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Abstract

In this paper we conduct a set of experiments
aimed to improve our understanding of the lack
of semantic isometry in BERT, i.e. the lack
of correspondence between the embedding and
meaning spaces of its contextualized word rep-
resentations. Our empirical results show that,
contrary to popular belief, the anisotropy is
not the root cause of the poor performance of
these contextual models’ embeddings in seman-
tic tasks. What does affect both the anisotropy
and semantic isometry is a set of known biases:
frequency, subword, punctuation, and case. For
each one of them, we measure its magnitude
and the effect of its removal, showing that these
biases contribute but do not completely explain
the phenomenon of anisotropy and lack of se-
mantic isometry of these contextual language
models.

1 Introduction

The introduction of the Transformer architecture
(Vaswani et al., 2017) has had an enormous im-
pact over Natural Language Processing (NLP) in
the last years. These models, trained for language
modelling via self-supervision over huge text col-
lections, have become the state-of-the-art in many
NLP tasks by applying a fine-tuning process with a
small supervised dataset.

Semantic Textual Similarity (STS) is one of
these tasks, where training a linear layer on top
of BERT (Devlin et al., 2019) to get the similarity
score of two concatenated sequences has emerged
as a new standard in this field. However, this ap-
proach, called cross-encoder, has its own problems.
It takes two sentences as input, so it has to rerun
the whole model for each pair of sentences. This
makes infeasible the application of this approach
to most tasks.

In order to solve this problem of efficiency, a
lightweight approach called bi-encoder, consist-
ing on obtaining the distance of two sentences
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within the embedding space, has emerged. In
this case, each sentence is passed separately to
the Transformer, which obtains an embedding for
each of them. A similarity metric is then com-
puted between the two embeddings. Unfortunately,
this approach does not perform well with vanilla
pre-trained Transformers. Reimers and Gurevych
(2019) showed that representing sentences by aver-
age contextual BERT embeddings perform worse
than averaging static Glove embeddings in seman-
tic tasks (Pennington et al., 2014), despite their lack
of contextuality.

On the other hand, studying this mismatch be-
tween the contextual word embedding and meaning
spaces, Gao et al. (2019) diagnosed high anisotropy
in Transformer language models, named as the
representation degeneration problem. This means
that embeddings do not follow a uniform distri-
bution with respect to direction, i.e. the embed-
dings concentrate in an hypercone instead of oc-
cupying the whole space. They stated that this
degeneration of the representation space could be
closely related with the lack of semantic isometry
to the point that some authors have tried to correct
it by applying isotropy correction techniques (Li
et al., 2020; Su et al., 2021). On the other hand,
approaches based on contrastive learning have re-
cently achieved remarkable improvements in this
respect (Zhang et al., 2021; Giorgi et al., 2021; Yan
et al., 2021; Gao et al., 2021).

Contrastive learning methods pull together se-
mantically similar sentence vectors and push apart
semantically dissimilar ones, partially correcting
the semantic isometry of embedding spaces. De-
spite their good results, these techniques also have
their own problems. The main difference between
these methods is how they perform the selection
of the positive (similar) and negative (dissimilar)
sentence pairs they need for training.

For example, Zhang et al. (2021) used back trans-
lation from English to German to obtain augmented
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views of a sentence, and Giorgi et al. (2021) used
near text spans in a document as positive sam-
ples. Finally, Gao et al. (2021) used dropout as a
data augmentation technique for the unsupervised
model, and the NLI dataset (Bowman et al., 2015)
annotations for the supervised model. Despite their
originality, all of these approaches have different
weaknesses, and they are not easily improved, as
authors just find better ways of creating positive
and negative pairs, without really building on previ-
ous work. Consequently, improvements in seman-
tic isometry correctness obtained by one method
do not serve as a starting point for the next method,
and no progress is made in solving the overall prob-
lem.

Contrastive bi-encoder models achieve unprece-
dented results in semantic tasks, but the root cause
of the anisotropy and lack of semantic isometry ob-
served in pre-trained Transformer language models
is not fully understood. We think that any finding
in this area can be very relevant and open new re-
search lines that can lead to future improvements
in bi-encoder methods.

