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Abstract

One of the common traits of past and present
approaches for Semantic Role Labeling (SRL)
is that they rely upon discrete labels drawn
from a predefined linguistic inventory to clas-
sify predicate senses and their arguments. How-
ever, we argue this need not be the case. In
this paper, we present an approach that lever-
ages Definition Modeling to introduce a gen-
eralized formulation of SRL as the task of
describing predicate-argument structures us-
ing natural language definitions instead of dis-
crete labels. Our novel formulation takes a
first step towards placing interpretability and
flexibility foremost, and yet our experiments
and analyses on PropBank-style and FrameNet-
style, dependency-based and span-based SRL
also demonstrate that a flexible model with
an interpretable output does not necessarily
come at the expense of performance. We re-
lease our software for research purposes at
https://github.com/SapienzaNLP/dsrl.

1 Introduction

Commonly regarded as one of the key ingredi-
ents for Natural Language Understanding (Navigli,
2018), Semantic Role Labeling (Gildea and Juraf-
sky, 2002, SRL) aims at identifying “Who did What
to Whom, Where, When, and How?” within a given
sentence (Marquez et al., 2008). More precisely,
for each predicate in the sentence, the task requires:
1) selecting its most appropriate sense from a pre-
determined linguistic inventory; ii) identifying its
arguments, i.e., those parts of the sentence that are
semantically related to the predicate; and, iii) as-
signing a semantic role to each predicate-argument
pair, as shown in Figure 1. Due to the potential
uses of these semantically rich structures, the re-
search community has seen steady progress in the
task, and SRL has been shown to be beneficial
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Figure 1: A: SRL annotations using predicate sense and
semantic role labels (top) compared with their natural
language definitions (bottom). B: the semantics of sense
and role labels is undefined for out-of-inventory pred-
icates (e.g., the inventories used for CoNLL-2009 and
CoNLL-2012 do not include an entry for “google”), but
we can still use valid natural language definitions.

for an increasingly wide range of applications in
Natural Language Processing (NLP), such as Ques-
tion Answering (Shen and Lapata, 2007), Infor-
mation Extraction (Christensen et al., 2011), Ma-
chine Translation (Marcheggiani et al., 2018), and
Summarization (Mohamed and Oussalah, 2019), as
well as in Computer Vision for Situation Recogni-
tion (Yatskar et al., 2016) and Video Understand-
ing (Sadhu et al., 2021), inter alia.

An important yet often overlooked aspect of SRL
is that, since its conception, the formulation of
the task has generally relied upon predetermined
linguistic resources, such as FrameNet (Baker
et al., 1998), PropBank (Palmer et al., 2005), Verb-
Net (Kipper Schuler, 2005) and, more recently,
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VerbAtlas (Di Fabio et al., 2019), which provide
the labels to be used for tagging predicates and
their arguments with senses and semantic roles, re-
spectively. Therefore, to this day, SRL has been
framed predominantly as a classification task in
which systems assign discrete labels to portions
of a sentence (Figure 1A, top). Although recent
systems have achieved impressive results on stan-
dard benchmarks (Hajic et al., 2009; Pradhan et al.,
2012) in English (Shi and Lin, 2019; Marcheggiani
and Titov, 2020) as well as in multilingual SRL (He
et al., 2019; Conia et al., 2021), we observe and
emphasize that relying upon discrete labels raises
the following critical questions:

* The assumption that both predicate senses and
semantic roles can be unequivocally catego-
rized into distinct classes has long been — and
still is — at the center of numerous discus-
sions because the boundaries between mean-
ings are not always clear-cut (Tuggy, 1993;
Hanks, 2000); unsurprisingly, disambiguation
approaches that are not tied to specific inven-
tories have been gaining momentum (Bevilac-
qua et al., 2020; Barba et al., 2021a,b).

* FrameNet, PropBank, and VerbNet are hetero-
geneous, non-overlapping resources that have
led, consequently, to specialized techniques
that are more effective on PropBank’s rather
than FrameNet’s labels, or vice versa.

* Relying on any predetermined inventory
hinders the ability to generalize to out-of-
inventory instances. For example, some rare
senses or neologisms may not be covered
by the inventory of choice, which, therefore,
does not define either their possible senses, or
their corresponding semantic roles (Figure 1B,

top).!

