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Abstract

Lexica — words and associated scores — are
widely used as simple, interpretable, general-
izable language features to predict sentiment,
emotions, mental health, and personality. They
also provide insight into the psychological fea-
tures behind those moods and traits. Such lex-
ica, historically created by human experts, are
valuable to linguists, psychologists, and social
scientists, but they take years of refinement and
have limited coverage. In this paper, we inves-
tigate how the lexica that provide psycholin-
guistic insights could be computationally in-
duced and how they should be assessed. We
identify generalizability and interpretability as
two essential properties of such lexica. We in-
duce lexica using both context-oblivious and
context-aware approaches, compare their pre-
dictive performance both within the training
corpus and across various corpora, and eval-
uate their quality using crowd-worker assess-
ment. We find that lexica induced from context-
oblivious models are more generalizable and
interpretable than those from more accurate
context-aware transformer models. In addi-
tion, lexicon scores can identify explanatory
words more reliably than a high performing
transformer with feature-importance measures
like SHAP.!

1 Introduction

Lexica — collections of words, often with associated
weights — are widely used for interpretable models
(Hayati et al., 2021; Pryzant et al., 2018), particu-
larly in psychology (Boyd et al., 2022) and other
social sciences. Lexica have been developed for ar-
eas as varied as sentiment and emotion (De Bruyne
et al., 2022; Hamilton et al., 2016), moral foun-
dations (Hopp et al., 2021), politeness (Li et al.,
2020a), formality (Eder et al., 2021), concreteness
and familiarity (Paetzold and Specia, 2016), and
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Figure 1: The relations between the proposed research
questions

bilingual research (Shi et al., 2021; Patra et al.,
2019). They are being created in hundreds of
languages (Zhao and Schiitze, 2019) and are in-
creasingly used to augment modern deep learning
models (Li et al., 2020b; Hu et al., 2019). Both
supervised (Irvine and Callison-Burch, 2013) and
unsupervised (Artetxe et al., 2019; Zhang et al.,
2017; Kanayama and Nasukawa, 2012) methods
have been proposed, some with an emphasis on
supporting interpretation (Verhoeven and Daele-
mans, 2018; Clos and Wiratunga, 2017; Misra et al.,
2015).

Some most widely used lexica were created by
human experts (Pennebaker et al., 2001; Moham-
mad, 2018). However, these high-quality lexica
often take years of refinement and have limited
coverage. In comparison, computationally induced
lexica are cheaper and lead to visible new insights
provided by machine learning models for various
corpora.

In computer science, closely related to lexicon
development is “feature importance”, which also
computes a strength of association between words
and an outcome of interest to support interpreta-
tion. Many methods have been used to extract
feature importance from neural networks and other
machine-learned models (Ribeiro et al., 2016; Kim
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et al., 2020). One of the most popular of these mea-
sures is SHAP (SHapley Additive exPlanations)
(Lundberg and Lee, 2017), a mathematically princi-
pled way of computing feature importances based
on Shapley values from game theory.

Different feature importances may serve differ-
ent purposes, including “explaining the model"
(i.e., showing why the model makes given predic-
tions), versus “explaining the world" (i.e., provid-
ing insight into the data on which the model was
trained and the world where that data was collected)
(Chen et al., 2020; Liu and Ungar, 2021). For ex-
ample, when extracting feature importance from
the sentence, “The food was pretty and tasty!", an
attention-based model might show that the highest
attention was given to the word “and", the words
with the highest Shapley values in a deep learned
network might be “food" and “!", while a hand-
compiled list of positive and negative words might
select “pretty" and “tasty".

These different feature importance measure-
ments provide different interpretations for the same
prediction of the same model on the same input.
The interpretations that “explain the model" are,
in general, more “faithful” to the model, reflecting
how the model uses each feature, while the ones
that “explain the world" are more consistent with
human intuition and reflect some consensus in the
world.

The two goals are not contradictory, but they
have different priorities. In computer science re-
search, feature importances are more often used
to explain models. In contrast, social scientists
such as psychologists use more expert-annotated
lexica designed to explain the world. Our goal is to
computationally build lexica that explain the world,
with the help of feature importance measurements.
Thus, our desirable lexica should solely be eval-
uated in terms of their faithfulness to the models.
Our primary goal is to provide insights into sci-
entific questions using the lexicon analysis (e.g.,
"how are political parties getting more polarized?"
or "when is empathy good or bad for people?").

Instead of the faithfulness to the models, we
identify generalizability and interpretability as key
properties to assess the desirability of such lexica.
Generalizability is crucial to high-quality lexica.
For example, widely used lexica, such as LIWC
(Pennebaker et al., 2001), works well in an ex-
tremely broad set of corpora (used in over 10,000
papers). If a lexicon has the ability to explain emo-

tion/sentiment in the real world, it should gener-
alize well from one corpus (e.g., food reviews on
Yelp) to another (e.g., music lyrics). Interpretability
is even more important. The words in the lexicon
should reflect what humans view as being impor-
tant for explaining the emotion, personality, politi-
cal orientation or other labels being predicted.

To compare the degree of generalizability and
interpretability of the lexica induced from context-
aware or context-oblivious models and to gain in-
sights into the lexica induction and assessment, we
address the following four research questions (Fig-
ure 1):

* RQ1: How well do lexica made from context-
aware or context-oblivious models generalize
to different corpora?

* RQ2: How much predictive power do lexica
lose relative to deep learning models?

* RQ3: How sensible do human raters view the
words in lexica induced by context-aware and
context-oblivious approaches?

* RQ4: How explainable are lexicon scores
compared to feature importance measures
from predictive models?

2 Related Work and Research Goals

Lexicon creation was traditionally done manually.
In psychology, lexica such as LIWC were cre-
ated based on judgments of expert annotators (Pen-
nebaker et al., 2001). LIWC is unweighted, and can
be viewed as having a weight of one for all words
in the lexicon. Weighted lexica have also been cre-
ated using crowdsourced annotations (Mohammad,
2018).

Recent work in computer science induces lex-
ica using computational approaches (Pryzant et al.,
2018). Lexica can be generated by methods ranging
from using linear regression coefficients to com-
puting word scores by “inverting" feed-forward
network (Sedoc et al., 2020). The word-level score
can also be obtained using attention distributions
or word frequency vectors. The extracted lexica
have been applied to many tasks, including feature
extraction (Mohammad et al., 2018), emotion pre-
diction (Sedoc et al., 2020), linguistic analysis, or
causal domain theories (Pryzant et al., 2018).

Although the term “lexicon" is often not explic-
itly mentioned, methods that compute the feature
importance of words in machine-learned models
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produce lexica. These approaches generally use the
coefficients from models or evaluate the impact of
the features on the outputs by perturbing the inputs
(Lundberg and Lee, 2017; Ribeiro et al., 2016).