Therefore, our main aim in this research is the
improvement of our understanding of the BERT
embedding space, and the relationship between
semantics and isotropy through empirical results.
After our experimentation, we conclude that there
is not enough evidence to say that anisotropy is
the root cause of the lack of semantic isometry
of BERT embeddings, while some biases seem to
affect both isotropy and semantic isometry. We
name bias to any information from a sentence that
is encoded in the embedding space and that is not
relevant to its meaning.

This paper is structured as follows. In Section 2
we review the related work. Next, in Section 3 we
describe the experiments carried out and present
their corresponding analysis of results. In Section 4
we draw our conclusions, derived from our empir-
ical results, and leave some ideas for future work.
Finally, we state the limitations of this work.

2 Related work

The anisotropy found by Gao et al. (2019) when
training a model for Natural Language Generation
tasks through likelihood maximization is produced
by the combination of the Zipfian nature of natu-
ral language and the log-likelihood loss function.
This representation degradation makes the most
frequent tokens to concentrate in a hypercone in

the embedding representation space, having a more
sparse space for infrequent tokens.

Contrastive learning methods seem to correct
anisotropy to some extent as well, in addition to
semantic isometry, which could make us think that
the anisotropy was, in fact, part of the problem.
However, (Jiang et al., 2022) realized through a
series of experiments that there exist certain biases
in the BERT model, and that high anisotropy is
not always equivalent to poor semantic isometry.
Although the insights by Jiang et al. (2022) are
certainly interesting, they seem to contradict to
some degree previous works like (Gao et al., 2019;
Ethayarajh, 2019; Li et al., 2020).

On the other hand, Luo et al. (2021) and Koval-
eva et al. (2021) had found that a big portion of
the anisotropy of BERT comes from outlier dimen-
sions, related with positional information.

Cai et al. (2020) showed that, in spite of BERT
embeddings having global anisotropy, each cluster
in the embedding space is isotropic, and that this
local isotropy could be enough for Transformer
models to achieve their full representation power.
This hypothesis is supported by recent empirical
results from (Ding et al., 2022). If the anisotropy
comes from the existence of different clusters, and
these clusters encode non-semantic information
like token frequency, this can be matched with the
biases described by Jiang et al. (2022) and the rep-
resentation degeneration by Gao et al. (2019).

As it can be observed, there is no consensus
in the literature regarding the cause of the poor
performance of Transformer embeddings in seman-
tic tasks, and there is also no consensus about the
reasons for the anisotropy observed in these em-
bedding spaces. This disagreement is amplified by
the fact that there is not a standard method for eval-
uating anisotropy; for example, Ethayarajh (2019)
evaluates it at the word level, while Jiang et al.
(2022) consider the sentence level, by averaging
the word embeddings. We therefore find that there
is room for research and reflection on these aspects.

3 Experimentation and results

We initially carried out an exploratory analysis
to better understand the magnitude of the differ-
ent biases studied. Next, we compared several
Transformer-based language model configurations,
particularly: different pooling strategies and mod-
els, and a bias removal technique; all in terms of
isotropy and semantic isometry.
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A variety of studies like (Gao et al., 2019; Etha-
yarajh, 2019; Kovaleva et al., 2021) have shown
that different Transformer-based language models
have similar behaviours regarding high isotropy
and poor semantic isometry, even when they differ
in number of parameters, architecture or learning
objective.

We considered to evaluate the following mod-
els that share the same BERT architecture: BERT-
base-uncased, BERT-base-cased, unsupervised-
SIMCSE-base, and supervised-SIMCSE-base. The
conclusions we extract for BERT can be extended
to other models, as a variety of studies like (Gao
et al., 2019; Ethayarajh, 2019; Kovaleva et al.,
2021) have shown that different Transformer-based
language models have similar behaviours regard-
ing high isotropy and poor semantic isometry, even
when they differ in number of parameters, architec-
ture or learning objective.

The cased and uncased models were included in
order to study the case bias reported by (Jiang et al.,
2022). We also include both supervised and unsu-
pervised variants of SIMCSE (Gao et al., 2021) be-
cause it is a contrastive learning bi-encoder model
that achieves state-of-the-art results in semantic
tasks and it is interesting to see how much does
a successful model actually increase isotropy to
understand to what extent is the anisotropy related
with the poor semantic performance of the non
fine-tuned bi-encoders.

