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Abstract

Data augmentation has been a popular method
for fine-tuning pre-trained language models to
increase model robustness and performance.
With augmentation data coming from modify-
ing gold train data (in-sample augmentation) or
being harvested from general domain unlabeled
data (out-of-sample augmentation), the quality
of such data is the key to successful fine-tuning.
In this paper, we propose a dynamic data selec-
tion method1 to select effective augmentation
data from different augmentation sources ac-
cording to the model’s learning stage, by iden-
tifying a set of augmentation samples that op-
timally facilitates the learning process of the
most current model. The method firstly filters
out augmentation samples with noisy pseudo
labels through a curriculum learning strategy,
then estimates the effectiveness of reserved aug-
mentation data by its influence scores on the
current model at every update, allowing the
data selection process tightly tailored to model
parameters. And the two-stage augmentation
strategy considers in-sample augmentation and
out-of-sample augmentation in different learn-
ing stages. Experiments with both kinds of aug-
mentation data on a variety of sentence classifi-
cation tasks show that our method outperforms
strong baselines, proving the effectiveness of
our method. Analysis confirms the dynamic
nature of the data effectiveness and the impor-
tance of model learning stages in utilization of
augmentation data.

1 Introduction

Finetuning pre-trained language models (PLMs),
such as BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019), requires a large
amount of high-quality labeled data to reach high
performance. Recently, few-shot learning with
PLMs (Gao et al., 2021; Perez et al., 2021) has be-
come a popular research topic, where approaches

1Our code is available at https://github.com/
illidanlab/DynSelector

have been proposed to help fine-tuned PLMs
achieve good performance in tasks where gold
training data is scarce. One significant challenge in
fine-tuning PLMs in low-resource settings is that
the model can easily overfit to the training data of
a small size and have a hard time generalizing to
unseen data (Jiang et al., 2019; Zhou et al., 2021).
Data augmentation (DA) is a popular method in
preventing PLMs from overfitting by creating new
training data by either modifying existing training
samples with external resources such as a machine
translation engine, or finding new training samples
with pseudo-labels using tools and heuristics (Yang
et al., 2020). DA has been successfully applied to
various tasks such as image classification (Perez
and Wang, 2017; Shorten and Khoshgoftaar, 2019),
object detection (Zoph et al., 2020), text classifica-
tion (Sun et al., 2019; Wu et al., 2022), and neural
machine translation (Wei et al., 2022, 2020; Gao
et al., 2019; Cheng et al., 2020) to improve model
performance.

The quality of augmentation data is crucial to the
success of the application of DA to a task, there-
fore data selection (e.g. Feng et al., 2021; Mou
et al., 2021; Hong et al., 2022) is necessary where
augmentation instances are chosen for their effec-
tiveness in improving model performance on the
task. This is especially true for silver training in-
stances harvested from general domain sources
such as Wikipedia. Such silver instances can
be used to enhance model generalizability due to
their out-of-sample nature, whereas data augmen-
tation through data modification (Wei and Zou,
2019; Sennrich et al., 2016) has limited capabil-
ity. However, out-of-sample augmentation training
instances tend to be noisier and more numerous
than in-sample augmentation instances, exacerbat-
ing the problem of selecting the effective augmen-
tation instances (Mou et al., 2021; Qu et al., 2020).

For both kinds of augmentation data, the effec-
tiveness for improving model performance is highly
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Figure 1: Percentage of effective augmentation in-
stances after each training epoch. Before training, 1,000
effective augmentation instances, which can decrease
the test error, are chosen. The percentage of the chosen
augmentation instances being still effective after each
epoch of training varies widely from around 80% at
epoch 24 to close to 30% at epoch 5, indicating that
the effectiveness of augmentation data is linked to the
model learning stage.

dynamic and changes as training progresses. This
can be observed in Figure 1 where 1,000 silver
instances are chosen for their oracle effectiveness
in reducing the test error for a stance detection
task (Mohammad et al., 2016) with a randomly
initialized model. After training with gold data
for a different number of epochs, the number of
effective augmentation data among the 1,000 in-
stances changes drastically, showcasing how the
effectiveness of the silver instances changes dy-
namically at different learning stages. However,
previous research either does not pay attention to
the interaction between the learning stage of the
model and silver instance effectiveness (Yang et al.,
2020), or only considers representation similarity
dynamically, such as choosing augmentation sam-
ples generated from the current batch (Mou et al.,
2021; Qu et al., 2020; Xie et al., 2020) while miss-
ing the arguably more important aspect of dynamic
effectiveness.

