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Abstract

Solving math word problems is the task that
analyses the relation of quantities and requires
an accurate understanding of contextual natu-
ral language information. Recent studies show
that current models rely on shallow heuristics
to predict solutions and could be easily misled
by small textual perturbations. To address this
problem, we propose a Textual Enhanced Con-
trastive Learning framework, which enforces
the models to distinguish semantically similar
examples while holding different mathemat-
ical logic. We adopt a self-supervised man-
ner strategy to enrich examples with subtle
textual variance by textual reordering or prob-
lem re-construction. We then retrieve the hard-
est to differentiate samples from both equa-
tion and textual perspectives and guide the
model to learn their representations. Experi-
mental results show that our method achieves
state-of-the-art on both widely used benchmark
datasets and also exquisitely designed chal-
lenge datasets in English and Chinese. 1

1 Introduction

Solving Math Word Problems (MWPs) is the task
of automatically performing logical inference and
generating a mathematical solution from a natural
language described math problem. Solving MWPs
is a challenging task that cannot rely on shallow
keyword matching but requires a comprehensive
understanding of contextual information. For ex-
ample, as shown in Figure 1, while the first prob-
lem shares high token-level overlapping with the
third problem, the underlying mathematical logic
is different. While on the other hand, the first and
second problems have very low similarity at the tex-
tual level, while the equation solution is the same.
The challenge of the task is that the underlying

∗ This denotes equal contribution.
1Our code and data is available at https://github.com/

yiyunya/Textual_CL_MWP

Problem:  
 Dave bought  boxes of chocolate candy and gave 

to his little brother. If each box has  pieces inside it, how
many pieces did Dave still have? 

 

Different Textual, Similar logic:  
 A new building needed  windows. The builder had

already installed  of them. if it takes  hours to install
each window how long will it take him to install the rest? 

 

Similar Textual, Different Logic:  
 For halloween Faye got  pieces of candy. she ate 

 pieces the first night and then her sister gave her 
more pieces. How many pieces of candy does Faye have
now?  

 

Figure 1: Example of positive data point P+ =
(T+, E+) and negative data point P− = (T−, E−) for
an anchor P = (T,E).

mathematical logic would change even with mi-
nor modifications in the text. While neural network
based models have greatly boosted the performance
on benchmarks datasets, Patel et al. (2021) argued
that state-of-the-art (SOTA) models use shallow
heuristics to solve a majority of word problems,
and struggle to solve challenge sets that have only
small textual variations between examples.

Motivated by recent progress in contrastive learn-
ing methods, which is a flexible framework that
has been successfully employed to representation
learning in various fields (Chopra et al., 2005; Fang
and Xie, 2020; Gao et al., 2021), we propose Tex-
tual Enhanced Contrastive Learning, which is an
end-to-end framework that uses both textual and
mathematical logic information to build effective
representations. For each anchor data point, we
find the hard example triplet pair, which consists
of a textual-different but logic-similar positive data
point P+, and a textual-similar but logic-different
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negative data point P−. Our method aims to learn
an embedding space where the vector representa-
tions of P and P+ in Figure 1 are mapped close
together, since they hold the same mathematical
logic even though the textual expression is entirely
different; on the other hand, because P and P−

have similar textual expression but different mathe-
matical logic, their vector representations could be
separated apart.

To build such triplet pairs, we use a retrieval-
based method to search in the training data. We
consider the equation annotation as the representa-
tion of the mathematical logic in the example, and
retrieve a positive and negative bag of data points
according to equation similarity. Then we further
use textual similarity to choose the hard examples
in the bags, where positive examples have low
textual similarity with the anchor and vice versa.
Given such hard sample data, Contrastive Learning
could empower the representations by leading the
model to distinguish these potential disorienting
examples in the training stage.

