al., 2021) Multimodal Mutual
Information Maximization maintain task-related
information through maximizing the mutual infor-
mation in uni-modal input pairs and between mul-
timodal fusion output and uni-modal input.

4.3 Results and Ablation Study

In accord with baselines, our proposed model is
run five times under the same setting of hyper-
parameters and present the average performance
in Table 1. Significantly, MMCL outperforms
SOTA in all metrics whether on CMU-MOSI or
on CMU-MOSEI. These outcomes preliminarily
demonstrate the effectiveness of our method in
MSA task.

To further explore the contributions of proposed
uni-modal coding and cross-modal predictive net-
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Description Acc71 Acc2t F1T MAE] Corrt
(1) UMCC
rp Transformer 51.0 81.9/84.7 82.2/84.6 0.567 0.741
w/0 Loyni 52.4 82.6/85.5 82.9/85.3 0.554 0.752
(2) CMCP
w/o ICL 52.0 81.7/84.7 82.0/84.6 0.550 0.755
W/0 Leross 53.0 83.8/85.2 83.7/84.9 0.543 0.761
w/o Latign 52.9 83.9/85.0 83.8/84.6 0.554 0.756

W/0 Luniform  52.3 84.4/85.5 84.4/85.2 0.553 0.757
w/o SCL 522 82.2/84.9 82.6/84.8 0.546 0.756
(3) No Contrast 51.3 81.2/84.3 81.6/84.0 0.564 0.746

MMCL 53.6 84.8/85.9 84.8/85.7 0.537 0.765

Table 2: Ablation study of MMCL on CMU-MOSEI
dataset. Note that "rp Transformer" denotes to replace
uni-modal Transformers with linear layers.

work with corresponding contrastive loss functions
in MMCL, we carry out a series of ablation experi-
ments on CMU-MOSEI. As shown in Table 2, for
UMCC, we firstly substitute uni-modal Transform-
ers with linear layers and discover the great perfor-
mance degradation of the proposed model, which
means that the powerful Transformer encoders play
a crucial part in uni-modal coding. Then we re-
move the uni-modal instance contrastive 1oss Ly
and note that although Acc2 (non-0) and F1 (non-
0) drop slightly, the model have a sharp decline
on other metrics. We consider that £,,; mainly
focus on the inherent noise contained in uni-modal
data. Without feature augmentation with L,,,;, the
model is easier to be interrupted by hard samples
such as the nearly neutral samples with sentiment
labels around 0. For CMCP, we eliminate the loss
terms in ICL individually and the results indicates
that all the loss functions are useful for the sen-
timent prediction, which can be further observed
in Section 5.1. Moreover, ablating either ICL or
SCL hurt the model performance significantly. This
demonstrates the effectiveness of two designed con-
trastive learning tasks to the cross-modal predictive
network. Finally, we spot a clear drop in all metrics
when taking off all contrastive losses and just train-
ing the model with just regression task loss L;.g.
The results of ablation study imply that each mod-
ule and loss function are necessary and essential
for MMCL to achieve the best performance.

5 Further Analysis

5.1 Losses Tracing

To better understand how every contrastive loss
works, we visualize the variation of all losses dur-
ing training in Figure 4. At the beginning of train-

Variation of Training Losses across Steps

1.6] ~7 Lreg Luni
Leross |30
—— Lalign

Lsent

-= Luniform(exp)
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Best Epoch Ends

Lreg / Luniform Value
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S s L S \
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Figure 4: Visualization of losses changing as training
proceeds on CMU-MOSI. The values for plotting are
the average losses in a constant interval of every 5 steps
and L., form is exponentiated for plotting purposes.

0.0 02 04 06 08 10 0.0 02 04 06 08 1.0

(a) MMCL without CL (b) MMCL with CL

Figure 5: T-SNE (van der Maaten and Hinton, 2008)
visualization of multimodal representation in the em-
bedding space on the training set of CMU-MOSI.

ing, MMCL tends to optimize the original represen-
tation for each modality since all losses decrease
almost concurrently. Then when other losses flatten
out, L,n; continue to decline which means UMCC
starts to filter out the inherent noises of hard sam-
ples. Next, we observe that L.ross and Lyn; form
increased slightly where MMCL attempt to opti-
mize the predictive representation, which is due to
the extreme difficulty for the predictive network to
inference across different modalities. Succeeding
in reducing the modality gap and promoting the
network to converge, the designed contrastive tasks
ICL and SCL make the losses drop again with a
smaller slope. Finally, the training of MMCL ends
at the best epochs when the task loss on the valida-
tion set reaches the minimum. In the optimization
process of multimodal representation, the designed
losses are productive to the model in an alternating
manner.
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Unaligned CMU-MOSI CMU-MOSEI
SOTA Models
Acc7T  Acc2t F11  MAE]| Corrf Acc71 Acc2t F11 MAE] Corrt
MulT 36.5 78.8/80.2 78.7/80.2 0.899 0.687 52.5 81.0/84.0 81.4/84.0 0.561 0.737
MISA 43.6 81.6/83.7 81.5/83.6 0.752 0.779 52.0 81.1/84.3 81.6/84.4 0.554 0.753
Self-MM 45.9 82.6/84.9 82.5/84.8 0.722 0.789 53.1 82.2/84.9 82.4/85.0 0.540 0.760
MMIM 45.5 82.6/85.0 82.5/84.9 0.726 0.786 53.2 82.2/85.1 82.6/85.0 0.544 0.756
MMCL (ours) 46.8 83.8/85.8 83.7/85.7 0.692 0.800 53.4 84.5/85.7 84.6/85.6 0.538 0.765

Table 3: Performance Comparison between MMCL and baselines on CMU-MOSI and CMU-MOSEI datasets in a
token-unaligned manner with token-unaligned multimodal data.