For linear models, lexica can be constructed by
directly using the coefficients or weights in the
models. Similarly, for non-linear models, people
attribute to features by examining gradients, which
can also be used to induce lexica (Simonyan et al.,
2013; Baehrens et al., 2010). Moreover, attention
weights in more complex neural networks can serve
the same function (Bahdanau et al., 2015). Atten-
tion provides some insights into certain types of
models and tasks (Vashishth et al., 2019), but it
is less clear whether it produces proper lexicon
weights or faithful explanations (Jain and Wallace,
2019).

With the introduction of transformers (Vaswani
et al., 2017), more complex context-aware models
such as BERT (Devlin et al., 2019) (and variations
such RoBERTa (Liu et al., 2019) and DistilBERT
(Sanh et al., 2019)) often provide significantly bet-
ter predictive performance. However, these de-
velopments present a larger challenge to interpret
these more sophisticated models. On one hand,
Sundararajan et al. (2017) proposed Integrated Gra-
dients (IG) for these differentiable models that ex-
amines the path integral of the gradients based on
input baselines. On the other hand, we can also in-
terpret the model as a black box, without the access
to the gradients. By observing the impact on the
predictions of some carefully designed perturba-
tions for each word (e.g., via removal or masking)
in the input, we can compute the importance of
each work to the prediction (Li et al., 2016; Kim
et al., 2020).

SHAP is an important example of such input
perturbations (Lundberg and Lee, 2017). Based on
the Shapley Value from game theory, SHAP pro-
vides a class of approximations that evaluate the
contributions of features in machine-learned mod-
els. Partition SHAP is one of these approximations,
that computes the Shapley value for clustered fea-
tures based on the partition trees, which provides a
contextualized understanding of the input.

Many feature importance methods, such as
marginal Shapley values, are designed to “‘ex-
plain the model". The induced lexica thus contain
words that help explain what models are computing,
which are not necessarily the words that are impor-
tant for understanding the world — the sentences

and the people who produce them. For example,
attention weights may focus on the word “and",
rather than adjacent words. We prefer feature im-
portance such as conditional Shapley values that
seek to “explain the world"; similarly, psycholo-
gists are also interested in lexica that “explain the
world" to answer the questions like “What words
typify empathetic people?" (Buechel et al., 2018)
and “What does Twitter language of people with
ADHD reveal about how they perceive the world?"
(Guntuku et al., 2019).

To date, there has been no broad assessment
of the ability of induced lexica to “explain the
world". Lai et al. (2019) compare feature impor-
tances across different models and feature impor-
tance metrics. However, the comparisons are based
on the similarities of the most important features
considered, and there is no metric to assess the
quality of the lexica. Ding and Koehn (2021) pro-
vide an evaluation for the prediction interpretations
in terms of plausibility and faithfulness. Although
a good lexicon should support plausible interpre-
tations, we are more interested here in how a plau-
sible lexicon (independent of a particular given
model prediction) can be induced and assessed,
and thus address a different task.

Bearing in mind how social scientists actually
use lexica, we focus on evaluating the generaliz-
ability and interpretability of the lexica induced by
different automated approaches. Lai et al. (2019)
shows that some models provide similar explana-
tions of the predictions regardless of the feature-
importance metrics used. We, therefore, choose a
set of popular models with differing levels of com-
plexity and different accessibility to context, along
with the suitable interpretations for each, and test
them on diverse sentiment and emotion corpora.
We work with sentiment and emotion since they
are well-studied domains, allowing us to focus on
the lexica induction insights.

3 Datasets

Our experiments induce lexica using a mixture of
common broad-coverage datasets such as Yelp?,
Amazon reviews (McAuley and Leskovec, 2013),
and NRC Emotion (Mohammad and Turney, 2013).
We use relatively tailored datasets such as Senti-
ment Treebank (Socher et al., 2013), EmoBank
(Buechel and Hahn, 2017), Emotionlines (Hsu
et al., 2018), Daily Dialog (Li et al., 2017), and

Zhttps://www.yelp.com/dataset
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Song Lyrics (Mihalcea and Strapparava, 2012), for
evaluations of the lexica (in order to evaluate their
generalizability to remote corpora). We will refer
to the datasets used for lexica induction and evalu-
ation as the “lexicon-induction datasets", and the
ones used only for evaluation as the “evaluation
datasets". For large datasets, we use their balanced
subsets.

The chosen datasets are from diverse sources,
including Twitter, song lyrics, newswire, online
reviews, and crowdsourced writing. They vary by
size, sentence length, and vocabulary size (for de-
tailed dataset statistics see Table 3 in Appendix A).
This variety of datasets ensures robust comparisons
between the lexica induction approaches.

Labels of all datasets are processed to be used for
binary classifications. The datasets can be divided
into two categories. The Yelp and Amazon datasets
are for sentiment classification: the models classify
reviews as positive or negative. For these datasets,
we are interested in both the “heads" and “tails" (the
words with the highest and lowest scores) of the
resulting lexica, as they indicate positivity and neg-
ativity, respectively. For the NRC dataset, models
do binary emotion classification for five different
emotions (joy, fear, anger, sadness, and surprise).
In these cases, we are only interested in the “head"
of the lexica because those are the words most
closely associated with the corresponding emotion.

To allow fair comparisons, this work is done
entirely in English; non-English words in the NRC
datasets are filtered and removed.

4 Lexicon Induction Approaches

The core of lexicon induction is the assignment of
scores to each word, reflecting its semantics; we do
this using the relative importance of the words in
contributing to the label prediction. This requires
deciding which predictive model and which feature
importance measure to use.

We explore different combinations of predictive
models and means of computing feature impor-
tance as different approaches to create lexica. The
models are trained to do text classification, and we
select a set of sentiment and emotion tasks that are
widely studied in order to yield the most insights.
Although models like BERT use subwords as to-
kens, we compute only the word-level scores when
inducing the lexica so that the lexica generated by
different methods are comparable and the lexica
are interpretable.

These approaches are categorized based on
the models’ access to the context of the input
text: context-oblivious approaches in which the
sequence information and context in the input are
lost (SVM, FEN), versus context-aware approaches
in which the sequence information is embedded
in the representations and used for classification
(LSTM, RoBERTa, and DistilBERT). The motiva-
tion for such categorization is that it remains un-
clear whether context would facilitate the creation
of more generalizable and interpretable lexica (RQ1
and RQ3).