3.1 Exploratory analysis of biases

We call bias to any information from a sentence
that is encoded in the embedding space and that
is not relevant to its meaning. Four kinds of bi-
ases are defined by Jiang et al. (2022): frequency,
case, subword and punctuation. All of them could
partially overlap with token frequency, e.g. lower-
case tokens are more frequent than uppercase ones,
some punctuation marks like ‘.’, are more common
than normal words, and some subwords like ‘#s’
(from plural) are very frequent as well, so every-
thing could come down to the explanation given
by Gao et al. (2019), of very frequent tokens being
grouped in a hypercone.

To gain insight into the severity of these biases
in semantic (SIMCSE) and non-semantic (BERT)
embedding spaces, we sampled 1000 random sen-
tences from the Wikipedia corpus and plotted the
distributions of the similarities between pairs of
embeddings of different kind of tokens. We used

cosine as the similarity metric and selected the last
layer word embeddings from BERT-base-uncased
and unsupervised-SIMCSE-base (Figures 1, 2, and
3), except for the case bias, where we can only use
BERT-base-cased (Figure 4) as there is no cased
version for SIMCSE. We expected to find lower bi-
ases for SIMCSE, as its semantic isometry is higher
than the non fine-tuned BERT.

3.1.1 Frequency bias

In order to evaluate the frequency bias, we first
decided to compare the most frequent tokens with
randomly extracted less frequent tokens; however,
we finally opted to use a list of stopwords as the
most frequent tokens. The reason is that the list
of the most frequent tokens was mainly formed
by stopwords, punctuation marks and some very
common nouns like ‘man’ or ‘woman’. We treated
punctuation marks as a separate category because,
despite some of them being very frequent, we did
not want to assume a priori that there was not a
specific bias by punctuation mark, as this would
contradict the literature. On the other hand, nouns
like ‘man’ or ‘woman’ are very frequent, but, as
nouns, have an intrinsic meaning, unlike stopwords,
that only have meaning in a syntactic context. In
section 3.2 the biased tokens will be removed in
order to see the effect in isotropy and semantic
performance. We thought that removing nouns,
even if they are frequent and biased, could be more
detrimental to the meaning of the sentence than
removing stopwords; for these reasons, from this
point on, we will be using stopwords as a synonym
of ‘very frequent’ tokens.

Figure 1 shows that, even in the last layer of
BERT where stopword embeddings are very con-
textualized (Ethayarajh, 2019), the average simi-
larity between them is still slightly higher than the
similarity between stopwords and regular (less fre-
quent) words, or directly between regular words.
This confirms the frequency bias and relates it with
the fact that frequent tokens are concentrated in
a hypercone in the embedding space, while less
frequent tokens are more sparse. It can be observed
that this gap is reduced for the SIMCSE model,
a more semantic model than BERT, that seems
to have corrected some of this bias through con-
trastive learning. The contrary happens in the case
of subword bias, as will be shown below.
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Figure 1: Average cosine similarity between stopwords
and other tokens from uncased BERT (top) and unsu-
pervised SIMCSE (bottom)

3.1.2 Subword bias

Subwords are the pieces of words generated by
the BERT tokenizer when it encounters Out-Of-
Vocabulary (OOV) words, and their nature is var-
ied, being Named Entities, rare words, spelling
variations, or derivative and inflected words.

Figure 2 shows that the subword bias, under-
stood as the gap of the green distribution (similar-
ity between pairs of subwords), the blue distribu-
tion (similarity between pairs of whole words), and
the orange distribution (similarity between whole
words and subwords), is significantly higher in the
SIMCSE model, despite its overall average cosine
similarity being smaller (more isotropic) than in
the BERT-base model.

3.1.3 Punctuation bias

The case of punctuation marks is more complex.
For the BERT-base model, punctuation marks tend
to be more sparse in average than words. Figure 3
shows the high variance of the green distribution
in the BERT-base model, that represents the dis-
tance between punctuation marks. Furthermore, it
also shows a cluster at the right that reaches very
high similarities, being some of them near one. Al-
though these high similarities between contextual
embeddings are somewhat surprising, it all could
come down to frequency.
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Figure 2: Cosine similarity between words and sub-
words from uncased BERT (top) and unsupervised SIM-
CSE (bottom).