Such approaches to retrieving triplet pairs from
human-annotated training data via label annotation
are considered as supervised contrastive learning.
Another research line of contrastive learning is self-
supervised contrastive learning, which does not
require labeled data and use data augmentation
methods to generate the positive or negative data
points (Chen et al., 2020; He et al., 2020; Grill et al.,
2020). In the task of solving MWPs, we can lever-
age self-supervised supervision by generating new
examples via performing synchronized changes to
text and equations. The generated data is naturally
hard sample data, because the textual expression
is similar to the origin example, while the equa-
tion could be either changed or the same. Specifi-
cally, we leverage Reversed Operation-based Data
Augmentation (Liu et al., 2021) and a Question
Reordering-based augmentation to form new data
points. By enhancing the model to detect the
small perturbations in the augmented examples,
contrastive learning forces the model to learn more
effective representations of contextual information.

While previous studies also used Contrastive
Learning to improve representations for solving
MWPs (Li et al., 2022), their method is limited
to supervised contrastive learning, ignores textual
information during constructing the contrastive
learning pairs and requires two step pre-training
and re-training. Our method pushes the model to

learn better text representations and understand the
most minor textual variance from these textual en-
hanced hard samples from both supervised and
self-supervised perspectives.

We conduct experiments on two widely used
datasets, the English dataset ASdiv-A (Miao et al.,
2020) and the Chinese dataset Math23K (Wang
et al., 2017). To further investigate how our method
improves the ability of the model to detect small
textual perturbations, we collect a Chinese chal-
lenge set Hard Example (HE)-MWP. We perform
experiments on two challenge sets of MWPs, the
English Asdiv-Adv-SP dataset (Kumar et al., 2021)
and the Chinese HE-MWP dataset. Experimen-
tal results show that our method achieves consis-
tent gains under different languages and settings,
demonstrating the effectiveness of our method.

2 Related Work

2.1 Solving Math Word Problems

There are various research lines in solving math
word problems. Early studies majorly rely on rule-
based methods (Bobrow, 1964; Charniak, 1969).
Statistical machine learning methods were devel-
oped to map math word problems to specific equa-
tion templates (Kushman et al., 2014; Roy and
Roth, 2015; Koncel-Kedziorski et al., 2015; Roy
and Roth, 2017). Another research line uses seman-
tic parsing-based methods to transform the input
text into structured representations that could be
parsed to obtain the answer (Roy and Roth, 2018;
Shi et al., 2015; Zou and Lu, 2019). Recent studies
focus on using a sequence-to-sequence (seq2seq)
framework that takes in the text descriptions of
the MWPs and predicts the answer equation. To
improve the framework, various studies have in-
vestigated task designing task specialized encoder
and decoder architectures (Wang et al., 2018, 2019;
Xie and Sun, 2019; Liu et al., 2019; Guan et al.,
2019; Zhang et al., 2020b,a; Shen and Jin, 2020),
using pre-trained models (Tan et al., 2021; Liang
et al., 2021) and leveraging auxiliary tasks (Liu
et al., 2021; Shen et al., 2021; Li et al., 2022; Shen
et al., 2022). Various auxiliary tasks have been in-
troduced to improve model performance. Shen et al.
(2021) introduced a reranking loss that reranks the
beam search predictions. Huang et al. (2021) in-
troduced a memory augmented subtask that gives
guidance during the decoding stage. The closest
study to our research is (Li et al., 2022), which uses
equations as searching schema to build positive-
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negative pairs, and then perform contrastive learn-
ing. However, their research ignores textual infor-
mation while building contrastive learning triplet
pairs and limits supervised contrastive learning.

MWP solvers have achieved relatively high per-
formance on benchmark datasets. However, the
extent to which these solvers truly understand lan-
guage and numbers remains unclear. Various stud-
ies either use data augmentation to help the model
improve robustness and performance on hard cases
or develop adversarial examples and challenge sets
to evaluate the robustness of MWP solvers against
textual variance. Liu et al. (2021) proposed a data
augmentation method that reverses the mathemati-
cal logic in the problem to generate a new example.
Patel et al. (2021) constructed a challenge set of
the math word problem in which the problem text
only has a small variance. Kumar et al. (2021) in-
vestigated adversarial attack on MWP solvers. The
challenge sets and adversarial attacks show that cur-
rent MWP solvers use shallow heuristics to solve a
majority of word problems and fail to detect subtle
textual variance.