In this paper, we address the augmentation in-
stance selection problem for both in-sample and
out-of-sample data augmentation with a unified
framework centered around data effectiveness. The
framework, named DynSelector, leverages the in-
fluence function (IF, Koh and Liang, 2017) to di-
rectly estimate the effectiveness of each augmen-
tation sample dynamically based on the current
learning stage. This ensures the selected augmen-
tation samples always have a positive influence on
model performance. When coupled with a curricu-
lum learning-based strategy for mitigating the noisy
supervision from augmentation data, our augmen-
tation data selection method can effectively utilize

and combine different augmentation sources to im-
prove few-shot text classification performance.

2 Related Work

Data Augmentation for NLP. From the perspec-
tive of semantic consistency, there are two main
research lines of DA approaches: label-preserving
augmentation and label-mixing augmentation (Wu
et al., 2020). Label-preserving methods synthe-
size augmentation data that has the same label
with the referring instance, such as EDA (Wei and
Zou, 2019) and BACKTRANSLATION (Sennrich
et al., 2016). EDA applies random perturbation
operations on the input space of the referred train-
ing instance, such as insertion, swap, synonym
replacement and deletion. BackTrans(BackTrans)
is a model-based augmentation method, it firstly
translates a sequence of tokens into another lan-
guage and then translates it back to the original
language. Another research line of DA is based
on MIXUP (Zhang et al., 2018) and it interpolates
the inputs and labels of several training samples, in
order to create semantically inconsistent augmenta-
tion samples (Jindal et al., 2020; Guo, 2020). Most
existing data augmentation research creates new
samples based on the train data, and we propose to
leverage information from the general domains.
Data Selection is a common problem in a lot
of learning tasks, such as semi-supervised learn-
ing (Zhang and Rudnicky, 2006; Zhang et al.,
2021), co-training (Chen et al., 2011), learning
from noisy supervision (Shu et al., 2019; Sun et al.,
2020) and active learning (Fu et al., 2013). The
goal of data selection is to filter out unacceptable
data or re-weight the given data according to some
specific purpose. Shu et al. (2019) learns a two-
layered neural network to assign lower weights to
noisy data and higher weights to clean data. Wang
et al. (2021) applies a meta-learning framework
to re-weight the pseudo-labeled data to expand
training data size for few-shot sequence labeling
tasks. Wang et al. (2020) employs a reinforcement
learning-based data selector to select samples, with
better generalization capacity, from the training
data. And the selection decision is determined by
the gradient similarity between a train sample and
the validation dataset.

When it comes to augmentation data selection,
Zhou et al. (2021) empirically proves that the main
bottleneck of data augmentation for few-shot learn-
ing comes from the corrupted label in the augmen-
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tation data. Mou et al. (2021) applies contrastive
learning to enforce augmentation data with various
weights to be separable, according to the assigned
weight, in the embedding space. Yang et al. (2020)
implements two filters to detect effective augmen-
tation samples from data candidates generated by
a language generative model. One of the filter is
based on influence function to evaluate the change
of generalization error if accepting one augmenta-
tion sample and another filter evaluates the diversity
property of augmentation data. Our method lever-
ages the influence function to estimate the effec-
tiveness of augmentation data, and only considers
augmentation data that has a positive influence to
the model’s performance.

3 Method

We propose an algorithm which dynamically se-
lects augmentation instances based on the effective-
ness on a model learning stage from pools of silver
training instances generated by in-sample or out-
of-sample augmentation methods. At a high level,
the algorithm selects a batch of augmentation in-
stances after each model update with gold training
instances, based on the influence scores of the aug-
mentation instances to ensure their effectiveness for
the most current model. When both in-sample and
out-of-sample silver instances are available, the
algorithm first selects in-sample silver instances
to ensure the model is well-trained, and then ex-
pands into out-of-sample silver instances to boost
the model’s generalizability and robustness once
the model has approached convergence. We specify
in detail each part of the algorithm below.