Some punctuation marks are extremely frequent
(e.g. commas or dots), others are relatively fre-
quent (e.g. exclamations or question marks), and
others are infrequent (e.g. asterisks or slashes); all
of this, combined with the frequency bias discussed
before, is most likely what generates the high vari-
ance of the distribution defined by cosine similarity
between punctuation marks, with lower values for
infrequent tokens and higher values for more fre-
quent ones. On the other hand, SIMCSE seems to
have solved the subword bias to a certain extent,
although there are still relatively high similarities
for some pairs of punctuation marks.

3.1.4 Case bias

Finally, the case bias is also non trivial. In the Fig-
ure 4 it can be observed that the distance between
uppercase words follows a multimodal distribution,
with small peaks in high similarity. This could be
explained because there are two types of uppercase
tokens: Named Entities, and beginning of sentence
tokens. Obviously these two groups are not mu-
tually exclusive, as a Name Entity can be at the
beginning of a sentence. Both types of tokens have
varied frequencies. For example, there are very
common proper nouns like months and weekdays,
and there are also words that are very common as
sentence beginners like “The’. The small peaks
in the highest cosine values could be due to these
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Figure 3: Cosine similarity between punctuation marks
and other tokens from uncased BERT (top) and unsu-
pervised SIMCSE (bottom)
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Figure 4: Cosine similarity between uppercase and low-
ercase words from cased BERT.

high frequency tokens. In general, the distance
between lowercase words is smaller. This is ex-
pected, as these tokens are usually more frequent
than uppercase ones.

3.1.5 Conclusions on bias analysis

Note that most of these points are just hypothe-
ses that would explain the results, but that require
verification. What we can conclude with certainty,
though, is that, in the non fine-tuned BERT mod-
els there is indeed such things as frequency, case,
and punctuation biases, while in SIMCSE we can
find a certain degree of subword bias. These biases
mean that a set of tokens sharing a non seman-
tic property lay in a hypercone in the embedding
space, apart from the rest of tokens that don’t meet
these properties, much like the clusters described

by Cai et al. (2020). The mere fact that the different
colors for each plot don’t completely overlap and
that they are sometimes multimodal supports this
claim. In SIMCSE, a model with a good perfor-
mance in semantic tasks, it can be observed that
there is a better overlap of the different distribu-
tions. Furthermore, the distributions tend to have
a lower variance and to be centered close to zero.
The mean value of the distribution being around
zero shows that these models are more isotropic.
However, this should theoretically be irrelevant, as
even if the distribution was centered in 0.8, that
would only increase anisotropy and would mean
that all the embeddings lay in a narrow hypercone,
which, by itself, should not be problematic to se-
mantics. What can be detrimental to the semantic
performance of the model is the existence of bi-
ased clusters in the space, that would distort it with
non semantic information. However, if the space is
semantic and not biased, being highly anisotropic
can harm the representation power of the model,
but should not distort the semantic isometry.

Therefore, one of our main claims is that
anisotropy is not harmful for semantics unless it
is produced by a bias. This is, anisotropy is not
a problem if it is the same for all tokens. If this
is true, then isotropy correction techniques should
not increase the performance in semantic tasks of
these models, which has been empirically proven
by Ding et al. (2022); Jiang et al. (2022). In the
next set of experiments, we further support this
idea through empirical evidence.

3.2 Isotropy vs semantic isometry

We combine and extend the experiments from
(Ethayarajh, 2019; Jiang et al., 2022) regarding
isotropy and semantic isometry evaluation in BERT.
For isotropy evaluation, we used the previous
dataset sampled from Wikipedia corpus and com-
puted the cosine similarity between sentence em-
beddings in the representation space. For semantic
isometry, we used the Semantic Textual Similarity
Benchmark (STSB) (Cer et al., 2017) and com-
puted the Spearman correlation between the cosine
similarity of each pair of sentences and their an-
notation within gold standard. We conducted the
following experimentation for all the layers of each
model, as the literature has shown that different
layers store different kinds of information.
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3.2.1 Pooling comparison

First, we compared different pooling strategies for
the BERT-base-uncased model. We used both the
average of all the word embeddings in a sentence,
and the CLS embedding as pooling strategies for
obtaining sentence-level embeddings. Reimers and
Gurevych (2019) pointed out that the CLS is sub-
stantially worse than the word average in semantic
tasks for the non fine-tuned BERT models; how-
ever, we still thought that it was worth to include
this strategy in our experimentation, especially to
see how it behaved in terms of isotropy.