2.2 Contrastive Learning

Contrastive Learning was first adopted in Com-
puter Vision to learn representations of images via
self-supervision without human annotation (Chen
et al., 2020; He et al., 2020; Grill et al., 2020).
Self-supervised contrastive learning is applied in
NLP to learn sentence representations. Back trans-
lation (Fang and Xie, 2020) and dropout (Gao et al.,
2021) are used to construct positive-negative con-
trastive learning triplets. These perturbation-based
techniques are not suitable for MWP solvers, that
MWPs are sensitive to small textual variance and
the perturbation might introduce noise.

Khosla et al. (2020) first introduced supervised
contrastive learning in Computer Vision by modify-
ing the loss to allow supervision from label annota-
tions. In NLP, various studies have introduced natu-
ral language inference (NLI) datasets as supervised
annotations for contrastive learning (Reimers and
Gurevych, 2019; Gao et al., 2021). The agreement
of equation annotations of MWPs can be consid-
ered a form of NLI, that our supervised contrastive
learning could be considered a transformation of
these methods.

3 Methodology

We use Contrastive Learning to obtain text features
with high differentiation of small perturbations,
so that for each anchor data point P = (T,E),
where T stands for the text and E stands for the
equation, we construct a pair of examples posi-
tive data point P+ = (T+, E+) and negative data
point P− = (T−, E−), and then use contrastive
learning loss to map the representation of P and
P+ closer and vice versa. The pipeline of the
triplet pairs retrieval is shown in Figure 2. We
first construct a candidate pool, which consists of
supervised training data {Pi} and augmented self-
supervised data {P aug

i } as shown in the blue part
of Figure 2. The self-supervised data is generated
by two methods, Reversed Operation based Data
Augmentation (RODA) and Question Reordering
(QR), which is explained in Section 3.1. Then we
perform two-step retrieval to retrieve the triplet
pairs as described in Section 3.2. We first use an
equation-based retrieval strategy to extract posi-
tive candidate set {P̃+} and negative candidate set
{P̃−}, and then further introduce textual informa-
tion by choosing one example from the candidate
set via a text-based retrieval strategy. Finally, we
train the MWP solving model that maps T to E by
considering both the contrastive learning and solu-
tion equation generation objective, as described in
Section 3.3.

3.1 Enriching Candidate Pool via
Self-Supervised Augmentation

The self-supervised examples are challenging for
the model to distinguish; while the perturbation
in the text expression is extremely subtle, the cor-
responding mathematical logic could still change.
Compared to the supervised examples that are re-
trieved from the training data, these self-supervised
samples place a higher demand on the model’s
ability to detect subtle changes and understand con-
textual information. We generate task-orientated
augmented examples from training set data point
P = (T,E) via two methods that obtain reliable
new text-equation examples by modifying the text
and equation in the same logic at the same time.
We split the sentences with punctuation marks to a
question followed by various declarative sentences
T = {S1, S2, ..., Sk−1, Qk}. The question sen-
tence is always the last sentence for Asdiv, and we
check whether interrogative pronouns are in the
last sentence for Math23K.
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Anchor 

 For finishing touches John
needed  gallons of paint, if
he bought  gallons to add to
his existing  gallons of
paint, how much more paint
will he need? 

Training Set
(Supervised)

  How much more paint
will he need, given that for
finishing touches John needed 

 gallons of paint, if he bought 
 gallons to add to his existing 
 gallons of paint? 

 John needs  gallons
more of paint, given that he
bought  gallons to add to his
existing  gallons of paint, how
many gallons of paint does he
need for finishing touches? 