3.1 Dynamic augmentation data selection

Let θ be the parameter of the classification model
f , the training data Dtrain, validation data Dvalid,
and augmentation data Daug. An individual sample
is represented with (x, y) where x is the input data,
y is the associated label. L(·; θ) is the classification
loss function, such as cross-entropy loss.

Algorithm 1 shows the pseudo code of our
method. At the beginning of each training epoch t,
we first calculate the prediction probability thresh-
old with equation 2 of the curriculum learning (CL)
strategy (Section 3.3), which is a weighted maxi-
mum pseudo-label prediction probability threshold
from all silver instances used in the previous epoch.
This threshold is employed to filter out augmen-
tation instances with low prediction probabilities

Algorithm 1: The Dynamic Augmentation
Data Selection Method (DynSelector)

Input: the classification model fθ,
augmentation data budget
r ∗ |Dtrain|(r ≥ 0), prediction
probability threshold on the t-th
training epoch τt, maximum training
epoch T and maximum training
iterations per epoch B

1 while t < T do
2 get τt with equation 2, and set naug = 0
3 while b < B do
4 sample a mini-batch btrain ∼ Dtrain

5 update θ with L(btrain; θ)
6 if naug >= r ∗ |Dtrain| then
7 continue
8 else
9 Sampling (x, y) ∼ Daug

10 if p(y|fθ(x)) < τt then
11 continue
12 else
13 get IF(x, y) with equation 1
14 if IF(x, y) < 0 then
15 update θ with L(x, y; θ)
16 naug ++

17 end
18 end
19 end
20 update θ with L(btrain; θ)

21 end
22 end

at the current epoch. In addition, a counter naug

is initialized to count how many augmentation up-
date steps have been finished. If the counter has
met the augmentation budget r ∗ |Dtrain|, then the
augmentation operations would be blocked. The
augmentation budget constrains the contribution of
augmentation data and it varies by data quality. For
instance, given the high-quality augmentation data
acquired with BackTrans, the budget ratio can be 1
or larger.

For lines 4 - 5, the model is updated with a
mini-batch gold training data btrain. After that, an
augmentation data-point (x, y) is sampled from an
augmentation data pool Daug. If the model’s pre-
diction probability on its pseudo-label p(y|fθ(x))
is smaller than the threshold τt from line 2, this
data-point would be rejected. However, if the aug-
mentation data is accepted, its influence score with
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regard to the current model would be calculated
as shown in line 13. The influence score indicates
how the test error might change if this augmenta-
tion sample is adopted to train the model. There-
fore augmentation samples with large prediction
probabilities and negative influence scores would
be used to update the classification model at this
step. Influence value estimation is described in
Section 3.2. At the end of each epoch, the gold
training mini-batch data would be reused to update
the model again (line 20), in order to mitigate the
impact of noisy augmentation brought by the IF
value estimation error.

We consider different utilization strategies for
in-sample and out-of-sample augmentation. Given
out-of-sample augmentation data, we ask the model
to be well-trained with gold data first. When both
in-sample and out-of-sample augmentation data
are available, we use the in-sample augmentation
data first with our algorithm. As long as the model
has converged, we train it further with the out-of-
sample augmentation. The two-stage augmentation
case is described in Section 3.4.

3.2 IF Value Estimation
Influence function is first introduced to deep learn-
ing by (Koh and Liang, 2017), in order to esti-
mate the influence of perturbing a training sam-
ple to the prediction of a test sample. Yang et al.
(2020) extends it to evaluate the generalization abil-
ity of augmentation samples. Given a classification
model fθ, the influence of an augmentation sample
IF(xaug, yaug) to the prediction loss of validation
data Dvalid is defined as:

L(Dvalid; fθ(Dtrain ∪ (xaug, yaug)))

−L(Dvalid; fθ(Dtrain))

where the validation loss approximates the gener-
alization loss. IF(xaug, yaug) < 0 indicates that
adopting the sample (xaug, yaug) to update θ de-
creases validation loss, and therefore we know that
combining the augmentation sample with the train-
ing data to train the classification model would
improve the model’s generalization ability. Follow-
ing Koh and Liang (2017), IF(xaug, yaug) can be
approximated with:
−1

|Dvalid|
∇θL(Dvalid; θt)

TH−1
θt

∇θL(xaug, yaug; θt).