Additionally, we included ‘none’ pooling, that
simply takes the word embeddings instead of pool-
ing them into a sentence embedding, thus allowing
the isotropy evaluation at the word level, like it
was done by Ethayarajh (2019). Here, the cosine
similarity between pairs of token embeddings is
computed, instead of sentence embeddings. This
can only be done for isotropy, as the benchmark for
semantic isometry is only available between pairs
of sentences. The results of this experiment are
shown in Figure 5.

First of all, as it was previously stated, it can
be observed that the semantic isometry of CLS
pooling is much worse than the one of average
pooling, despite being much more isotropic. On
the other hand, tokens (none pooling) are not that
much anisotropic in BERT-base-uncased, reaching
only average similarities lower than 0.3. Ethayarajh
(2019) showed higher anisotropy for the contextual
word embeddings, but that is because it was used
BERT-base-cased, which, as we will be able to see,
has a higher anisotropy than its uncased counter-
part.

Finally, the average pooling is highly anisotropic
and has an overall decreasing trend with the lay-
ers depth, which confirms the results of Jiang et al.
(2022). This higher anisotropy at the first layers
can be caused by the stopwords; the contextual-
ity in the first layers is low, which means that the
self-similarity (understood as the similarity of the
embeddings for the same token in different con-
texts) is high, and this combined with the high
frequency of these tokens, can have a big effect on
the average, moving it towards the high frequency
hypercone, and increasing the average similarity
between sentence embeddings in lower layers. The
isotropy in the last layer for the ‘none’ pooling
(token level isotropy) is consistent with the results
shown in 3.1, with the average being near 0.2.

— none
— avg

—CLS

anisotropy
(msine)

pooling
—avg
—cLs

STSB
Spearman correlation
o o

*

layer

Figure 5: Average cosine similarity (top) and accuracy
in STSB (bottom) for different pooling strategies.

3.2.2 Model comparison

For this experiment, we set the average pooling and
compared the different models studied in terms of
isotropy and semantic isometry. For BERT-base-
cased, we inputted uncased text for it to have the
same input as the other models. We study the dif-
ference of using cased and uncased text in a later
experiment. Results are shown in Figure 6.

It is interesting to observe how BERT-base-cased
performs clearly better in STSB than BERT-base-
uncased, while being around 50% more anisotropic.
In addition, we observe that the supervised variant
of SIMCSE, the model with the best semantic isom-
etry of the ones analysed, has an anisotropy only
slightly below the one of BERT-base-uncased, the
less semantic model, and far above the unsuper-
vised variant of SIMCSE. These observations rein-
force our hypothesis that, contrary to popular belief,
the anisotropy is not the cause of the poor perfor-
mance of pre-trained Transformer embeddings in
semantic tasks.

Another finding is that, although one might ex-
pect the embeddings from fine-tuned models to be
more semantic than their non fine-tuned counter-
parts across all the layers, SIMCSE models have
very similar semantic isometry to the ones of the
base models in the lower layers. For example, in un-
supervised SIMCSE, the semantic isometry starts
decreasing after the first layer as in the BERT-base
models. It is only around the 9th layer when the em-
beddings make a big shift towards a more semantic
space. Indeed it seems that the contrastive learn-
ing is mainly acting over the last few layers. This
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Figure 6: Average cosine similarity (top) and accuracy
in STSB (bottom) for different models.

can make sense if we consider that the semantic
information is already present in these Transformer
language models and that the contrastive learning
approach is basically removing all the non seman-
tic information (noise, biases, syntax, etc.), and
extracting the semantic information so that it can
be reflected through cosine similarity. We hypothe-
sise that the BERT-base language model contains
semantic information because it achieves remark-
able results in semantic tasks, like in the case of
cross-encoders in semantic textual similarity, by
just fine-tuning the model with a small dataset.