4.1 Context-oblivious Approaches
4.1.1 Frequency-based Baseline

The most intuitive way to score the words based
on the classification datasets is to use the word fre-
quency. Specifically, in what we called “univariate
method", for each word, we count its frequencies of
occurrence in every sentence in the dataset, and cal-
culate the Pearson correlation between the word’s
counts and sentence labels, i.e., binary scores, as
the word’s score for the lexicon. We have also tried
another frequency-based baseline that combines tf-
idf (term frequency-inverse document frequency)
with logistic regression, and we picked the best of
the two.

4.1.2 Bag-of-Vector Models with Single-token
Importance (STI)

Bag-of-Vector Models (SVM and FFN) SVM
and FFN are used as Bag-of-Vectors models, since
they are popular and representative choices for lin-
ear and non-linear models with low model complex-
ity. The inputs to both models are text embeddings,
computed as the averaged FastText embedding for
all the tokens in the text. As a result, they lose
all the sequential information in the inputs, which
makes them context-oblivious.

Single-token Importance (STI) Since the inputs
to the models, text embeddings, are averaged token
embeddings, they lie in the same embedding space
as tokens. We can thus compute feature importance
for individual tokens by feeding their embeddings
directly into models trained on text embeddings.
Then the outputs of the models serve as their rela-
tive importance. We call this “Single-Token Impor-
tance" (STI) measurement.
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4.2 Context-aware Approaches
4.2.1 LSTM with Attention

We choose LSTM as a representative example of
the models explained by inspection. The inputs to
the LSTM are sequences of fixed FastText embed-
dings, and model attention serves as the importance
measurement.

Attention Weights as Explanations Attention
has been used for model interpretation, with the
belief that the attention weights indicate the rela-
tive importance of the tokens. However, it is still
controversial whether attention is actually explana-
tory. Some authors claim that attention weights
do not explain the reasoning behind model predic-
tions (Jain and Wallace, 2019; Serrano and Smith,
2019), while others claim that attention weights do
capture linguistic insights and can explain the mod-
els’ decisions (Vashishth et al., 2019; Wiegreffe
and Pinter, 2019). Others argue that attention often
has a trivial function, since a random permutation
of the attention coefficients does not significantly
affect the predictions (Vashishth et al., 2019).

Diversity LSTM A recent paper investigated the
contradictory claims about the quality of attention
as a feature-importance measurement, and pro-
posed techniques to improve the interpretability
of the attention weights (Mohankumar et al., 2020).
They reported that high similarities among LSTM
encoders across time impair the interpretability of
the attention weights and that by reducing such sim-
ilarities using the diversity LSTM they proposed,
attention weights could be more interpretable. The
diversity LSTM minimizes the conicity (similar-
ity) of the hidden states while maximizing the log-
likelihood of the training data. We include the
diversity LSTM from Mohankumar et al. (2020)
in our comparison, as they claimed that it was the
most interpretable LSTM model. Following this
prior work, we use the difference between the at-
tention weights of a token in positively-labeled
and negatively-labeled data as the metric to build
the lexicon. To elaborate, in order to compute a
score for a token, we compute an average atten-
tion weight for that token in all input data that are
labeled positive and another for that token in all
input data that are labeled negative. The reason for
computing the two average scores is that attention
weights do not have signs and do not distinguish
between “important to form a positive text" and
“important to form a negative text". The difference

between the two attention scores is then used as the
final score for the token.

4.2.2 BERT Variations with Masking and
SHAP

BERT Variations (RoBERTa and DistilBERT)
As stated, lexica creation is a task based on lan-
guage understanding. Modern language models
like BERT (Devlin et al., 2019) produce state-of-
the-art results on many downstream NLP tasks,
including the sequence classification tasks in this
paper, and thus are believed to be able to capture
the semantics. As a result, we included two varia-
tions of BERT with different network sizes in the
comparison, namely RoOBERTa and DistilBERT.

We use pretrained “distilbert-base-uncased" and
“roberta-base” from HuggingFace library (Wolf
et al., 2020) and fine-tuned them on binary emo-
tion or sentiment text classification tasks. We used
the last layers of models, following the standard
approach for these models.

Feature importance in these complex models can
hardly be interpreted by inspection. Here, we ap-
plied two model-agnostic methods.

Masking The importance of a token can be mea-
sured by the change in the model output when the
token is replaced with a special mask token. This
allows us to explain sophisticated models by simple
input perturbation, without having to make sense
of millions of model parameters (Li et al., 2016).

Partition SHAP SHAP values allow more so-
phisticated ways of evaluating the contributions of
features to the model prediction, enabling the re-
placement of a token and associated tokens with
words drawn from a background distribution. As
explained before, we believe that the SHAP that
takes account of the correlation between words in
each sentence is better at explaining the world. Par-
tition SHAP is a variation of SHAP that uses a
hierarchical clustering of the features (Lundberg
and Lee, 2017). As aresult, it is essentially comput-
ing the Owen values from game theory, where the
partition of the players is considered (Owen, 1977).
Partition SHAP assumes independence between
sets of features instead of individual ones. The fea-
ture clustering can be done based on correlations,
or any other distance metric, or even predefined
rules (e.g., tokens in a cluster must be adjacent).
Partition SHAP attributes to the clusters instead of
individual features in the clusters. It is also much
faster than other model-agnostic SHAP methods,
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such as kernel SHAP (Lundberg and Lee, 2017),
since the complexity of partition SHAP is quadratic
in the number of input features while the other
methods are exponential in theory.

5 Evaluations and Results

The induced lexica are evaluated in terms of gener-
alizability and interpretability, to address the four
proposed research questions in Section 1. Exam-
ples of the induced lexica can be found in Ap-
pendix C.

5.1 Generalizability

We use predictive performance on within-corpus
test sets and across-corpora evaluation sets as an
indication of the generalizability of the induced lex-
ica. The comparisons are made from two perspec-
tives: Firstly, we compare lexica induced by differ-
ent approaches against each other. This provides
insight into the lexicon induction approach, such
as how the sequence information helps to induce
more generalizable lexica. Secondly, we assess
how lexica, as simple linear classifiers, perform
in predictive tasks compared to the sophisticated
vector-embedding models.

To use lexica for predictive tasks, we rely on
the lexicon scores to construct linear classifiers.
Each lexicon-based classifier is a logistic regres-
sion model that classifies input sentences based on
sentence scores, trained on a small subset that has
the same distribution as the evaluation set. The
sentence score is the average score for the lexical
words in that sentence. In other words, the regres-
sion model learns the sentence score distribution
of the evaluation set; thus, it serves as a calibration
on a specific evaluation corpus. To make it a fair
comparison between models and lexica, we do the
exact calibrations using logistic regression models
when evaluating model performances. In this case,
we use the model outputs (logits) as the input of a
logistic regression model and use the output of the
regression model as the final prediction, rather than
directly using the model logits for classification.
The calibrations use small subsets separated from
the evaluation sets, and the data in the calibration
subsets is not seen in training or evaluation.