 

 

Positive Candidate Set

Negative Candidate Set

Positive

Negative

Question 
Reordering

Reversed 
Operation 

based Data 
Augmentation

Augmented Set  
(Self Supervised)

Equation-based  
Retrieval Strategy

Text-based  
Retrieval Strategy

Text-based  
Retrieval Strategy

Candidate Pool

Self-Supervised 
Augmentation

Triplet Pair Retrieval

Figure 2: Overview of the contrastive learning triplet pairs retrieval procedure.

3.1.1 Question Reordering

We move the question to the front of the MWP
to form a reordered new MWP similar to Ku-
mar et al. (2021). Given a problem text T =
{S1, S2, ..., Sk−1, Qk}, we move the question Qk

to the front of the problem text to form a new
problem text TQR = {Qk, S1, ..., Sk−1} while the
rest of the text remains the same. We simultane-
ously edit the equation EQR so that the variables
match with the new text order. The new exam-
ple PQR = (TQR, EQR) could either be a positive
example that holds the same equation as P or a neg-
ative example that holds a different equation since
the variable order might change during the reorder-
ing. The high textual similarity but rotated variable
order pushes the model to learn representations that
can differ from these small textual perturbations.

3.1.2 Reversed Operation based Data
Augmentation

We perform RODA (Liu et al., 2021) that gener-
ates a new example by asking a question about
one of the original given variable. Given a prob-
lem text T = {S1, S2, ..., Sk−1, Qk} where the
question Q asks about an unknown variable nans,
RODA chooses a known variable n in one of the
declarative sentence Si, and then generates a prob-
lem text which asks about this variable. To gener-
ate such an example, Si is transformed to a ques-
tion QSi which asks a question of n, while Q is
transformed to a declarative sentence Sk describ-
ing nans. We reorder the problem text by swap-
ping the two sentences, that a new problem text
TRODA = {S1, ...Sk, ..Sk−1, Qi} is generated.
Simultaneously we edit the equation by resolv-

ing the equation expression ERODA of n given
nans. While PRODA = (TRODA, ERODA) has a
very similar textual description of P , the underly-
ing equation could be completely different, which
could benefit the model via contrastive learning.
RODA requires text parsing and transformation
rules to modify the text and equation. For Chinese,
it can cover 93% of the examples, and for English,
it covers 60% of the examples. The generated text
has a 0.83 out of 1 coherent score reported by hu-
man evaluation by Liu et al. (2021).

3.2 Triplet Pair Retrieval

We construct the positive and negative triplet pairs
from both textual and logical perspectives. For a
given problem P , the positive sample P+ is consid-
ered to be a problem with similar equation expres-
sions but relatively different text descriptions; the
negative sample P− is considered to be a problem
with highly textual similarity but different equation
expression. However, it requires a time-consuming
bruce-forth enumeration of all possible example
pairs to find such optimal positive and negative sam-
ples. Considering the computational complexity,
we break down the retrieval to a two-step pipeline.
we adopt a heuristic searching algorithm to con-
struct positive and negative samples (P+, P−) as
follows:

1. Construct a similarity matrix M of all equa-
tion expressions {E1, E2, ...En} in the train-
ing set, where Mij is the similarity of equation
expression Ei, Ej .

2. For a given anchor P , Retrieve a positive can-
didate set {P̃+} and a negative candidate set
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{P̃−} of samples from the training set of the
data via equation expression similarity.

3. Extract the best positive example P+ and the
best negative example P− via textual similar-
ity.

We investigate various strategies to retrieve
(P+, P−) from both equation-based and text-based
perspectives.

3.2.1 Equation-based Retrieval Strategy
To evaluate the equation similarity during the re-
trieval, we design an equation similarity metric
Simeq based on length-wise normalized tree edit
distance (TED). TED is defined as the minimum-
cost sequence of node operations that transform
one tree into another and is a well-known distance
measure for hierarchical data. We define the TED
of two equation expressions E1, E2 as the TED of
their abstract syntax tree. The similarity of two
equation expressions E1, E2 is defined as:

Simeq(E1, E2) = 1− TED(E1, E2)

|E1|+ |E2|

Given this equation similarity metric, we design
two retrieval strategies.