(1)
At the training iteration t, given the up-to-date

parameter θt, calculating equation 1 is computa-
tionally prohibitive because of the inverse hessian

matrix H−1
θt

. We adopt the stochastic estimation
proposed by Koh and Liang (2017) to estimate
H−1

θt
∇θL(Dvalid; θt). Comparing to gradient sim-

ilarity calculation between a given data point and
the validation data (Ren et al., 2018; Wang et al.,
2020, 2021) used in meta-learning, the IF calcula-
tion in Equation 1 measures the similarity between
augmentation data gradient and validation data gra-
dient projected into the space of Hessian matrix,
which indicates the optimal gradient descent direc-
tion.

Because we need to calculate the inverse Hes-
sian matrix every time the model is updated, which
happens between any two connective training iter-
ations, stochastic estimation at each training iter-
ation is computationally prohibitive. We propose
to use Sherman-Morrison formula (Hager, 1989)
to efficiently calculate the inverse hessian matrix.
Specifically, for any two connective training itera-
tions t and t+ 1 and the associated model parame-
ters θt and θt+1, the inverse hessian matrix H−1

θt+1

can be computed by:

H−1
θt+1

= H−1
θt

+

(△Jt+1 −H−1
θt

△θt+1)(△Jt+1 −H−1
θt

△θt+1)
T

(△Jt+1 −H−1
θt

△θt+1)T△θt+1

△Jt+1 = ∇θL(·; θt+1)−∇θL(·; θt)
△θt+1 = θt+1 − θt

The stochastic estimation of
H−1

θt
∇θL(Dvalid; θt) requires us to calculate

∇−1
θ L(Dvalid;θt) to get H−1

θt+1
with Sherman-

Morrison formula. However, the Jacobian matrix
of θ is not always square, therefore we calculate the
pseudo-inverse matrix of ∇θL(Dvalid; θt). Besides
the inverse Jacobian matrix, acquiring the gradient
w.r.t validation data and the augmentation data
respectively is expensive as well. In section 5.2,
we conduct ablation studies to verify the relation
between classification performance and the
frequency of inverse Hessian matrix update.

3.3 Curriculum Learning Strategy
The curriculum learning (CL) strategy rejects noisy
augmentation data and reduces the search space of
data candidates. We concern more about the qual-
ity of augmentation data than the performance of
learning models, so our method makes a selection
decision based on the prediction probability on the
pseudo label instead of the maximum prediction
probability over all labels (Sohn et al., 2020; Zhang
et al., 2021).
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Given a pre-defined ratio τ ∈ (0, 1) and associ-
ated decreasing step η, a sub-set D

′
sampled from

Daug, the prediction probability threshold at the
training epoch t is:

τt = max

(
1

l
, τ

′
t

)
(2)

τ
′
t = (τ − η ∗ (t− 1)) ∗ argmax

(xi,yi)∈D′
p(yi|fθ(xi)),

where t ∈ {1, 2, ...,T} and η ∈ (0, 1), l is the label
space size, η controls the step to expand the search
space of augmentation data. Since out-of-sample
augmentation instances are more noisy, we set η to
zero for out-of-sample data. Provided a large τ , the
CL strategy always select the highest quality out-
of-sample data in the course of training. In contrast,
the η for in-sample instances is positive, in order to
consider an increasingly number of augmentation
data as the training process goes on. For the pur-
pose of computational efficiency, the CL strategy
works in the beginning of each training epoch as
shown in Algorithm 1, but it can be easily extended
to a mini-batch manner.