3.2.3 Bias removal

To continue with our experimentation, we tried re-
moving different sets of output token embeddings
related to the biases that we are studying. We apply
a similar approach to counterfactual invariance in
causal inference (Feder et al., 2021). Specifically,
we removed the embeddings from stopwords, sub-
words, and punctuation marks, with the objective
of highlighting the frequency, subword, and punc-
tuation biases reported by Jiang et al. (2022). We
also remove CLS, and SEP embeddings, as we have
seen that the CLS embedding has poor semantic
isometry, and SEP should not contain any relevant
information in inferences with a single sentence. It
is important to note that we did not remove these to-
kens from the input sentence. , as that could affect
the ability of a language model, trained with syntac-
tically correct sentences, to understand it. Instead,
we removed the embeddings after they have been
computed by the model, just before the pooling

step, like it is performed by Jiang et al. (2022); Yan
et al. (2021). That way, we could see how much
was each of these token categories contributing to
the low isotropy and semantic isometry observed
in BERT.

Again, we used average pooling. For the sake of
simplicity, we only display the curves for BERT-
base-uncased and unsupervised SIMCSE, but the
ideas extracted from these experiments also ap-
ply to the other models. We show a curve for the
removal of each of these categories of tokens indi-
vidually and for all of them combined, in order to
see how the improvements stack and how far we
can arrive in terms of semantic performance with
this method. The results are shown in Figure 7. It
can be observed how the removal of these tokens,
individually and combined, improves the results
over STSB to different extents in the lower layers
of both models. The fact that the effect of removing
these tokens is very similar in the first 9 layers of
BERT and SIMCSE, reinforces our claim that con-
trastive learning is mainly modifying the last layers
of the network. The only exception to this trend
are subwords whose removal is slightly detrimental
in both models. This was predictable if we think
that subwords are sometimes the result of splitting
words with a high semantic load, that are OOV for
being very specific, For example, ‘tofu’ is a OOV
word and is splitted in ‘#to’, and ‘#fu’. Even if
these subwords don’t make sense separately, the at-
tention mechanism of Transformers combines them
to get the meaning of the whole word. If we were
to remove them from a sentence, it would probably
have a high negative effect on its meaning. In fact,
the low impact of removing subwords is only due
to these tokens being relatively infrequent. Further-
more, our experiments in Section 3.1 showed that
the subwords were not biased in the BERT-base
model, but they were in SIMCSE. However, this
bias does not seem to be affecting SIMCSE, as the
removal of subwords also decreases its semantic
performance.

In the upper layers of the BERT-base model,
the improvement in semantic isometry is still sig-
nificant, while in the SIMCSE model the curves
converge. This second part is surprising, because
the SIMCSE model has been fine-tuned for taking
into account all the tokens, including stopwords,
punctuation marks, subwords, CLS and SEP. We
were expecting a higher decrease, especially for
the removal of the stopwords, and this can indi-
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Figure 7: Average cosine similarity (top) and accuracy
in STSB (bottom) for the removal of different kind of
tokens.

cate that the average contribution of these tokens
to the semantics is low, even in contextual word
embeddings. However, probably the information
given by these tokens had already been distributed
throughout the layers via self-attention, so the in-
variance of the semantic isometry despite their re-
moval from the final average does not necessarily
imply that they are not being taken into account for
obtaining the sentence meaning. On the other hand,
removing the biased tokens decreases anisotropy,
but this decrement is significant only in lower lay-
ers, especially for stopwords. This confirms the
high anisotropy of initial layers in average pooling
being partially due to the high frequency of low
contextual stopword embeddings. In the higher lay-
ers of the BERT-base model, the slight increase in
isotropy does not correspond in magnitude to the
big increase in semantic performance. Even in the
lower layers, where these two metrics improve, this
only confirms that biases can generate anisotropy,
but not necessarily the other way around. To sum
up, we have rejected subword bias and confirmed

frequency and punctuation bias. Nonetheless, we
still don’t know if the punctuation bias is just due
to the high frequency of some of the punctuation
marks, in which case, the punctuation bias would
be contained within the frequency bias. However,
we leave this experimentation as future work.

3.2.4 Case removal

With our next experiment we wanted to test how
much is the information of the case contributing
to the fact that the BERT-base-cased has a way su-
perior semantic isometry than BERT-base-uncased.
We tried inputting the text to bert-base-cased in its
original form with uppercase words and converted
to lowercase. The results are shown in Figure 8.