5.2 Representation Visualization

Figure 5 displays the visualization of fusion multi-
modal representation F); calculated by MMCL
with contrastive learning losses or not. With-
out contrastive learning, the representations in the
same batch are clustered too tight while far away
from each other in the different batches, which
means that the model is inclined to overfit the train-
ing dataset. Meanwhile, the hard samples with
nearly neutral sentiment are indistinguishable for
the model due to the absence of L,,,; and Lsen:.
After introducing designed contrastive learning,
MMCL is more capable of mining the commonali-
ties between different instances with the same sen-
timent polarity, while retaining the specific features
contained in different instances. In the interim, the
hard samples are more distinguishable for corre-
sponding sentiment class which also proves the
effectiveness of the designed contrastive learning
tasks on representation learning.

5.3 Token-Unaligned Exploration

Additionally, we explore the performance of
MMCL framework on token-unaligned data as
shown in Table 3. All models are run five times
the same as the experiments on token-aligned data.
Basically, the performance of models trained on
token-unaligned data are similar to the ones trained
on token-aligned data with a slight drop on some
metrics. Nevertheless, compared with unaligned
state-of-the-art models, MMCL still achieves the
best result on all metrics, which manifests the sig-
nificant power of the proposed framework.

6 Conclusion

In this paper, we present a novel framework named
MultiModal Contrastive Learning (MMCL) which
efficiently adopts contrastive learning in multi-

modal sentiment analysis. MMCL consists of Uni-
Modal Contrastive Coding (UMCC) which learns
robust uni-modal representations by focusing on
informative features and reducing the interference
of inherent noise for acoustic and visual modalities,
and Cross-Modal Contrastive Prediction (CMCP)
which construct a powerful pseudo siamese predic-
tive network to learn commonalities and interactive
dynamics across different modalities. Besides, we
propose two effective contrastive learning tasks,
instance- and sentiment-based contrastive learning,
to help the predictive network maintain modality-
specific dynamics and learn sentiment-related infor-
mation in multimodal data, which improve the per-
formance of the model significantly. The extensive
experiments conducted on CMU-MOSI and CMU-
MOSEI demonstrate the superiority of our model
and the efficacy of contrastive learning. Moreover,
the further visualization of losses and represen-
tation space provide comprehensive insight into
our model. We believe our work can boost the
creativity in contrastive learning and multimodal
representation learning in the future.

Limitations

Below we describe the limitations of the proposed
model in our view and suggest directions for future
work. Firstly, there are still a lot of data augmen-
tation strategy can be further examined in the pro-
cess of encoding uni-modal representation. Then,
with the proposed powerful predictive network, we
can extend the predictive method into dealing with
missing modality problem which is a more chal-
lenging research emphasis. At last, the training
process of proposed model is still a supervised
leaning process. Since contrastive learning is in-
creasingly adopted in semi- and self-supervised
learning which burst out with great potential in
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computer vision, we attempt to remove the super-
vised labels and explore its capability in the field
of multimodal in the future work.
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A Appendix

A.1 Implementation Details

To fairly compare the effectiveness of baselines
and our proposed frameworks, we reproduce the
baselines based on the same pre-trained BERT lan-
guage model as text features encoder and ran hyper-
parameter grid search for the best results. All mod-
els are trained on a single GTX 1080Ti GPU. As
shown in Table 1, noted that except for unaligned
models TFN and LMF, the multimodal data are
token-aligned in the pre-processing stage.

We perform grid-search over finite sets
of options for hyper-parameters, including
7 in {0.05,0.1,0.7}, p in {0.6,0.7,0.8}, 7
in {0.8,0.9,1.0}, « in {0.8,0.9,1.0}, G in
{0.6,0.75,0.9} and ~ in {0.05,0.1,0.2} and
dropout values in {0.1,0.6}, to select the best
model. For optimization, we apply Adam(Kingma
and Ba, 2014) as the optimizer with a linear
warmup learning rate scheduler, using the highest
learning rate Se-5 for BERT finetuning and 5e-3 on
CMU-MOSI and 1e-3 on CMU-MOSEI for other
parameters. The batch size on both datasets is set
as 32. In UMCC, the uni-modal Transformers have
a stack of 3 identical layers with 8 parallel atten-
tion heads for both acoustic and visual modalities.
The random cutoff ratio is set as 0.2. In CMCP,
the pseudo siamese CNNs have five convolutional
layers with strides [5, 4, 2, 2, 2], filter-sizes [10, 8,
4, 4, 4] and 256 hidden units with T'anh activation
layers while the sSLSTM as auto-regressive model
has 128 dimensional hidden states.