Furthermore, recent progress in NLP at large has
primarily pursued state-of-the-art results without
giving much importance as to why a system may
have a predilection for one particular option over
the alternatives, thus making it difficult for a human

'In several linguistic inventories, semantic role labels are
defined according to specific predicate senses, i.e., they are
sense-specific. This is the case for PropBank, in which core
arguments (ARGO through ARGS) acquire meaning only with
respect to a predicate sense, and for FrameNet, in which some
frame elements are specific to the frame they belong to (e.g.,
Ingestible is only defined for the frame Ingestion). We note
that this is not the case for some inventories such as VerbNet
and VerbAtlas, whose semantic roles generalize across frames.

to interpret their output. And SRL is no exception
to this.

In this paper, instead, we put forward a general-
ized formulation of Definition Modeling — the task
of defining the meaning of a word or multiword
expression in context — to reframe SRL as the task
of describing sentence-level semantic relations be-
tween a predicate and its arguments using natural
language definitions only. More specifically, our
contributions can be summarized as follows:

1. We move away from discrete labels and intro-
duce a novel formulation of SRL that reframes
the problem as the task of using natural lan-
guage to describe predicate-argument struc-
tures (Figure 1A, bottom).

2. We propose DSRL (Descriptive Semantic
Role Labeling), a simple yet effective con-
ditional generation model to produce such nat-
ural language descriptions, dropping discrete
labels while also demonstrating how to use
these descriptions to retrieve standard SRL
labels and achieve competitive or even state-
of-the-art results on gold benchmarks.

3. In contrast to previous work, our approach
provides an interpretable output in natural
language, can seamlessly produce descrip-
tions according to different linguistic theo-
ries and annotation formalisms, and naturally
admits descriptions for out-of-inventory in-
stances (Figure 1B, bottom).

4. We provide an in-depth analysis of the
strengths and pitfalls of our approach, show-
ing where there is still room for improvement.

We hope that our semantically-driven descriptions
in natural language, free of resource-specific labels
that require expert knowledge of SRL, will not only
enable easier integration of sentence-level seman-
tics into downstream applications but also provide
valuable insights to NLP researchers.

2 Related Work

Linguistic resources for SRL. As mentioned
above, SRL is generally associated with a linguis-
tic theory and a corresponding linguistic resource,
which defines an inventory of predicate senses and
semantic roles? (Baker et al., 1998; Palmer et al.,

*More precisely, FrameNet delineates frames and frame
elements, while VerbNet uses classes and thematic roles. Here-
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2005; Kipper Schuler, 2005). These inventories
are a rich and diverse source of expert-curated
knowledge; however, aligning sense and seman-
tic role labels across such resources using manual
or automatic techniques (Giuglea and Moschitti,
2006; Palmer, 2009; Lopez de Lacalle et al., 2014;
Stowe et al., 2021; Conia et al., 2021) is far from
trivial due to their heterogeneous nature, variable
degree of coverage, and different granularity. Per-
haps it is this complexity that has led researchers
towards the development of approaches that are
effective mainly in just one of the task “styles”,
usually PropBank-style SRL (Marcheggiani et al.,
2017; Cai et al., 2018; Strubell et al., 2018; Shi
and Lin, 2019; Blloshmi et al., 2021; Conia and
Navigli, 2022, inter alia) or FrameNet-style SRL
(Swayamdipta et al., 2017; Peng et al., 2018; Lin
et al., 2021; Pancholy et al., 2021, inter alia). To
sidestep this situation, recent studies have analyzed
the feasibility of moving away from rigorous lin-
guistic resources and have looked into capturing
predicate-argument relations as question-answer
pairs, with promising results in the production of
questions through slot-filling templates and gen-
erative models (He et al., 2015; FitzGerald et al.,
2018; Pyatkin et al., 2021). In this paper, instead,
we reframe SRL as a generalization of Definition
Modeling and directly generate human-readable
descriptions of the semantic relations between a
predicate and its arguments, replacing discrete la-
bels with natural language definitions to overcome
the heterogeneities of linguistic inventories.