Exact Match The positive candidate set {P̃+}
is constructed of the examples that meets
Simeq(E,Ei) = 1, which means their equation
expression satisfies E = Ej . If only the anchor
itself holds this equation expression, the positive
candidate set {P̃+} has only the anchor P . The
negative candidate set {P̃−} is constructed of the
examples that meets argmaxEi ̸=E(Sim(E,Ei)),
which holds the closest equation considering the
anchor.

Nearest Neighbour The positive candidate
set is constructed of the examples that meets
argmaxEi,Ti ̸=T (Simeq(E,Ei)). If no other ex-
ample holds the same equation expression as the
anchor, the positive candidate set {P̃+} takes
the examples that has the nearest neighbour equa-
tion expression. The negative candidate set
{P̃−} is constructed of the examples that meets
argmaxEi ̸=E+(Simeq(E,Ei)), which holds the
closest equation considering the positive example.

The positive and negative candidate sets are then
further screened by the text-based strategy.

3.2.2 Text-based Retrieval Strategy
To lead the model to differentiate mathematical
logic from similar textual expressions, we use
textual-based information to select the (P+, P−)
pair. We select the lowest textual similarity score
example from the positive candidate set {P̃+},
which is the example with different textual expres-
sion but the same mathematical logic; and select
the highest textual similarity score example from
the negative candidate set {P̃−}, which is the ex-
ample with similar textual expression but different
mathematical logic. We design two similarity mea-
surement metrics for this stage.

BERTSim Sentence-BERT (SBERT) is a strong
sentence representation baseline model (Reimers
and Gurevych, 2019). We calculate the cosine sim-
ilarity of the SentBERT representation of the two
sentences to obtain the similarity score:

SimBERTSim
text =

SBERT (T1) · SBERT (T2)

||SBERT (T1)||||SBERT (T2)||

The value range of SimBERTSim
text is from

[−1, 1].

Bi-direction BLEU BLEU is a widely used eval-
uation metric for text generation that measures the
similarity between the generated text and the refer-
ence. We design a Bi-direction BLEU since BLEU
is a not symmetrical similarity metric, which is
defined as:

SimBiBLEU
text =

BLEU(T1, T2) +BLEU(T2, T1)

2

The value range of SimBiBLEU
text is from [0, 1].

3.3 Training Procedure
We show the training procedure in Figure 3. The
training loss consists of the MWP solving loss
Lsolver and the contrastive learning loss Lcl.

MWP Solving Model We follow Li et al. (2022)
and use the strong baseline model BERT-GTS as
MWP solving model. The pre-trained language
model BERT, which provides strong textual rep-
resentations, is leveraged as the encoder. For the
decoder, we use Goal-driven tree-structured MWP
solver (GTS) (Xie and Sun, 2019). GTS directly
generates the prefix notation of the solution equa-
tion by using a recursive neural network to encode
subtrees based on the representations of its children
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Dataset Math23K Asdiv-A HE-MWP Adv-Asdiv
Language zh en zh en
Domain general general challenge challenge
#Train 21,162 1,218 - -
#Dev/#Test 1,000 / 1,000 - / - - / 400 - / 239
#Equation Templates 3,104 66 231 66

Table 1: Statistics and details of the datasets.

Figure 3: Overview of the training procedure.

nodes with the gate mechanism. With the subtree
representations, this model can well structured in-
formation of the generated part to predict a new
token.

Contrastive learning Contrastive learning is per-
formed on triplets pairs (P, P+, P−) by pulling the
representations of T and T+ together and pushing
apart the representations of T and T−. We follow
the contrastive learning framework in Chen et al.
(2020), which takes an in-batch cross-entropy ob-
jective. Let xi denote the encoder representation
of P , the training objective for (xi, x+i , x

−
i ) within

the batch of N triplet pairs is:

Lcl =

− 1

N

N∑

i=1

log
ecos(xi,x

+
i )/τ

∑N
j=1(e

cos(xi,x
+
j )/τ + ecos(xi,x

−
j )/τ )

where τ is the temperature hyperparameter.
Assume the prediction target equation of P is

y, the final training objective is to minimize the
sum of the MWP solution equation generation neg-
ative log likelihood loss Lsolver and the contrastive
learning loss Lcl:

L = Lsolver + α ∗ Lcl

4 Experiments

4.1 Datasets

We perform experiments on four datasets, including
two widely used datasets to verify the generaliza-
tion ability of our method and two challenge test
sets to show further how our method can enhance
the robustness of the model. We show detailed
statistics of the datasets in Table 1.