The predictive performance is presented in Ap-
pendix D as F1 scores averaged over all “evalua-
tion datasets" and test sets of “lexicon-induction
datasets". The model accuracy is in line with F1
scores and is included in Appendix D. One-tail

paired t-tests are conducted to verify the signifi-
cance of our observations (Appendix E). Similar
comparisons are also conducted for emotion cor-
pus and sentiment corpus separately, which are
presented in the Appendix D. These comparisons
confirm the stability of the observations when in-
ducing lexica from different classification tasks and
corpora.

Within-corpus | Across-corpora

Methods Model [ Lexi. | Model | Lexi.
| Univariate \ | 0.714 ] | 0.598 |

SVM_STI 0.791 | 0.779 | 0.687 | 0.684
FFEN_STI 0.787 | 0.763 | 0.657 | 0.654
dLSTM’_Attn | 0.899 [ 0.756 | 0.654 | 0.609
DB*_Mask 0.761 0.650
DB*_SHAP 0825 0.758 0-755 0.641
RB>_Mask 0.754 0.617
RB>_SHAP 0851 0.774 0.768 0.649

Table 1: Lexica generalizability predictive results: Mean
F-1 scores of models and lexica within and across corpus
domain(s)

5.1.1 Lexica Generalizability

Table 1 rows compare lexica induced by the var-
ious lexicon induction approaches introduced in
Section 4.

As expected, the lexica induction approaches
that are based on vector embeddings have observ-
able advantages in the predictive performance com-
pared to the frequency-based baseline (Table 1).

When it comes to the impact of the context-
awareness or the sequence information, it is notable
that context-oblivious bag-of-vector approaches
with much simpler models produce comparable
if not better lexica in terms of generalizability than
the context-aware ones (Table 1). This indicates
that the context and the model complexity do not
contribute much to the lexica generalizability.

Meanwhile, the choice of interpretations does
not have a consistent impact on the induced lexica
generalizability. For example, the SHAP method
yields more generalizable lexica than the masking
method for ROBERTa, but performs similarly to
the masking method for DistilBERT.

3diversityLSTM
“Distil BERT
SRoBERTa
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5.1.2 Lexicon vs. Model: the use of lexica in
predictive tasks

We compare the predictive performance of lexica
and the predictive models by inspecting respec-
tively the within-corpus and cross-corpora results
in Table 1. For context-oblivious models, we find
that the induced lexica, which are only linear clas-
sifiers, have negligible performance drop in pre-
dictive tasks compared to the model. As for the
context-aware models, lexica always have worse
performance than the models.

We can also synthetically compare the generaliz-
ability of lexica and models. Context-aware models
perform better than context-oblivious ones within
the training corpus as expected, and they also gen-
eralize better to other corpora. However, we do not
see such a generalization advantage for the lexica
induced using context-aware models, as we show in
Section 5.1.1. This suggests that although the con-
text contributes to model generalizability, it does
not contribute to lexica generalizability.

There is a consistent reason for the performance
drop and loss of generalization advantage observed
for lexica induced using context-aware models: lex-
ica themselves are context-oblivious. When gen-
erating lexica, we lose the sequence information
learned by the context-aware models. As a result,
although complex context-aware models generalize
well to different domains, the lexica generated by
them are not superior to those generated by simpler
context-oblivious models.

5.2 Interpretability

The induced lexica are evaluated both as sets of
words (without context) and as words within sen-
tences (with context).

To measure the impact of the context-awareness
on lexicon induction, the lexica induced using
context-aware and context-oblivious approaches
are presented to the annotators as sets of words
without context. To evaluate how lexicon scores
are explainable, we assess the ability of lexicon
scores to highlight the explanatory words in the
sentences, by comparing that to the capability of
the best-performing model with different feature-
importance measurements.

5.2.1 Lexica Interpretability

We split our lexica into two sets: one consists of
words appearing only once in the training corpus,
and the other includes the words appearing at least
five times. We then group the words in both sets by

seven different predictive labels: two sentiments
(positive, negative) and five emotions (joy, fear,
anger, sadness, and surprise).

To obtain words describing positive and nega-
tive sentiment, we select the top and bottom 100
words (words with the most positive and the most
negative scores), respectively, from each lexicon
induced from sentiment classification tasks. For
emotion classification tasks, only the top 100 words
are drawn. We form multiple questionnaires for
each one of the seven labels. An example of the
questionnaires can be found in Appendix F.

Evaluators are required to choose from four cat-
egories for each word in the questionnaires (e.g., to
evaluate the words in “joy" lexica, four categories
are Describes Joy, Related to Joy, Not Related to
Joy and Do Not Know). Further details can be
found in Appendix F.

We combine the responses to the questionnaires
to determine whether a word is considered reason-
able for the lexica. If 80% of responses classify a
word as either of the first two categories, we then
say that it is considered a reasonable candidate for
the lexica by human evaluators.

In Table 2, we report the proportion of the rea-
sonable words averaged across all sentiments and
emotions for each lexicon induction approach. The
detailed results for sentiment and emotion tasks are
presented in Appendix F.

Sentiment Emotion

Methods Once | Freq | Once | Freq
| Univariate [ 7 [329] 22 ] 13 ]

SVM_STI 312 | 595 | 164 | 22.6
FFN_STI 37.2 | 63.7 | 16.6 22
dLSTM? _Attn || 115 | 59.7 | 11.4 | 21
DB*_Mask 175 | 562 | 142 | 224
DB*_SHAP 11.2 | 354 7.8 18.4
RB>_Mask 122 | 354 9.4 19.6
RB>_SHAP 152 | 35.8 12 23.2

Table 2: Lexica interpretability human evaluation re-
sults: percentage of words annotated as “the word de-
scribes the [sentiment/emotion]" or “the word is related
to the [sentiment/emotion]" averaged across all corpora
for each method

Significantly more words, both rare ones and
frequent ones, in lexica induced using context-
oblivious approaches, are considered more reason-
able by annotators than those in lexica induced us-
ing context-aware approaches (Table 2). This obser-
vation is especially evident for lexica induced from
sentiment tasks, for which, lexica from context-

4436



RoBERTa + Masking:

RoBERTa + PartitionSHAP:

Lexica Scores:

RoBERTa + Masking:

RoBERTa + PartitionSHAP:

Lexica Scores:

RoBERTa + Masking:

RoBERTa + PartitionSHAP:

Lexica Scores:

Great shop with lots of ideas . Prices are very reasonable.
Great shop with lots of ideas. Prices are very reasonable.
Great shop with lots of ideas. Prices are very reasonable.