Recent approaches in SRL. Independently of
the linguistic inventory of choice, given the com-
plexity of the task, early work often employed sep-
arate systems for each step of the SRL pipeline
(Roth and Lapata, 2016; Marcheggiani et al., 2017).
However, in recent years, researchers have success-
fully managed to develop end-to-end approaches
(Cai et al., 2018; He et al., 2018), especially due
to the increasing expressiveness of recent neural
architectures. Since then, the attention of the com-
munity has mainly focused on when syntactic fea-
tures are useful (Strubell et al., 2018) or can be dis-
pensed with (Conia and Navigli, 2020). Further to
this, several studies have also investigated the effec-
tiveness of their proposed approaches on different
annotation formalisms, namely, dependency- and

after, for simplicity, we follow PropBank and call them senses
and semantic roles, respectively, independently of the re-
source.

span-based SRL (Li et al., 2019; Marcheggiani and
Titov, 2020). Most recently, sequence-to-sequence
models have found renewed traction by learning to
directly generate predicate-argument structures as
linearized sequences (Blloshmi et al., 2021; Paolini
et al., 2021). Although the focus of our approach
is to generate natural language descriptions, we
stress that it can be flexibly employed to perform
SRL in its traditional formulation, jointly tackling
predicate sense disambiguation, argument identi-
fication and labeling in a syntax-agnostic fashion
for both span- and dependency-based formalisms,
the key difference being that our method also pro-
duces human-readable and, therefore, interpretable
descriptions of the semantics of a sentence.

Definition Modeling. The task of Definition
Modeling was originally concerned with producing
a natural language definition for a given word and
its corresponding embedding (Noraset et al., 2017).
The formulation of the task was later generalized
to take polysemy into account, as the same word
may convey different meanings depending on the
context it appears in. Although introduced a few
years ago now, Definition Modeling has attracted
significant interest (Ni and Wang, 2017; Ishiwatari
et al., 2019) and has found success in semantic
tasks (Huang et al., 2019; Bevilacqua et al., 2020)
such as Word Sense Disambiguation (Bevilacqua
et al., 2021, WSD) and Word-in-Context (Pilehvar
and Camacho-Collados, 2019, WiC). Motivated by
the success of Definition Modeling, we propose a
novel generalization of its formulation, in which
the objective is to use natural language not only to
define a target word in context but also to describe
its semantically-relevant sentential constituents.

3 Describing Predicate-Argument
Structures using Natural Language

In this Section, we introduce our novel reformula-
tion of the SRL task (Section 3.1), describe DSRL,
a simple yet effective autoregressive approach for
it (Section 3.2), and show how to use DSRL to
perform standard SRL (Section 3.3).

3.1 Task Formulation

Taking inspiration from Definition Modeling, we
propose addressing predicate sense disambigua-
tion, argument identification, and argument clas-
sification in an end-to-end fashion as the task of
describing the argument structure of a predicate p
in a sentence s by generating a natural language
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description t” that defines not only p but also the
semantic relations that connect p to its arguments
ai,az,...,a s, where A is the set of arguments of
p. For example, if we consider the predicate p =
“gave” in the sentence s = “Mary gave the book to
John”, then a valid natural language description of
p and its argument structure could be represented
as tP = “give: transfer. [Mary]{giver} gave [the
book]{thing given} [to John]{entity given to}”. In-
deed, such a sequence contains i) the predicate
definition for predicate sense disambiguation, ii)
all the arguments of p in s within square brackets
for argument identification, along with iii) a defini-
tion of the semantic role of each argument within
curly brackets.

3.2 Description Generation

To tackle our SRL formulation, we introduce a sim-
ple end-to-end autoregressive approach that, given
an input sentence s and a predicate p in s, generates
the natural language description P of its argument
structure. In particular, we devise a sequence-to-
sequence model whose input sequence s” is defined
as follows:

sP=wi ... w; ...