Math23K is a Chinese dataset that contains
23,161 math word problems of elementary school
level (Wang et al., 2017). We use the standard train-
test split setting of this dataset for the experiment.

Asdiv-A is the the arithmetic subset of ASDiv
which has 1,218 MWPs mostly up to grade level
4 (Miao et al., 2020). Experiments of this dataset
are evaluated by 5-cross validation.

HE-MWP Since no challenge dataset has been
developed for Chinese MWP solving, and existing
challenge datasets have limited types of equation
templates, we use RODA and QR on Math23K
validation set to generate examples that are se-
mantically similar to the original input but deceive
the model into generating an incorrect prediction.
We randomly sample a subset of 600 examples
from the RODA result of the development set of
Math23K and then manually delete the examples
that the text is not coherent. Then we randomly
select 400 examples out of this cleaned subset.

Adv-Asdiv-SP is challenge set of Asdiv-A,
which is constructed of adversarial examples (Ku-
mar et al., 2021). These adversarial examples are
generated by sentence paraphrasing.

Results of the challenge datasets are tested on
the highest performance models trained on the cor-
responding benchmark datasets.

There exists other MWP datasets, which are rela-
tively less challenging such as ALG514, DRAW1K
and MAWPS (Kushman et al., 2014; Upadhyay and
Chang, 2017; Koncel-Kedziorski et al., 2016), or
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Model Cand. Pool Math23K Asdiv-A HE-MWP Adv-Asdiv-SP
GTS (Xie and Sun, 2019) - 75.6 68.5 - 21.2
G2T (Zhang et al., 2020b) - 77.4 71.0 - 23.8
pattern CL (Li et al., 2022) train 83.2 - - -
BERT-GTS - 82.9 73.4 55.5 59.9
w/ supervised CL train 84.1 74.2 57.2 63.7
w/ RODA CL RODA+train 84.3 74.3 64.1 64.1
w/ QR CL QR+train 84.2 74.4 62.5 66.2
w/ CL RODA+QR+train 85.0 74.6 69.5 66.9

Table 2: Results on MWP datasets. All experiments only compute MWP solving loss on the training set. The
candidate pool only affects the choice of positive and negative examples in the CL loss.

noisy such as Dolphin18K (Huang et al., 2016)
or use semantic parsing as annotation such as
MathQA (Amini et al., 2019). We use the two
benchmarks Math23K and Asdiv-A because they
are both clean and challenging with mathematical
equation annotations.

4.2 Implementation Details
We use two language-specific BERT-base models
as the problem encoder2. For both models, the
maximum text length of the encoder is fixed at 256,
and the maximum equation generation length of
the decoder is fixed at 45. The decoder embedding
size is 128. The batch size is 16, with learning rate
of 5e-5. We tune the hyperparameters temperature
τ in the set of {0.05, 0.1, 0.2} and α in the range
[0.1, 0.9]. Experiments of the Chinese datasets
are conducted on V100 and RTX 3090 with ap-
proximately 6 hours of runtime. Experiments of
the English datasets are conducted on 1080Ti with
approximately 1-hour runtime.