3.4 Two-stage Augmentation
Both in-sample and out-of-sample augmentation
data can improve PLMs’ performance on few-shot
learning tasks through providing more training data,
however the motivation behind them are different.
In-sample augmentation data regularizes the learn-
ing process with more in-sample data and prevents
few-shot learning models from overfitting to train-
ing data. The out-of-sample data is more likely
to contain novel information, which enhances the
generalization and robustness of learning models.
Therefore, they should be used in different ways,
especially when both are available for a task.

We take the advantages of both in-sample aug-
mentation data and out-of-sample augmentation
data with our dynamic selection algorithm in a
two-stage augmentation paradigm. We first use the
in-sample augmentation data together with the gold
training data for training until convergence. This
allows the trained model to achieve good perfor-
mance in in-sample evaluation. Once the model
has met the early stop criteria, our algorithm takes
the out-of-sample augmentation data to maximize
the generalization ability of the model.

4 Experiments

We conduct extensive experiments with the pro-
posed algorithm and a variety of classification

tasks. We adopt BERT (Devlin et al., 2018)
as our base modeland one fully-connected layer
as the classifier for all experiments, with details
about the training hyperparameters described in
Appendix A.1. All the models are implemented
with PyTorch (Paszke et al., 2017).

4.1 Setup

We conduct experiments with three different aug-
mentation data scenarios based on augmentation
data availability: both in-sample and out-of-sample
data available, only out-of-sample data available
and only in-sample data available. For the first
two scenarios, the tasks are stance detection and
sentiment analysis. For the last scenario, the ex-
periments are conducted on the above two tasks as
well as six tasks from the GLUE benchmark.

To simulate few-shot settings, we randomly ex-
tract 220 samples from the original training set,
and 200 of them work as training data and the rest
is used as validation data. We repeat all experi-
ments over 5 random seeds and report the average
performance on the original development sets.

4.2 Dataset

We conduct two-stage augmentation and out-of-
sample augmentation data experiments on the
stance detection task (SD) from the SemEval
2016 stance dataset (Mohammad et al., 2016) and
the Chinese sentiment analysis task(CNSA) from
SMP2020-EWECT2. We also test the performance
of our method on the in-sample augmentation over
6 tasks out of the GLUE benchmark: CoLA, SST-2,
QQP, MNLI-m, QNLI, and RTE.

In terms of in-sample data augmentation, we
implement two representative text data augmen-
tation methods: BackTrans (Xie et al., 2020) and
EDA (Wei and Zou, 2019). For datasets with paired
data inputs (QQP, MNLI-m, QNLI, RTE), we gen-
erated 16 total augmentation data samples with
EDA and 2 augmentation data samples with Back-
Trans - half of each were generated on the first
part of the input, and the other half was gener-
ated using the second part of the paired data in-
put. For example, for QQP, we generated 8 EDA
augmentation data and 1 BackTrans augmentation
data by modifying the first question and generated
the other augmentation data by running EDA and
BackTrans on the second question. For the other
datasets (CoLA, SST-2, CNSA, SD), we generated

2https://smp2020ewect.github.io/
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16 augmentation samples for each training instance
with EDA and 1 augmentation sample with Back-
Trans. The out-of-sample augmentation data for
stance classification is collected from Wikipedia
by labeling consecutive sentences with a causal re-
lation as having a support relation, and sentences
with a contradiction relation as having an against
relation. For sentiment analysis, the out-of-sample
data is collected by mapping emojis in tweets to
one of five sentiments in target set of the task. We
randomly sampled 100,000 out-of-sample augmen-
tation instances from the collected data source.

4.3 Baseline Methods
We consider 9 baseline models. All baseline mod-
els are trained the same augmentation data if aug-
mentation is used.

• BERT-base without augmentation (BERT).

• BERT-base with mixed dataset of training data
and subsets sampled from augmentation data
at each training epoch (BERT-mix).

• BERT-base with randomly sampled augmen-
tation data(BERT-RandomAug).

• BERT-base with augmentation data selected
by gradient similarity between validation data
and augmentation data (BERT-GradSim). Fol-
lowing Yu et al. (2020), we define gradient
similarity as the cosine similarity between gra-
dient vector w.r.t validation data and the gra-
dient vector w.r.t an augmentation sample.