<p>pro...pp</p> ... wy

where w; is the ¢-th word in the original sentence s,
while <p> and < /p> are two special markers that
indicate the beginning and the end, respectively, of
the predicate p, with & > 1 if p is a multiword ex-
pression. Correspondingly, we instruct the model
to generate a semantically-augmented sentence tP
in which: i) the sense definition of p is prepended
to the original sentence, ii) the arguments of p are
enclosed within square brackets, and, iii) each ar-
gument is followed by its semantic role definition
within curly brackets. More formally:

tP=pr .. opp:d ... d}.
wy ... [wfl...wﬂl}{d‘fl...d%a}
. [w‘fz...wf%]{d‘f...dfsé}
. [wlll]w?rfj]{dtlljdgz} Ce. W

where p; is the i-th word of the predicate p, df
is the i-th word of the definition of p, w?j is the
t-th word for the j-th argument of p, and d?j is
the ¢-th word of the definition of the semantic role

for the j-th argument of p, while £, m; and m/;
are the length of the definition of p, the length of
the argument a;, and the length of the definition
of the semantic role for a;, respectively. With this
encoding, we then train our sequence-to-sequence
model to learn the factorized probability p(t? | sP)
defined as follows:

|7

p(t" | ") = p(t] | ") [T (85 | €751, %)
j=2

by minimizing the cross-entropy loss with respect
to the generated natural language description.

3.3 From SRL to Natural Language and Back

Given a dataset annotated with predicate sense and
role labels from an inventory that defines such la-
bels in natural language, we note that it is always
possible to convert such a dataset to our formula-
tion.> Moreover, although the main objective of
our approach is to generate an output sequence
that describes sentence-level semantics, in several
scenarios, it is still useful to work with discrete
labels for predicate senses and semantic roles, e.g.,
to assess the quality of the generated structures
on gold benchmarks with their standard metrics.
We stress that our formulation generalizes stan-
dard SRL; casting the descriptions generated by
our model to standard SRL labels is only possible
if the label inventory of choice defines a suitable
sense for the target predicate, which is not the case
in Figure 1B (top) as the verb “to google” is not
covered by PropBank. If the predicate is covered
by the inventory, we can easily select the sense or
the role label 4y whose natural language description
dY is most similar to the definition d" generated for
the predicate p or for one of its arguments a;. We
select ¢ as follows:

y = argmax o (f(d’), f(d))
yey

where o (-) is a similarity function (e.g., cosine sim-
ilarity), f(-) provides a vector representation of a
definition, Y is the set of labels, and d¥ is the defi-
nition of y as provided by the inventory of choice.
We note that, for simplicity, we do not apply any
post-processing to enforce the validity of the gener-
ated output, leaving more complex strategies (e.g.,
constrained decoding) as future work.

3We also note that dependency-based annotations can be

seen as span-based annotations and, thus, used directly as
arguments in our natural language descriptions.
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4 Experiments and Results

4.1 Data

We train and evaluate DSRL on three widely
adopted benchmarks for English SRL, namely: i)
CoNLL-2009 (Haji€ et al., 2009) for dependency-
based PropBank-style SRL, ii) CoNLL-2012 (Prad-
han et al., 2012) for span-based PropBank-style
SRL, and iii) FrameNet 1.7 (Baker et al., 1998) for
span-based FrameNet-style SRL. While CoNLL-
2009 is a collection of finance-related news from
the Wall Street Journal, CoNLL-2012 is a more het-
erogeneous Corpus comprising news, conversations,
and magazine articles. FrameNet 1.7, instead, pro-
vides a relatively small dataset of annotated docu-
ments; following the literature (Swayamdipta et al.,
2017; Peng et al., 2018), we include in the training
set “exemplar” sentences extracted from partially
annotated usage examples from the lexicon itself.
We provide a broader look at the characteristics
of each dataset in Appendix B and further details
about semantic role definitions in Appendix D.

4.2 Implementation Details

We implement DSRL using Sunglasses.ai’s
Classy.* As our underlying sequence-to-sequence
model, we use BART-large (Lewis et al., 2020),
a Transformer-based neural network (400M pa-
rameters) pretrained with denoising objectives on
massive amounts of unlabeled text.> We do not
modify its architecture except for the embedding
layer, where we add the special tokens used to
indicate predicates and their arguments,® as de-
scribed in Section 3.2. We train our model using
RAdam (Liu et al., 2019) as the optimizer for a
maximum of 500 000 steps with a batch size of
2048 tokens and a standard learning rate of 1075,
We measure the F1 score on the validation set at
the end of each training epoch, adopting an early
stopping strategy to interrupt the training process
if the F1 score does not improve for 10 consecutive
epochs. We do not modify any of the hyperparam-
eters of BART compared to its pretraining phase,
and, more generally, we do not run any hyperpa-
rameter search due to the cost of fine-tuning the lan-
guage model. The training process is carried out on
a single GPU (a GeForce RTX 3090) and requires
about 10 hours for FrameNet, 15 for CoNLL-2009

4https ://github.com/sunglasses-ai/classy

SWe use the model’s weights available from Huggingface
Transformers Wolf et al. (2020).