5 Results and Analysis

5.1 Pre-examination on Retrieval Strategy
We conduct a breakdown analysis on the most com-
plex dataset Math23K of different retrieval strate-
gies. We investigate the performance of different
retrieval strategies for supervised contrastive learn-
ing. As shown in Table 3, for the equation-based
retrieval strategy, the exact match equation strat-
egy is more effective than the nearest neighbour
strategy. This shows that the positive sample for
the anchor must have accurate same mathematical
logic for contrastive learning to benefit the per-
formance. Both text-based retrieval strategies can
improve the MWP solving performance compared

2English: https://huggingface.co/bert-base-uncased, Chi-
nese: https://huggingface.co/yechen/bert-base-chinese

Eq Strategies
Text Strategies EM NN
Random 83.2 82.3
BERTSim 83.6 83.1
Bi-BLEU 84.1 83.2
BERT-GTS 82.9

Table 3: Results of different retrieval strategies for super-
vised contrastive learning. EM denotes exact match. NN
denotes nearest neighbour. Random denotes randomly
choosing an example from the candidate set. BERTSim
and Bi-BLEU denotes choosing the examples by simi-
larity metric.

to the random choosing baseline, demonstrating the
effectiveness of introducing textual information for
contrastive training. With textual-based retrieval,
the extracted positive and negative examples would
form hard examples that can push the model to
differ textual-similar but logic different examples.
Bi-BLEU also has a slightly higher performance
than BERTSim. In the following experiments, we
use the best combination of EM and Bi-BLEU as
retrieval strategies.

5.2 Main Results

We show the results of our method compared with
other baselines in Table 2. In addition to our base-
line BERT-GTS model, we also investigate three
strong baseline models. GTS (Xie and Sun, 2019)
uses an LSTM encoder and the same decoder as
BERT-GTS that generates the abstract syntax trees
through a tree structure decoder in a goal-driven
manner. G2T (Zhang et al., 2020b) is a graph-to-
tree model that uses a graph-based encoder for rep-
resenting the relationships and order information
among the quantities. Pattern CL (Li et al., 2022)
proposes a pattern-based contrastive learning, that
considers the equation similarity with supervised
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Figure 4: T-SNE Visualization results of BERT-GTS
w/o (left) and w/ CL (right).

Figure 5: T-SNE visualization for the case study on
BERT-GTS w/o (left) and w/ CL (right).

contrastive learning. We can see from the results
that our method outperforms previous studies in all
datasets. Compared to Pattern CL which ignores
textual information, our method allows the model
to have a stronger ability to bridge text descriptions
to mathematical logic even using the same candi-
date pool. The self-supervised methods outperform
the supervised settings, especially on challenge
datasets, demonstrating the effectiveness of lead-
ing the model to learn contextual representations
of small textual perturbations.

On benchmark datasets, we achieve 2.1% points
of improvement on Math23K and 1.2% points of
improvement on Asdiv-A. One major reason is
that RODA can only generate 394 examples for
the English dataset Asdiv-A. In contrast, it can
generate 47,318 examples for the Chinese dataset
Math23K because English has more strict grammar
than Chinese. On challenge datasets, we achieve
14% points of improvement on HE-MWP dataset
and 7.0% points of improvement on Adv-Asdiv-SP
dataset. For HE-MWP ablation, RODA is more ef-
fective since it could introduce new mathematical
logic examples. For Adv-Asdiv-SP, since QR is
similar to paraphrasing techniques, it gains more
improvement with self-supervised supervision.

5.3 Visualization and Case Study

We show T-SNE visualization results of the repre-
sentations of examples from the top-five frequent
equation templates in Math23K: n1∗n2/n3, n1∗n2,
n1/n2, n2/n1 and n1 ∗ (1 − n2), which refers to

Text 用一张长n1 厘米，宽n2 厘米的长方形
纸围成一个最大的圆柱，圆柱的侧面
积为多少平方厘米?

EN Given a piece of paper n1 centimeters
long and n2 centimeters wide, How many
square centimeters is the lateral area of the
largest cylinder enclosed by the rectangle?

w/o CL π ∗ n2 (#)
w/ CL n1 ∗ n2 (!)