• BERT-base with augmentation data selected
by IF value only without CL (Ours-noCL).

• BERT-base with augmentation data selected
by the CL strategy alone (Ours-noIF).

• Following Yang et al. (2020) where all aug-
mentation data should be fed into the influ-
ence value filter firstly, this would be very
expensive to calculate influence value for all
out-of-sample augmentation data. We put the
diversity filter ahead the influence value fil-
ter since the diversity filter would reduce the
amount of data for IF value calculation.

4.4 Experimental Results
4.4.1 Two-stage Augmentation
The first two columns of Table 1 shows the experi-
mental results that employing both in-sample aug-
mentation data and out-of-sample augmentation
data on stance detection and Chinese sentiment

analysis tasks. First, significant improvements
are observed along with most methods utilizing
augmentation, compared with the baseline model
BERT which does not take any augmentation data.
Second, among the methods that use augmentation
data, our method outperforms others in both tasks
by substantial margins. Specifically, our methods
surpass BERT-GradSim and Yang et al. (2020),
which are the second best methods on each task,
by 3.2 and 2.2 points respectively, showing that
our method is better at utilizing different types of
augmentation data, selecting samples with high ef-
fectiveness which leads to high performance. This
is also confirmed by comparing the performance of
BERT-mix and BERT-RandomAug, where BERT-
RandomAug also samples in-sample and out-of-
sample augmentation data separately. Given the
same amount of augmentation data, Ours-noCL
outperforms BERT-GradSim, which indicates that
the Hessian matrix provides more information than
the first-order gradient when it comes to approxi-
mating generalization errors. Finally, comparing
the last two rows of the first two columns, the gain
brought by IF is very large. Removing IF for SD
results in a 11 points drop, and for CNSA 7 points
drop, indicating approximating data effectiveness
through IF estimation is crucial for the performance
of the algorithm.

The experimental results on using out-of-sample
or in-sample augmentation data separately in these
two tasks are shown in the last four columns in
Table 1. Performance of models with out-of-sample
augmentation data only is generally worse than in-
sample augmentation data only, mainly due to the
combination of initial model being only trained
with a small amount of gold data, a high amount
of noise and the domain difference between the
augmentation data and the development sets used
for evaluation. However, our methods still perform
the best compared to the baselines, confirming the
flexibility of our proposed algorithm in dealing
with different types of augmentation data. Similar
performance drops are also observed when IF is
ablated out.

4.4.2 In-sample Augmentation with GLUE
The experimental results on the in-sample augmen-
tation over 6 GLUE benchmarks are shown in the
Table 2. Our method outperforms other baseline
models on 5 tasks. Particularly in the CoLA task, in
which implementing data augmentation is difficult,
all methods except our method show worse perfor-
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SD-IS-OOS CNSA-IS-OOS SD-IS SD-OOS CNSA-IS CNSA-OOS

BERT .555 .349 .554 .554 .347 .347

BERT-mix .558 .355 .562 .546 .354 .324
BERT-RandomAug .570 .361 .565 .560 .351 .356

BERT-GradSim .635 .369 .591 .589 .361 .362
Yang et al. (2020) .565 .401 .451 .469 .398 .395

Ours .667 .423 .614 .596 .417 .402
Ours-noCL .639 .372 .596 .595 .363 .387
Ours-noIF .556 .353 .567 .590 .345 .341

Table 1: Experimental results on the development sets of stance detection and Chinese sentiment analysis task. The
two-stage augmentation strategy helps our method achieve a large gain over that with only in-sample augmenta-
tion(IS) or out-of-sample augmentation(OOS), which is in support of the advantage of two-stage augmentation
training. Our method is the best model with a large gap over other methods for both tasks.

mance than BERT without data augmentation.
The performance of Yang et al. (2020) is worse

than others among all tasks except QQP, this is par-
tially because the epoch-wise augmentation strat-
egy is sensitive to the error of influence value esti-
mation, which pushes the classification model away
from the stage that has already been acquired with
clean train data, and the negative impact would
be accumulated in the progress of training. An-
other reason would be the self-supervised labeling
makes the model be more confident to its incor-
rect prediction. Besides the CoLA task, BERT-
RandomAug, Ours-noIF, and BERT-GradSim also
achieve slightly worse results than BERT on the
tasks of SST and QQP. One possible reason is that
the BERT model has already achieved good results
and these three methods cannot detect effective aug-
mentation data to further improve performance, but
the noise in the selected data degrades classification
performance.