®See Appendix F for further details on the special tokens.

and 20 for CoNLL-2012.

We recall that, in order to evaluate our system
with standard scoring scripts,” we have to cast our
descriptions to the discrete labels of the target in-
ventory (see Section 3.3). For this step, we compute
the cosine similarity between the representation of
a generated description and those of the possible
senses or roles, using the sentence-level embed-
dings of SimCSE (Gao et al., 2021).8

4.3 Comparison Systems

We compare our results with the current state of
the art in PropBank-style and FrameNet-style SRL.
Following standard practice in PropBank-based
SRL, we report the results achieved by our system
using gold pre-identified (but not disambiguated)
predicates, i.e., the position of a predicate (but not
its sense label) is given as input to the system.

PropBank-style SRL. We consider Li et al.
(2019), who first quantified the benefits of contex-
tualized word representations in both dependency-
and span-based PropBank-style SRL, later sur-
passed by Shi and Lin (2019), who used BERT in-
stead of ELMo, and Conia and Navigli (2020), who
designed and took advantage of complex language-
agnostic components. We also take into account
some studies for PropBank-style SRL that found
success by leveraging syntactic features such as He
et al. (2019), who devised a strategy to cleverly
prune a sentence based on its syntactic dependency
tree, and Marcheggiani and Titov (2020), who ex-
ploited graph convolutional networks to encode
syntactic relations. Most recently, Blloshmi et al.
(2021) proposed a simple and general approach
to tackle SRL as a sequence-to-sequence task, in
which, however, a system is still required to gener-
ate a linearized sequence of discrete labels.

FrameNet-style SRL. Although the research
community has generally focused on PropBank-
style SRL, especially due to the widespread adop-
tion of PropBank in several CoNLL tasks (Carreras
and Marquez, 2005; Surdeanu et al., 2008; Haji¢
et al., 2009; Pradhan et al., 2012) and in other re-
sources such as Abstract Meaning Representation
(Banarescu et al., 2013, AMR), FrameNet-style
SRL has also been at the center of notable studies
such as Swayamdipta et al. (2017), who investi-
gated the effect of joint learning of syntactic and

7eval09.pl for CoONLL-2009, srl-eval.pl for CONLL-2012,

and fnSemScore.pl for FrameNet.
8princeton—nlp/sup—simcse—r‘oberta—base.
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semantic features, and Peng et al. (2018), who in-
stead showed the advantages of learning from dis-
joint data sources. Finally, we also consider recent
work by Pancholy et al. (2021), who developed a
data augmentation strategy using frame relations,
and the above-mentioned Marcheggiani and Titov
(2020), who introduced a graph-based neural archi-
tecture to tackle FrameNet-style SRL.

4.4 Main Results

Here, we first evaluate the robustness of DSRL in
achieving strong or even state-of-the-art results on
standard benchmarks, and then its flexibility in per-
forming dependency- and span-based, PropBank-
and FrameNet-style SRL. Remarkably, our model
achieves even better results when jointly trained
on dissimilar annotation formalisms and linguistic
resources, despite their heterogeneous characteris-
tics.

PropBank-style SRL.. We first discuss the re-
sults obtained by DSRL on the gold standard bench-
marks provided as part of the CoNLL-2009 and
CoNLL-2012 Shared Tasks, annotated with Prop-
Bank sense and role labels. As can be seen in
Table 1, we observe strong results in dependency-
based SRL, reaching an F1 score of 92.5% in the
English test set of CoNLL-2009. Therefore, de-
spite having to cast our natural language descrip-
tions to discrete labels, our approach performs in
the same ballpark as the most recent state-of-the-art
systems proposed by Conia and Navigli (2020) and
Blloshmi et al. (2021); the fact that our approach
is able to slightly outperform the latter (+0.1% in
F1 score) is particularly meaningful, as they adopt
the same pretrained language model (BART-large).
We can observe the same behavior in span-based
SRL, where our model — without any task-specific
modifications — marginally surpasses (+0.1% in F1
score) that of Blloshmi et al. (2021) on the English
test set of CoNLL-2012, as shown in Table 2. Thus,
the key observation here is that a natural language
output does not necessarily hurt performance.