A.2 Explanation of Eq.6-7

Eq.6 aims at aligning the query-positive samples
pairs in the contrastive learning due to the fact
that the feature distance of samples pairs should be
minimized if they are from query-positive samples
pairs, which are the prediction and target represen-
tations in CMCP. Here A € {1, 2} illustrates the

form of loss function as L1 and L2 loss, respec-
tively.

Eq. 7 is proposed according to the thought that
the feature distribution of the predictive and target
representations need to preserve maximal modality-
specific information, which is the uniform distribu-
tion on the unit hypersphere. For this purpose, the
Gaussian potential kernel (Cohn and Kumar, 2007),
known as the Radial Basis Function kernel K are
considered as:

K2 PGl >0 (11)
Then in Eq. 7, the uniformity is further defined
as the logarithm of the average pairwise Gaussian
potential, which is properly tied with the uniform
distribution on the unit hypersphere.

A.3 Ablation Study on Multiple Modalities

Modality Acc71 Acc2t F11 MAE] Corrt

A 41.6 70.0/62.8 60.5/51.1 0.835 0.116

1% 40.9 70.9/62.8 59.2/48.9 0.841 0.109

T 52.6 80.7/85.3 81.4/85.4 0.552 0.761
A+V 414 71.0/62.9 59.0/48.5 0.837 0.148
T+A 533 82.4/85.582.8/85.4 0.540 0.762
T+V 53.6 83.6/85.9 83.9/85.9 0.538 0.763
T+A+Vv 53.6 84.8/85.9 84.8/85.7 0.537 0.765

Table 4: Ablation study of MMCL on multiple modali-
ties on CMU-MOSEI dataset. Note that T, A, V repre-
sent textual, acoustic and vision modality, respectively.

To evaluate the contribution of each modality,
we conduct ablation study of MMCL on multiple
modalities as shown in Table 4. For better observ-
ing the effect in performance without changing the
architecture of the proposed model, we remove
modality by setting the corresponding representa-
tion to all zero vector. Firstly, we conclude that
the multimodal representation learned by MMCL
provides the best performance, indicating that the
designed network and multimodal contrastive learn-
ing tasks can effectively capture complementary
features across different modalities. In addition, the
performance dramatically drops when the textual
modality is removed which do not happen when
removing the other modalities. The results show
that the textual modality palys a significant domi-
nant part in MSA task due to inherently better data
quality and powerful pre-trained model. Although
UMCC can reduce the interference of uni-modal
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noise and focus more on the task-related features
for acoustic and visual modalities, the randomly
initialized uni-modal feature extractor still lack of
comparable information extraction capability with
BERT.

A.4 Discussion on Varying Hyperparameters

As shown in Table 5, to further explore the rela-
tionship of different losses, we conduct ablation
experiments of MMCL on CMU-MOSETI dataset
under different loss hyperparameters setting. We
can observe that there are no significant perfor-
mance drop in Table 5, which concludes that the
performance of MMCL is independent from the bal-
ance hyperparameters setting. Due to the different
losses contribute to different modules of MMCL,
the variation of hyperparameters can even help the
model achieve better accuracy in several metrics.

Varying Hyperparameters
Value Acc7tT Acc2? F1t MAE| Corrt

w=04 541 83.2/85.583.5/85.4 0.536 0.768
pw=05 53.5 83.1/86.1 83.5/86.0 0.537 0.760
=06 53.6 83.6/85.9 83.8/85.7 0.536 0.763
w=0.7 53.6 84.8/85.9 84.8/85.6 0.537 0.765
w=0.8 54.1 83.0/85.6 83.3/85.5 0.533 0.764
pw=0.9 5277 83.8/85.6 84.0/85.5 0.543 0.764

n=0.4 53.7 83.0/85.7 83.3/85.6 0.532 0.765
n=0.6 524 84.5/84.9 84.4/84.6 0.544 0.760
n=0.8 54.1 84.1/85.1 84.2/84.9 0.536 0.763
n=1.0 53.6 84.8/85.9 84.8/85.6 0.537 0.765
n =12 53.0 83.8/85.8 84.0/85.7 0.541 0.766
n=14 53.6 84.1/85.584.1/85.2 0.538 0.760

a=0.4 53.6 82.4/85.3 82.7/85.2 0.532 0.768
a=0.6 53.8 82.8/85.583.1/85.4 0.539 0.759
a=0.8 53.3 84.4/85.4 84.4/85.2 0.542 0.765
a=1.0 53.6 84.8/85.9 84.8/85.6 0.537 0.765
a=12 53.8 83.7/85.6 83.8/85.4 0.536 0.762
a=14 523 84.8/86.1 84.8/85.9 0.546 0.765

Table 5: Ablation study of MMCL on varying
the loss hyperparameters u,n,« on CMU-MOSEI
dataset, which aims at reweighting the contribution of
Lounis Lsent, Leross in Eq. 10, respectively.
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