It can be observed that the uncased embeddings
are slightly more anisotropic than the cased ones.
This was expected, given the results of the previous
section, when we analyzed the case bias. Further-
more, the anisotropy when using a cased input is
still much higher than the one of the uncased model.
These results match the ones observed in the top
plot of Figure 1 (BERT-base-uncased) and in Fig-
ure 4 (BERT-base-cased), where the distributions
of the cased model show higher values than the
ones of the uncased model. This can make sense
if we consider that, during the cased model train-
ing, most of the lowercase tokens were probably
grouped in a hypercone, separated from the up-
percase ones, while for the uncased model, this
process did not happen because all the tokens were
processed as lowercase.

This is another example where more anisotropy
does not mean worse semantics. In this case, the
more anisotropic variant (the cased model) happens
to be more semantic.

What was unexpected to a certain degree was the
big drop in semantic isometry when using cased
text. This model had been trained with cased text,
and the fact that its embeddings are much more se-
mantic with uncased text further proves the idea of
biases being a big part of the lack of semantic isom-
etry of contextual word embeddings, and that there
could be other unknown biases responsible for this.
This big increase in semantic isometry when using
the cased model with uncased text is not reflected
in any way in the isotropy, which remains roughly
the same. This dissonance between both metrics
adds evidence in the direction of demonstrating our
hypothesis of anisotropy not being the root cause
of the lack of semantic isometry.
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Figure 8: Average cosine similarity (top) and accuracy
in STSB (bottom) for bert-base-cased with cased and
uncased text.

4 Conclusions

In this paper we have carried out a set of experi-
ments intended to confirm and measure known bi-
ases, and to understand their impact over anisotropy
and semantic isometry in fine-tuned and non fine-
tuned BERT models.

In our results we have not found a clear cor-
relation between isotropy and semantic isometry.
In fact, models or pooling methods with a higher
anisotropy are sometimes more semantic than oth-
ers that are more isotropic. However, there exists
a correlation between the biases and the semantic
isometry. These biases are present in the embed-
ding space, encoding information that is not seman-
tic, like the frequency of a token or its case. This
non semantic information distorts the embedding
representation space, which leads to poor perfor-
mance on semantic tasks. Due to this distortion,
biases naturally contribute to anisotropy, so there
is, in fact, sometimes a certain correlation between
isotropy and semantic isometry. But this correla-
tion is spurious and comes from both the anisotropy
and poor semantic isometry being a consequence of
a high bias. We don’t think that there is a causality
relation between isotropy and semantic isometry.
This means that isotropy correction methods will
not achieve substantial improvements over their
base models, which has been recently proven by
Ding et al. (2022). Therefore, it could be said that
assuming that the lack of isotropy of the embed-
ding spaces is the cause of the lack of semantics is
a post-hoc fallacy.

Methods that correct the embedding space to a
certain degree, like the ones based on contrastive

learning, also decrease anisotropy as side effect of
removing biases, but we can’t expect it to work the
other way around, which is, to remove biases by
increasing isotropy, as we could just be opening
the general cone, while keeping the same islands
with the same biases inside. Even after manually
removing the known biases (frequency, subword,
case, puntuation marks), we are still far away from
state-of-the-art unsupervised contrastive learning
models. We think this indicates that there are a
series of biases that we still don’t understand. One
promising line of work, taking into account the
results from (Luo et al., 2021) and (Kovaleva et al.,
2021), could be to try to find a positional bias, and
a way to correct it.

Limitations

The main limitation to be mentioned in relation to
this work is that we do not produce any improve-
ment over the state of the art in unsupervised nor
supervised semantic sentence embeddings. Rather
than that, we have focused our research on trying to
improve our understanding of BERT embeddings
space, and how their isotropy correlates with their
semantic isometry. We hope that our results will
give some valuable insights to other researchers.
Part of our experimentation was already done by
Ethayarajh (2019) and Jiang et al. (2022), however,
they both used different models and pooling strate-
gies, so their results seem contradictory. Part of
our contribution is to match these results and give a
more complete picture of the problem, hypothesis-
ing that the finding of new biases will contribute to
the objective of understanding the lack of semantics
in Transformer language models.
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