FrameNet-style SRL. As shown in Appendix E,
PropBank definitions for predicate senses and se-
mantic roles are quite short, and therefore one may
wonder whether our task reformulation is feasi-
ble in practice when using longer definitions from
richer sources, such as FrameNet, in which the la-
bel definitions are up to three times longer. From
our experiments, this is, indeed, the case: our

CoNLL-2009 P R F1

Lietal. (2019) 89.6 912 904
He et al. (2019) 904 913 909
Shi and Lin (2019) 924 923 924
Conia and Navigli (2020) 925 927 92.6
Fei et al. (2021) - - 922
Blloshmi et al. (2021) 929 920 924
Zhang et al. (2022) 93.0 91.0 92.0
This work CoNLL-2009 929 92.1 925
This work ALL 923 924 924

Table 1: Results (%) on precision (P), recall (R) and F1
score on the English test set of CoNLL-2009.

CoNLL-2012 P R F1

Lietal. (2019) 85.7 86.3 86.0
Shi and Lin (2019) 859 87.0 86.5
Marcheggiani and Titov 86.5 87.1 86.8
Conia and Navigli (2020) 86.9 87.7 873
Blloshmi et al. (2021) 87.8 86.8 873
This work CoNLL-2012 88.6 86.1 87.4
This work arL 87.7 87.1 874

Table 2: Results (%) on precision (P), recall (R) and F1
score on the English test set of CoNLL-2012.

FrameNet P R F1

Swayamdipta et al. (2017) 70.5 66.7 68.6
Peng et al. (2018) 80.2 729 764
Marcheggiani and Titov 778 769 714
Pancholy et al. (2021) 72.1 702 71.1
This work FrameNet 79.2 793 793
This work ALL 799 799 799

Table 3: Results (%) on precision (P), recall (R) and F1
score on the English test set of FrameNet.

approach achieves state-of-the-art results in full-
structure extraction (Baker et al., 2007) on the test
set of FrameNet 1.7, obtaining 79.3 in F1 score
(Table 3). We note that the results are not directly
comparable with previous work, as DSRL employs
a language model (BART) that is different from
that of other approaches, e.g., Marcheggiani and
Titov (2020) used RoBERTa. However, the results
achieved by DSRL still indicate the performance
that a generative approach can obtain in frame-
semantic parsing (Das et al., 2014), which might
be considered more complex than PropBank-based
SRL. Indeed, predicates in FrameNet usually have
a higher degree of polysemy, and the semantic roles
are sparser, e.g., there are more than 2000 differ-
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CoNLL-2009 (OOD) P R F1

Li et al. (2019) - - 81.5
He et al. (2019) - - 82.2
Shi and Lin (2019) - - 924
Conia and Navigli (2020) - - 85.9
Blloshmi et al. (2021) 85.8 845 852
This work CoNLL-2009 86.4 84.8 85.6
This work ar L 86.1 86.4 863

Table 4: Results (%) on precision (P), recall (R) and F1
score on the English out-of-domain test set of CoNLL-
2009.

ent semantic roles in FrameNet 1.7 compared to
only 50-60 semantic roles in the PropBank releases
used for the CoNLL-2009 and CoNLL-2012 shared
tasks (see Table 8 in Appendix B).