1(a)
1(b)
1(c)

RoBERTa + Masking:
RoBERTa + PartitionSHAP:
Lexica Scores:

Worst experience I had in a restaurant. The burger came little burnt and the waiter was very rude. 2(a)

Worst experience I had in a restaurant. The burger came little burnt and the waiter was very rude. 2(b)

Worst experience I had in a restaurant. The burger came little burnt and the waiter was very rude. 2(c)

The movie takes such a speedy swan dive from excellent to interesting to familiar before landing squarely on stupid. 3(a)
The movie takes such a speedy swan dive from gxeellent to interesting to familiar before landing squarely on stupid. 3(b)
The movie takes such a speedy swan dive from excellent to interesting to familiar before landing squarely on stupid. 3(c)
They are anything but fabulous . Very disappointing experience. 4(a)

They are anything but fabulous . Very disappointing experience. 4(b)

They are anything but fabulous . Very disappointing experience. 4(c)

Figure 2: Comparisons between highlighting explanatory words in sentences using “lexicon scores induced by FFN
from Yelp dataset" and “RoBERTa finetuned on Yelp dataset with different feature importance scores" (red for

positive sentiment, blue for negative sentiment)

oblivious model contain double the number of “rea-
sonable words" as lexica from context-aware mod-
els. Such good performance, however, cannot be
simply due to the naive model structures, since lex-
ica generated by the frequency-based baseline are
not considered similar in quality.

Although lexica induced using different feature
importance measures for the same BERT models
yield similar generalization accuracy, they are, in
fact, very different. For example, the lexica induced
using masking from DistilBERT models have sig-
nificantly better performance in interpretability
compared to the lexica induced using SHAP from
the same models.

Finally, human evaluation interpretability results
remain consistent when investigating the correla-
tions between the lexica (Table 19 in Appendix E).
We notice that context-oblivious approaches in-
duce similar lexica (with an average correlation of
0.88), while lexica induced using context-aware ap-
proaches differ substantially from each other (with
average correlations ranging from 0.11 to 0.63).

5.2.2 Lexicon vs. Model: the use of lexica to
support interpretation

To interpret sentiment and emotion in text, peo-
ple often use predictive models with some feature
importance measurements. Alternatively, one can
inspect the lexicon scores associated with those
words in the text, and use that as an interpretation.
We take the lexica induced using FFN (the best-
rated lexica from the crowdsourced evaluation) and
compare it to ROBERTa (the best performing model
in predictive tasks) with various feature importance
measurements as interpretations for text instances.

To evaluate and compare these interpretations,
we highlight the words with the highest and lowest

scores in a set of texts considered by each method
(e.g., instances in Figure 2). And to assure com-
parability, thresholds are selected so that all meth-
ods highlight a similar number of words across
the corpus. On any given sentence, the number of
highlighted words is thus allowed to vary across
methods.

From Figure 2, we can observe that masking
is not a reliable interpretation method for the
RoBERTa model. It often attributes importance to
neutral background words and punctuation. SHAP
performs better than masking, but it tends to at-
tribute importance to neutral words adjacent to the
positive/negative words. (as in Figure 2 [1(b), 2(b),
4(b)]) and sometimes to punctuation (as in Figure 2
[4(b)]).

Lexicon scores of neutral words and punctuation
are reliable and stable. Plus, they are more sensitive
to the change of the positivity of the adjectives
than SHAP (as shown by comparing Figure 2 [3(c),
3(b)D.

Lexica are oblivious to context, and thus cannot
identify negativity in expressions such as “anything
but fabulous" (as in Figure 2 [4(c)]). However, it
is controversial whether generally positive words
still have positive meanings when they are used in a
negative context. For example, does “fabulous” still
carry positive meaning when it is used in “anything
but fabulous"?

6 Conclusion

Comparing lexicon induction approaches based on
various models — interpreted by different feature
importance measures, and tested on various corpora
— yields insights into what works best for inducing
lexica and supporting interpretation.

We observe that context improves model gen-
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eralizability, but not lexicon generalizability. The
simpler context-oblivious models produce lexica
with better generalizability: better predictive perfor-
mances both within the training corpus and across
different corpora. Lexica induced using context-
aware models lose the superiority in across-domain
generalizability of context-aware models.

When we induce lexica from the context-aware
models, we lose the sequence information learned,
as the lexica themselves are context-oblivious. That
also leads to a surprising finding that, for context-
oblivious models, linear classifiers using lexica
scores do not show much performance drop com-
pared to more complex models.

Lexica generated from context-oblivious mod-
els not only generalize better, but also align closer
with human intuition. Human evaluation shows
that more words in lexica induced using context-
oblivious models are considered reasonable than in
lexica induced using context-aware models, regard-
less of whether the words are rare or frequent.

We also find that the lexica generated from differ-
ent context-oblivious models are correlated, while
lexica generated from different context-aware mod-
els vary more.

Furthermore, lexicon scores can more reliably
identify explanatory words in texts than feature-
importance measures applied to transformer mod-
els.

7 Future Work

Lexica used in computational social science range
from ad hoc sets of words selected by a single in-
vestigator to carefully crafted and validated word
collections. Future work should compare the qual-
ity of computer-generated lexica such as the ones
included in this paper against this range of human-
constructed lexica.

We also found that feature importances of words
in context are highly unstable, and that such insta-
bility can be observed across various models and
feature importance measures. Future work should
investigate the scale of the instability and the rea-
sons for it.

8 Limitations

This work identified two desirable properties of lex-
ica, generalizability and interpretability, and eval-
uated lexica induced using various approaches in
terms of these two properties. However, to make
the most obvious comparisons, this work induced

lexica only using well-established sentiment classi-
fication tasks as representative examples. Lexicon
induction from other tasks should be explored to
ensure that the results are globally consistent.

In this paper, we found that better-performing
context-aware models generate worse lexica. This
work only tested existing feature importance mea-
surements; future work can search for improved
interpretation methods for context-aware models.

Finally, we only looked at English corpora. It
remains to be verified that these results generalize
across languages.
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A Dataset Information

Information on the datasets used in experiments of
this paper can be found in Table 3.

B Model Information

Information on the model architectures and specific
settings used in this paper can be found in Table 4.

We use AdamW as the optimizer. The learning
rate is le-4 for FFN and le-5 for all other neural
network models. We conduct an early stop strat-
egy which monitors the change of accuracy to de-
termine whether to stop training or not, and the
patience is 7.

C Lexica Examples

The examples of our induced lexica are presented
in Table 5.

D Generalization Results for Sentiment
and Emotion Classifications

Detailed generalization results can be found in Ta-
ble 6 - Table 11.