5 Analysis

Three ablation studies are conducted to explore
the effect of training data size, hessian matrix up-
date frequency and augmentation strategy on the
effectiveness of the algorithm.

5.1 Sensitivity to training data size

In order to verify the sensitivity of the method to
different training sizes, we down-sample the train-
ing set of the stance detection task to sub-set of
size 200, 50 and 1. Given the same validation data
and augmentation data source, our method’s per-
formance on SD-OOS is illustrated in Table 3. Our
method performs better than the Bert-RandomAug
baseline with a large margin in the scenarios of
50 training samples and 1 training sample. Our

method shows competitive performance with only
1 training instance to the baseline model with 50
training samples, indicating the consistent perfor-
mance of our method across various training sizes.

5.2 Inverse Hessian matrix update
The calculation of inverse hessian matrices is the
major computation burden of our method. We con-
duct a study to evaluate how the update frequency
of inverse hessian matrices influences the classifi-
cation performance. Given the SD-OOS task, we
tested three cases: no update in each training epoch
where the calculation of the inverse hessian matrix
happens in the beginning of each epoch, update
per 5 training iterations and update every iteration.
Table 4 shows the performance of our method in
each case. The performance gap between update
per iteration and update per epoch is fairly small.
Therefore, we are able to calculate the inverse hes-
sian matrix every epoch and use that matrix con-
sistently in each training epoch, greatly reducing
computation without losing much performance.

5.3 Epoch versus iteration-wise augmentation
We verify the performance of epoch-wise augmen-
tation and iteration-wise augmentation on the out-
of-sample augmentation for the stance detection
task. Epoch-wise augmentation means r|Dtrain|
augmentation instances are selected at the begin-
ning of each training epoch and feed the learn-
ing model with the selected augmentation data.
Iteration-wise augmentation requires that the aug-
mentation samples are selected after each training
mini-batch, and the amount of selected augmenta-
tion samples equals to the division between aug-
mentation budget and training iterations per epoch.
Table 5 confirms the advantage of iteration-wise
augmentation strategy, further confirming the dy-
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CoLA SST QQP MNLI-m QNLI RTE
(MCC) (ACC) (ACC) (F1) (ACC) (ACC) Average

BERT .355 .826 .693 .429 .728 .580 .602

BERT-mix .197 .828 .687 .434 .731 .585 .577
BERT-RandomAug .258 .829 .688 .439 .745 .586 .591

BERT-GradSim .200 .825 .692 .431 .734 .584 .578
Yang et al. (2020) .117 .759 .672 .394 .708 .540 .532

Ours .361 .831 .697 .438 .752 .591 .612
Ours-noCL .354 .829 .694 .445 .736 .586 .607
Ours-noIF .156 .820 .638 .449 .738 .565 .561

Table 2: Experimental results on the dev sets of 6 GLUE benchmarks. Given in-sample augmentation data, our
method outperforms or obtains similar performance with other models on all tasks except MNLI-m.

Training size 200 50 1
Ours .596 .516 .424

Bert-RandomAug .560 .412 .218

Table 3: Experimental results on dev sets of the stance
detection task with different training size but the same
out-of-sample augmentation data source. Our method
outperforms the BERT-RandomAug baseline.

Update frequency 0 per 5 steps per iteration

F1 .596 .607 .611

Table 4: Experimental results on the development sets
of stance detection with different frequency of inverse
hessian matrix update.

namic nature of the data effectiveness and the im-
portance of model learning stages in utilization of
augmentation data.

Augmentation strategy epoch-wise iteration-wise

F1 .532 .596

Table 5: Experimental results on the development sets of
SD-OOS. Iteration-wise augmentation strategy is much
better than the epoch-wise augmentation strategy.