Combining PropBank and FrameNet. The
flexibility of our approach is evidenced by the
fact that our model can benefit from learning
to perform jointly dependency-based PropBank-
style SRL on CoNLL-2009, span-based PropBank-
style SRL on CoNLL-2012, and span-based
FrameNet-style SRL on FrameNet 1.7, sim-
ply by enforcing two inventory-specific spe-
cial tokens at the beginning of the decod-
ing process, e.g., <propbank><dep-srl> tP or
<framenet><span-srl>t?, where t? is the target
output, i.e., the semantically-augmented sentence
described in Section 3.2. Using natural language
descriptions instead of discrete labels as the com-
mon denominator across heterogeneous inventories
yields similar — or even improved — results when
training our model on the three resources at the
same time, compared to training a separate model
on each dataset, as reported in the last row of Ta-
bles 1, 2, and 3, removing the need for separate sys-
tems for different setups and empirically supporting
the flexibility of our model in scaling across dis-
similar formalisms (dependency- and span-based
annotations) and linguistic theories (PropBank and
FrameNet). Indeed, our model is able to leverage
such features to achieve a new state of the art in the
out-of-domain test set of CoNLL-2009. As shown
in Table 4, when we train DSRL jointly on CoNLL-
2009, CoNLL-2012, and FrameNet, we can ob-
serve a large improvement, achieving 86.3% in F1
score — +0.7% over training DSRL only on CoNLL-
2009, and +1.1% over Blloshmi et al. (2021) — and
setting a new state of the art on this out-of-domain
benchmark, to the best of our knowledge.

5 Quantitative Analysis

5.1 Rare and Unseen Senses

The probability with which a word assumes one
of its possible senses follows Zipf’s distribution
(Kilgarriff, 2004), and thus it is very skewed to-
wards the most frequent senses. Here, we analyze
the bias that our system shows in predicting the
most frequent predicate senses on the following
partitions of the CoNLL-2009 and CoNLL-2012
test sets: 1) MFS, all the instances containing pred-
icates that are annotated with their most frequent
sense; ii) LF'S, all the instances containing predi-
cates that are not annotated with their most frequent
sense; iii) UNSEEN, all the instances containing
predicates that are annotated with a sense that is
not present in the training set.

As we can see from Table 5, the performance
of our system on predicate sense disambiguation
is strong in the MFS partition — more than 98.5%
in both CoNLL-2009 and CoNLL-2012 — since
the vast majority of predicates are annotated with
their most frequent sense. This bias justifies the
difference in F1 score between the MFS and LFS
partitions, i.e., —11.9% and —9.3% on CoNLL-2009
and CoNLL-2012, respectively. As far as the UN-
SEEN partition is concerned, on the other hand, we
observe that our approach seems to be capable of
generating and retrieving senses that it has never
seen at training time with a relatively low decrease
in performance (—6.6% and —13.9% compared to
the results on the LES partition). Interestingly, the
results on argument labeling are comparable be-
tween MFS and LFS predicates. However, there is
still large room for improvement in the argument
labeling of UNSEEN predicates, whose argument
structure represents a more challenging zero-shot
setting.

5.2 Data efficiency

Considering the large expense entailed in manually
annotating text with sense and role labels, we deem
it indispensable to also evaluate the flexibility of
a system in terms of its scalability on fewer train-
ing instances. Therefore, we analyze the results
of our model by gradually reducing the training
set to 75%, 50%, 25%, and 10% of its original
size, and compare this learning curve with that of
GSRL (Blloshmi et al., 2021). Notwithstanding the
significant differences between the two approaches,
both show similar learning curves on CoNLL-2009
and CoNLL-2012 (Figure 2), confirming that manu-
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ALL MES LFS UNSEEN
Dataset F1 Support F1 Support F1 Support F1 Support
3 CoNLL-2009 97.6 8986 98.9 8056 (89.7%) 87.0 838 (9.3%) 80.4 92 (1.0%)
& CoNLL-2012 96.7 62002 98.5 50607 (81.6%) 89.2 11026 (17.8%) 75.3 369 (0.6%)
56 CoNLL-2009 89.2 19946 89.8 17753 (89.0%) 87.2 1964 (9.8%) 58.5 229 (1.1%)
<t CoNLL-2012 87.3 145055 88.1 123769 (85.3%) 83.9 20350 (14.0%) 62.4 936 (0.6%)

Table 5: Predicate and argument labeling scores on the test sets of CoNLL-2009 and CoNLL-2012. We report the
performance (F1) on the most frequent senses (MFS), least frequent senses (LFS) and unseen senses (UNSEEN).
Support indicates the number of instances (percentage) of the corresponding class.
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Figure 2: Performance comparison of our system and
GSRL when down-sampling the training dataset to 10%,
25%, 50% and 75% of the total instances.

ally annotating more sentences eventually ceases to
provide large improvements: in fact, the enormous
effort of doubling the training instances of CoNLL-
2012 by annotating other 100,000 predicates (from
50% to 100% of its original size) results in less
than a 1.0% gain in F1 score. Interestingly, our
system shows higher data efficiency in the lowest
data regime, especially for span-based SRL with a
2.6% gain in F1 score over GSRL when they are
both trained on 10% of the original dataset. We
argue that our novel formulation better leverages
the pretraining of the underlying language model
in lower-data scenarios. However, when more train-
ing data is available, task-specific approaches are
eventually able to close the gap.