Table 4: Case study on Math23K example. w/o CL
denotes the BERT-GTS baseline. w/ CL denotes using
contrastive learning.

orange, red, blue, grean and purple in Figure 4.
We can see that compared to the BERT-GTS base-
line on the left subfigure, in the right subfigure,
the text representations of the same equations are
pulled closer via our contrastive learning, and the
representation of different equations are separated
apart, which shows that our method can benefit the
representation learning.

We further investigate how our method improves
the representation via case study. In Table 4 the
BERT-GTS baseline could not infer from the tex-
tual description that the side area of a cylinder is the
area of a rectangle but rather uses shallow heuris-
tics when the word "cylinder" is encountered and
generates the constant π. By constructing positive
and negative sample pairs from both expressions
and textual descriptions and changing the represen-
tation space via contrastive learning, the model is
not misled by the keywords and correctly infers
that the mathematical logic is to calculate the area
of a rectangle so that the model with contrastive
learning generated the correct result. We also show
T-SNE visualization of the representation in Figure
5. The red dots are examples with the keyword rect-
angle and hold the equation n1 ∗ n2. The blue dots
are the examples that hold the equation π ∗ n1 or
π∗n2. The green dot is the studied case. We can see
that while BERT-GTS fails to separate the represen-
tation of the case from the cylinder or circle-related
equations, contrastive learning helps the model to
differentiate such confusing examples, learn better
representations, and predict the answer correctly.

5.4 Combination with Data Augmentation

While the high-quality and challenging augmented
examples have shown remarkable effectiveness for
contrastive learning, a question remains whether
contrastive learning is still effective when these aug-
mented examples are directly used as training data.
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Model Acc
baseline 82.9
+QR aug w/o CL 84.9
+QR aug w/ CL 85.2
+RODA aug w/o CL 84.8
+RODA aug w/ CL 86.4

Table 5: Results of using augmented example for both
training and contrastive learning.

Thus, we further investigate using the augmented
examples as anchors. We use the augmented ex-
amples and the original data as training data and
perform supervised contrastive learning in the train-
ing data. As shown in Table 5, we can see that
while the augmented examples improve the perfor-
mance, contrastive learning can further boost the
performance, achieving SOTA results on Math23K.

6 Conclusion

In this paper, we propose a Textual Enhanced Con-
trastive Learning framework, which leverages both
supervised and self-supervised supervision to help
the model understand contextual information and
bridge subtle textual variance to mathematical logic.
We use two novel task-specific data augmentation
methods to enrich the candidate pool with examples
with minor textual variance for contrastive learn-
ing triplet pair retrieval. We design a two-stage
retrieval method to find hard example triplet pairs
with both equation and textual information and
investigate various retrieval strategies. Experimen-
tal results show that our method gained improve-
ment on both benchmark datasets and challenge
datasets in English and Chinese. We also conduct
visualization for representation distribution on dif-
ferent equations and also on a case study, which
shows our method can benefit the representation
learning. With the combination of data augmen-
tation, our method still improves the performance
and achieves SOTA results on Math23K dataset.

Limitations

While our framework extracts contrastive learning
triplet pairs with light computational complexity,
we observe that such a two-stage retrieval strategy
might not be optimal under certain circumstances.

We build the framework assuming that methods
with similar mathematical logic (i.e., high equation
similarity) would form challenging negative exam-
ples. However, especially for self-supervision, such

an assumption can block out the augmented small
variance examples from consideration for triplet
pairs because their equation might not be the most
similar one. This is more severe when using RODA
for self-supervised augment. The generated exam-
ples of RODA usually have relatively low equation
similarity with the origin example. However, the
RODA examples remain challenging as we can see
the performance of HE-MWP still has a gap of 15%
points compared to the original Math23K datasets.

A strategy that considers equation and textual
similarity in the same stage could be introduced
to fill this gap. However, such strategies cannot
avoid the heavy computational complexity caused
by calculating the metric of all data pairs. This
could be reduced by recent studies in rapid embed-
ding retrieval algorithms such as FAISS (Johnson
et al., 2019) by transforming the equation similar-
ity to embedding similarity via embedding training
methods. This remains as future work in this paper.
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