E Supportive Statistical Analysis

t-Test for Comparison between Models and Cor-
responding Lexica We conduct paired t-test on
f-1 scores of models and lexica generated from
them. We test on emotion tasks, sentiment tasks
and all the tasks together. The null hypothesis is
that the model has the same generalization perfor-
mance with the lexicon. Results can be found in
Table 12 - Table 14.

t-Test for Inter-Model and Inter-Lexicon Com-
parisons We conduct paired t-tests on f-1 scores
for model pairs and for lexicon pairs. As above, we
test on within-domain and across-domain datasets
separately. The results for models are in Table 15
and Table 16. The results for lexica are in Table 17
and Table 18. The null hypothesis is the models
or methods have the same generalization perfor-
mance.

Pearson Correlation between Lexica We cal-
culate the averaged Pearson correlation coefficient
for lexica induced by every pair of methods, and
present the numbers in Table 19.

F Human Evaluation Details

‘We run our human evaluations on Amazon Mechan-
ical Turk. Our HITs are in batches of 50 words,

with 10 attention checks per HIT. Each HIT is eval-
uated by 5 workers. The compensation for each
HIT was $1.00 or $0.02 per word rated. The me-
dian time for each HIT depends on the task, but is
slightly less than 5 minutes. Figure 3 shows the
first page of the HIT for positive sentiment.

For all HITs, we remove invalid responses based
on their performance on attention check words, i.e.,
if one response makes more than 2 mistakes on
check words, it is considered invalid and will thus
be filtered. We also mark the WorkerID of invalid
results to avoid them partaking other HITs.

We calculate the average Cohen’s kappa coeffi-
cient of HITs to evaluate inter-rater reliability. The
values for different tasks, e.g., positive/negative,
joy/sadness, etc., are between 0.431 and 0.576,
which show a sensible consistency among different
workers.

Lastly, we calculate the proportion of words con-
sidered reasonable in all the induced lexica. The
results for sentiment and emotions are in Table 20
and Table 21 respectively.
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Datasets | Training/Validation Size | Test Size | Mean Seq Length |

Yelp_Subset
[www.yelp.com/dataset] 27592/3398 3426 132.8
Amazon_FineFood_Subset
(McAuley and Leskovec, 2013) 2579413258 3188 96.3
Amazon_Toys_Subset

(McAuley and Leskovec, 2013) 17666/2094 2158 125.9
Joy 12646/1576 1548 18.3

NRC Fear 4046/510 578 19.1

Anger 2390/270 322 19.2

(Mohammad and Turney, 2013) - 17 oo 57807780 662 183
Surprise 4886/600 606 18.2

Joy 202 55.8

Song Fear 262 56.0

. Anger 284 56.4
(Mihalcea and Strapparava, 2012) Sadnoss 303 553
Surprise 302 55.6

Joy 8134 14.5

Dialog Fear 314 15.8

. Anger 1872 15.9
(Lietal,, 2017) Sadness | Only Used for Evaluation 2150 15.0
Surprise 3134 13.6

Joy 3420 10.2

Emotionlines Fear 492 1.3

Anger 1518 10.8

(Hsu etal,, 2018) Sadness 996 13

Surprise 3314 9.8

Emobank_Valence
(Buechel and Hahn, 2017) 7410 18.0
SST2
(Socher et al., 2013) 872 20.2

Table 3: Details on the datasets used for training and evaluation.

| Model | Architecture | Input [ Output |
Linear SVM
SVM Regularization C = 25 300 !
Linear:
300*1024
1024*512
FFN 512%128 300 2
128%2
Activation: Relu
diversity LSTM | The same as in Mohankumar et al., 2020, with attention weights outputted | 128*300 | 2
DistilBERT The same as in Sanh et al., 2019 128*768 | 2
RoBERTa The same as in Liu et al., 2019 128*%768 | 2

Table 4: Details on the model architectures used to induce lexica.
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Yelp_FFN_Negative [ Yelp_FFN_Positive [ Yelp_DistilBERT_Mask_Negative || Yelp_DistilBERT_Mask_Positive |

Word Score Word Score Word Score Word Score
discusting -25.336 || bookmarked 23.126 || diminished -1.45103 enticed 0.49419
uninviting -25.203 || expertly 20.613 || saddest -1.23786 famished 0.48921
unprofessionalism | -24.825 || terrific 20.422 || butchered -1.10995 magically 0.45964
undrinkable -24.606 || invaluable 19.827 || weirdest -0.92964 harried 0.41756
unedible -24.191 || bookmark 19.760 || marginal -0.83127 brilliant 0.41124
unprofessional -24.010 || thorough 19.671 || slowest -0.78917 vines 0.39751
unwelcoming -23.636 || adore 19.669 || absence -0.74505 overcharging 0.39042
unappetizing -23.060 || mouthwatering | 19.662 || patchy -0.70485 traditionally 0.38383
tastless -22.990 || fabulous 19.336 || embarrassment -0.68027 triangles 0.38312
unsanitary -22.861 || cutest 18.936 || lacks -0.67126 blessed 0.36406
inedible -22.086 || fantastic 18.791 || poorest -0.66787 souvent 0.36043
scammed -21.987 || superb 18.707 || won’t -0.65272 hooray 0.35292
undercooked -21.934 || unbeatable 18.588 || hated -0.64843 gimmick 0.35001
underseasoned -21.803 || marvelous 18.347 || disgraceful -0.61634 tornado 0.35000
tasteless -21.778 || wonderful 18.303 || lacking -0.57571 takeaway 0.34061
disgusting -21.667 || sweetest 18.224 || smattering -0.57051 excellently 0.33728
degraded -21.387 || amazing 18.050 || unwilling -0.56928 compelling 0.33546
disrespected -21.134 || tremendous 17.969 || disregard -0.56529 godsend 0.33355
unacceptable -21.036 || gorgeous 17.949 || thoughtless -0.56109 sympathetic 0.33345
flavorless -20.997 || versatile 17.852 || regrettable -0.55726 phenomenal 0.33086
insulted -20.826 || assisted 17.822 || insulting -0.55290 hardy 0.33078
inexcusable -20.806 || incredible 17.720 || atrocious -0.54360 np 0.32545
disrespectful -20.680 || stunning 17.601 || devoid -0.53357 troubles 0.32544
apologizes -20.557 || superbly 17.582 || comical -0.53046 congratulations 0.32380
substandard -20.364 || jackpot 17.579 || shameful -0.52006 depended 0.31622
insulting -20.305 || skillfully 17.576 || speechless -0.51451 scalloped 0.31149
vomited -20.176 || adorable 17.571 || dumbest -0.51364 catsup 0.31093
disgusted -20.057 || seamless 17.532 || declining -0.51047 proudly 0.30586
uneatable -19.964 || scrumptious 17.413 || overbooked -0.49153 souper 0.30103
humiliated -19.904 || delightful 17.384 || subpar -0.49027 rewarded 0.29642
lifeless -19.889 || seamlessly 17.304 || worst -0.48168 legit 0.28702
disjointed -19.837 || knowledgeable | 17.225 || destroy -0.47974 steered 0.28629
miserably -19.836 || enjoyed 17.140 || yucky -0.46464 hustling 0.28310
appalling -19.670 || personable 16.930 || disappointing -0.45567 psyched 0.28096
overcooked -19.602 || impeccably 16.926 || ruining -0.45190 appreciative 0.28092
apologized -19.583 || amazing- 16.912 || tastiest -0.44454 joking 0.27745
reeked -19.574 || mazing 16.847 || horrid -0.44354 powerful 0.27428
disrepair -19.520 || recommande 16.819 || disturbing -0.44239 perfected 0.27220
degrading -19.249 || thoughtful 16.681 || obscene -0.44145 avg 0.26942
pathetic -19.181 || unforgettable 16.500 || fiend -0.43779 cages 0.26939
apologize -18.936 || insightful 16.465 || questionable -0.42931 utmost 0.26898
uninspired -18.829 || guided 16.447 || flavorless -0.42255 deconstructed 0.26239
grossly -18.755 || phenomenal 16.412 || disgrace -0.40968 flippant 0.26056
disgraceful -18.710 || savored 16.359 || stingy -0.40387 reassured 0.25918
deplorable -18.703 || fab 16.335 || displeasure -0.40305 polo 0.25645
wasting -18.646 || unsurpassed 16.239 || offended -0.40262 seamless 0.25565
lied -18.550 || adored 16.047 || slim -0.39541 cokes 0.25446
rudest -18.539 || knowledgable | 15.949 || disgustingly -0.39347 shy 0.25239
shoddy -18.493 || beautifully 15.904 || wretched -0.38803 painless 0.25238
stunk -18.481 || excellently 15.655 || inaccurate -0.38731 shined 0.25084