5.4 Computational Complexity Analysis

The time complexity of our method is mainly
determined by the stochastic estimation of
H−1

θt
∇θL(Dvalid; θt). The time complexity of

stochastic estimation to the influence function is
O(ND +RKD) where N is the number of train-
ing samples and D is the dimension of model pa-
rameters. The stochastic estimation would run R
times to achieve a stable inverse hessian matrix and
K(K < N) is the number of training samples used

in each estimation iteration. The real time cost for
the stance detection task is shown in A.2.

6 Conclusion

In this paper, we propose an augmentation data se-
lection method to improve PLMs-based few-shot
text classifications through dynamically choosing
effective in-sample and out-of-sample augmenta-
tion data in accordance to the learning stage of clas-
sification models. The experimental results confirm
the effectiveness of our method. Given these two
augmentation sources, our method achieves large
performance gain by using the two-stage augmen-
tation training strategy together with the dynamic
data selection algorithm.

7 Limitations

Despite the good performance of our proposed
method, there are several limitations in our method.
The influence value estimation is computationally
expensive. Our method makes an augmentation
decision on the basis of the optimal gradient de-
scent direction, but the iterative training between
augmentation data and training data would push
the model from the optimal direction because of
the high data variance in training set. The scope
of in-sample augmentation data and out-of-sample
augmentation data is strictly restricted, so it is wor-
thy to explore mixing these two augmentation data
sources in order to simultaneously accelerate con-
vergence and improve generalizations.
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A Appendix

A.1 Hyperparameter Settings

Hyperparameters Setting

Optimizer AdamW
Adam β1 0.9
Adam β2 0.98
Adam ϵ 1e-3

Learning rate 5e-5
Maximum training epochs 25

Weight decay 0.01
Batch size 8

Table 6: The hyper-parameter settings for fine-tuning the base BERT model.

We froze the embedding layers to reduce computational complexity.

A.2 Hardware and running time
We run experiments on a workstation with a Titan RTX GPU of 24GB memory. Given the stance detection
task, for each epoch with 25 training iterations and a mini-batch of 8, the average training time of each
epoch is around 285 seconds on the condition that the Hessian-vector product is only computed in the
beginning of each training epoch

A.3 Augmentation budget ratio
We take r = 1 for all in-sample augmentation as well as the out-of-sample augmentation for the stance
detection task, and r = 0.5 for out-of-sample augmentation of the Chinese sentiment analysis task.

A.4 Curriculum learning strategy parameters
τ = 0.9 and η = 0.1 for in-sample augmentation.
τ = 0.9 and η = 0 for out-of-sample augmentation.

A.5 out-of-sample augmentation data Samples

Target: if the sample stream is not substantially modified by the analyser, it can be returned to the
process
Claim: the sample stream is not returned; for example, if any reagents have been added for the analysis.
Label: Against

Target: imports of high-tech products far exceed exports
Claim: r & d intensity is defined as r & d expenditure divided by net sales.
Label: None

Target: his acts are designed to maximize publicity
Claim: he means to fuse his name forever to a place, a date, an event.
Label: Favor

Table 7: out-of-sample augmentation samples for the stance detection task.
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Chinese Sentiment Analysis Data: 什么时候能看???
Translation: When can we see that???
Label: Angry

Data: 2011过去了，2012要努力. . .
Translation: 2011 is over, work hard on 2012...
Label: Neutral

Data: 快乐，谢谢，亲。
Translation: Nice, thanks, Dear.
Label: Happy

Data: 明早又要进基地了，这是真的吗？真的吗？真的
吗？
Translation: We need to return to the (practice) base, is this
true? Is this true? Is this true?
Label: Surprised

Data: 终于把心理学粗略抄完了。。好像憔悴了十岁一
样。。
Translation: Transcribed the psychology materials finally.. I
am more like becoming ten years older..
Label: Sad

Data: 不想上学。
Translation: Do not want to go to school.
Label: Fearful

Table 8: out-of-sample augmentation samples for the Chinese sentiment analysis task.
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