Table 5: Sentiment lexica examples induced using the FFN model and the DistilBERT with masking.
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Please Note

« You have to be an English Native Speaker
« You have to complete judgments for all sentences. All fields are required.

Instructions

Some words describe sentiment, which means a positive or negative emotion while other words relate to
sentiment or emotion (eg, might cause it).

This task focuses on positive sentiment. For example, the word fantastic describes positive sentiment and the
word cake relates to positive sentiment. In this task, you will be given a set of words. For each word, you will
decide between the following choices:

a) the word describes positive sentiment

b) the word is related to positive sentiment (e.g. might cause it)
c) the word does not have any positive sentiment

d) don’t know (e.g. you don’t know the word)

Positive sentiment | Related to Unrelated Word Don’t know
Positive sentiment
great X
skiing X
deadline X
further X
the X
alsike X

Please confirm the following worker criteria:

(T have read the instructions

(JT have read the examples

(JT am a native English speaker

(JT agree to be part of future research studies.

Positive Sentiment Rating

Figure 3: An example for the Amazon Mechanical Turk HIT (positive sentiment).
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Model Lexicon Model Lexicon
Method Acc | FI |[Acc [FI Method Acc | F1 [Ace [F1
Univariant 0.783 | 0.776 Univariant 0.726 | 0.714
SVM_STI 0.855 | 0.853 | 0.852 | 0.851 SVM_STI 0.792 | 0.791 | 0.781 | 0.779
FFN_STI 0.856 | 0.852 | 0.834 | 0.832 FFN_STI 0.79 | 0.787 | 0.764 | 0.763
dLSTMZ Attn | 0.881 | 0.879 | 0.837 | 0.825 dLSTMz_Attn 0.899 | 0.899 | 0.764 | 0.756
DB3 Magk 0.900 0.900 0.841 0.838 DB3_Mask 0.825 0.825 0.772 0.761
DB SHAP 10900 10900 0841 10832 DB’_SHAP | 0.825 | 0.825 | 0.766 | 0.747
RB4_Mask 0.918 0.919 0.825 0.826 RB4_Mask 0.850 0.851 0.759 0.754
RB? SHAP | 0918 | 0919 | 0.847 | 0841 RB'_SHAP | 0.850 | 0.851 | 0.780 | 0.774

Table 6: Within-corpus performance of models and lex-  1able 10: Within-corpus averaged performance of mod-
els and lexica over both sentiment and emotion classifi-

cation tasks.

ica for sentiment classification task.

Model Lexicon Model Lexicon
Method Acc | F1 Acc [ F1 Method Acc | FI Acc [ FI
Univariant 0.635 | 0.621 Univariant 0.620 | 0.598
SVM_STI 0.721 | 0.719 | 0.718 | 0.717 SVM_STI 0.690 | 0.687 | 0.685 | 0.684
FEN_STI 0.693 | 0.677 | 0.690 | 0.686 FFN_STI 0.668 | 0.657 | 0.659 | 0.654
dLSTM?_Attn | 0.687 | 0.670 | 0.673 | 0.641 dLSTMZ Attn | 0.665 | 0.654 | 0.644 | 0.609
DB’_Mask 0.790 | 0.787 | 0.688 | 0.679 DB’_Mask 0.758 | 0.755 | 0.667 | 0.650
DB’_SHAP | 0.790 | 0.787 | 0.683 | 0.666 DB’_SHAP | 0.758 | 0.755 | 0.661 | 0.641
RB*_Mask 0.805 | 0.804 | 0.647 | 0.645 RBY_Mask 0.768 | 0.768 | 0.630 | 0.617
RB*_SHAP 0.805 | 0.804 | 0.686 | 0.675 RB*_SHAP 0.768 | 0.768 | 0.665 | 0.649

Tab.le 7. Acro.ss-corpora.perff)rmance of models and  Taple 11: Across-corpora averaged performance of mod-
lexica for sentiment classification task. els and lexica over both sentiment and emotion classifi-
cation tasks.

Model Lexicon
Method Acc [ i Acc [ Fi within-domain | across-domain
Univariant 0.674 [ 0.66 Methods Acc | F1_| Acc | F1
SVM STI 0734 10733 10716 | 0.714 SVM_STI 0.483 | 0.444 | 0.185 | 0.327
FEN ST 073 10728 10698 10,698 FFN_STI 0.065 | 0.089 | 0.305 | 0.173
STV At 10887 10887 0700 T 0.695 dLSTM”_Aun || 0.026 | 0.019 | 0.007 | 0.001
DB’_Mask | 0.759 | 0.76 | 0.710 | 0.694 DB’ Mask || 0.016 | 0.014 | Se-14 | 3e-11
DB SHAP | 0.759 | 0.76 | 0.703 | 0.677 DB’_SHAP || 0.006 | 0.004 | 6e-13 | 2¢-10
RB?_Mask 0.787 | 0.788 | 0.699 | 0.689 RB*_Mask 0012 | 0011 | de-17 | le-14
RBY_SHAP | 0.787 | 0.788 | 0.722 | 0.715 RB' SHAP [ 0.005 | 0.003 | 5e-13 | 8e-11

Table 8: Within-corpus performance of models and lex- ~ 1able 12: p-Values of paired t-tests for f-1 scores be-
ica for emotion classification task. tween models and lexica over sentiment classification
tasks.

Model Lexicon within-domain | across-domain
Method Acc | FI [Acc [FI Methods Acc | F1_| Acc | FI
Univariant 0.581 | 0.545 SVM_STI 0.028 [ 0.025 | 0.084 | 0.307
SVM_STI 0.627 | 0.622 | 0.620 | 0.618 FFN_STI 0.101 | 0.114 | 0.293 | 0.383
FEN_STI 0.599 | 0.5%0 | 0.587 | 0.579 dLSTM?_Attn || 0.017 | 0.013 | 0.005 | 0.017
dLSTMZ_Attn | 0.613 | 0.607 | 0.578 | 0.541 DB’ Mask 5ed 10003 | 7ed | 3ed
DB3_Mask 0.686 0.679 0.620 0.587 DB3_SHAP 0.004 0.015 0.006 0.003
DB>_SHAP | 0.686 | 0.679 | 0.613 | 0.586 RE™ Mask 3ed T ed | 5e5 | 83
RB? Mask 0.688 | 0.686 | 0.597 | 0.564 RB* SHAP o4 0.002 | 0.005 | 0.002
RB?_SHAP 0.688 | 0.686 | 0.625 | 0.605

Table 13: p-Values of paired t-tests for f-1 scores be-
Table 9: ACIOSS'CorPOfa performance of models and  yeen models and lexica over emotion classification
lexica for emotion classification task. tasks.
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within-domain | across-domain
Methods Acc [ F1 Acc | F1
SVM_STI 0.051 | 0.044 | 0.033 | 0.142
FFN_STI 0.031 | 0.040 | 0.057 | 0.548
dLSTMZ_Attn || 0.008 | 0.005 2e-4 8e-5
DB?_Mask 9e-5 le-4 | 6e-14 | 4e-13
DB’_SHAP 6e-5 | Se-4 | 2e-11 | 5e-11
RB* Mask 2e-5 2e-5 | 2e-17 | 2e-16
RB*_SHAP 7e-6 le-5 6e-12 | 7e-12

Table 14: p-Values of paired t-tests for f-1 scores be-
tween models and lexica over both sentiment and emo-
tion classification tasks.

y [ FFN [ dLSTM? | DB’ [ RB” |

SVM 0.549 0.014 0.002 | 4e-5
FFN 0.017 0.003 | 7e-5
dLSTM? 0.095 | 0.220
DB’ 7e-5

Table 15: p-Values of paired t-tests for within-domain
model f-1 scores.

y [ FFN | dLSTM? | DB’ | RB* |

SVM 0.005 0.012 2e-11 | 5e-12
FFN 0.730 9e-14 | le-11
dLSTM? le-10 | le-11
DB? 0.007

Table 16: p-Values of paired t-tests for across-domain
model f-1 scores.
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y [ SVM | FFN [ dLSTM”_Attn | DB’_Mask | DB’°_SHAP | RB*_Mask | RB*_SHAP |

Univariant 0.001 | 0.006 8e-4 0.004 0.033 0.006 6e-6
SVM 0.006 0.008 0.065 0.064 0.044 0.550
FEN 0.364 0.857 0.344 0.363 0.199
dLSTM?_Attn 0.533 0.504 0.853 0.003
DB?_Mask 0.116 0.349 0.163
DB?_SHAP 0.579 0.052
RB?* Mask 0.029

Table 17: p-Values of paired t-tests for within-domain lexicon f-1 scores.

y [ SVM [ FFN [ dLSTM”_Attn | DB’_Mask | DB’_SHAP | RB*_Mask | RB*_SHAP |

Univariant 3e-8 | 2e-4 0.610 4e-5 1e-8 0.095 2e-7
SVM 5e-4 2e-8 0.002 4e-4 2e-7 0.002
FFN 7e-5 0.375 0.173 0.005 0.602
dLSTMZ_Attn 4e-4 0.006 0.270 2e-4
DB?_Mask 0.311 2e-5 0.470
DB’_SHAP 0.019 0.067
RB*_Mask 5e-5

Table 18: p-Values of paired t-tests for across-domain lexicon f-1 scores.

y [ SVM | FEN [ dLSTM”_Attn | DB’_Mask | DB’_SHAP | RB*_Mask | RB’_SHAP |

Univariant 0.27 ] 0.30 0.45 0.13 0.42 0.12 0.37
SVM 0.88 0.26 022 0.21 0.18 0.24
FEN 027 021 021 0.17 0.23
dLSTMZ_Attn 0.18 0.28 0.15 0.29
DB?_Mask 0.22 0.32 0.24
DB?_SHAP 0.11 0.63
RB?* Mask 0.33

Table 19: Averaged Pearson correlation between lexica induced by different approaches.

Positive Negative
Methods One-time | Frequent | One-time | Frequent
Univariant 5.7 46 8.3 19.7
SVM_STI 20 57.3 42.3 61.7
FEN_STI 28.3 63.7 46 63.7
dLSTM?_Attn 8.3 60.7 14.7 58.7
DB’_Mask 10.7 50.3 24.3 62
DB’_SHAP 11.7 30 10.7 40.7
RB*_Mask 8 22 16.3 48.7
RB*_SHAP 9.7 29.3 20.7 42.3

Table 20: Percentage of words annotated as “the word describes the [sentiment]" or “the word is related to the
[sentiment]".

Joy Anger Fear Sadness Surprise
Methods Once | Freq | Once | Freq | Once | Freq | Once [ Freq | Once [ Freq
Univariant 6 19 0 13 3 14 1 13 1 6
SVM_STI 16 38 15 16 35 31 8 17 8 11
FFN_STI 21 39 19 15 28 28 6 17 9 11
dLSTM?_Attn 11 25 12 18 18 30 7 17 9 15
DB?_Mask 16 31 19 19 25 33 8 18 3 11
DB?_SHAP 18 22 10 21 6 20 2 18 3 11
RB?*_Mask 18 25 3 14 14 28 8 22 4 9
RB*_SHAP 29 29 11 17 14 32 2 23 4 15

Table 21: Percentage of words annotated as “the word describes the [emotion]" or “the word is related to the
[emotion]".
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