Finally, we investigate whether our approach is
still capable of handling multiple inventories at
the same time in low-data regimes. To this end,
we trained the model with several combinations
of inventories on 10% of their training data. As
we can see from Table 6, the model achieves im-

Training Data (10%) CoNLL-09 CoNLL-12 FrameNet
CoNLL-2009 (C09) 87.9 - -
CoNLL-2012 (C12) - 83.8 -
FrameNet 1.7 (F17) - - 74.9
C09 + C12 88.4 84.2 -
Cl12 +F17 - 84.0 75.0
C09 + F17 87.9 - 75.1
C09 + C12 + F17 88.5 84.3 75.4

Table 6: Results of our model when trained on a ran-
dom sample of 10% of the original training splits of
CoNLL-2009, CoNLL-2012, and FrameNet 1.7 and
their combinations.

proved results whenever it is trained on any two
inventories, with the one trained jointly on CoNLL-
2009, CoNLL-2012, and FrameNet performing
best. Interestingly enough, the model is able to han-
dle the CoNLL-2009 + FrameNet combination de-
spite the different linguistic resources (PropBank vs
FrameNet) and annotation formalism (dependency-
vs span-based SRL).

6 Qualitative Analysis

6.1 Generation Examples

In Table 7, we provide some examples of the de-
scriptions generated by our system. Given an input
sentence, we compare its gold standard sequence
(¢) with the one generated automatically (g). We
find that, in some cases, the automatic descriptions
are more contextual than the gold ones, occasion-
ally overcoming the limitations of the linguistic
inventories. In Example 1, for instance, the gold
definition of the predicate brandish.01 is only ap-
plicable to weapons; instead, the model-generated
sequence is preferable as the entity brandished is
a flag. In other cases, such as in Example 2, our
approach generates more descriptive definitions,
e.g., depictor instead of agent, and thing described
rather than theme. Furthermore, we show some ex-

4260



Ex. 1: Thousands of supporters, many brandishing flags ...

Gold  brandish: wave weapons. ... brandishing [flags]{weapon} ...

Pred brandish: display, exhibit. ... brandishing [flags]{entity dis-
played} ...

Ex. 2: [...] its unrealistic depiction of the characters’ [...] private lives.

Gold  depiction: show to be. ... [its]{agent} [unrealistic]{instrument
or manner} depiction [of]{theme} ...

Pred depiction: show to be. ... [its]{depictor} [unrealistic] {instru-
ment or manner} depiction [of]{thing described]} ...

Ex. 3: [...] he was "nibbling at" selected stocks during Friday’s plunge.

Gold n/a (out of inventory)
Pred nibble: eat lightly. [he]{eater} was nibbling [at selected
stocks]{food} [during Friday’s plunge]{time or duration}.

Ex. 4: Zaire’s president Mobutu met with [...] a senior U.S. envoy.

Gold n/a (out of inventory)

Pred envoy: stand for, correspond. ... a senior [U.S.]{entity being
substituted by the other} [envoy]{entity taking place of other}.

Table 7: Generation examples. Given an input sentence,
we compare the gold and the system-generated sequence.
Predicates are underlined.

amples in which the model generates semantically-
appropriate natural language descriptions for out-
of-inventory, and thus unseen, predicates. Even in
this setting, the model often generates semantically-
appropriate natural language descriptions. This is
the case with Example 3, in which the model de-
scribes the semantics of nibble.0l (unseen at train-
ing time) by taking advantage of a similar predicate,
namely, peck.0I (seen at training time). This is also
true for noun predicates, as shown in Example 4.

6.2 Classes of Error

We identify three main classes of error: the first is
directly connected to our system (Disambiguation
Errors) and the other two (Out-of-Inventory De-
scriptions and Retrieval Errors) concern the noisy
process we use to cast natural language descrip-
tions to discrete class labels.

Disambiguation errors occur when the model
generates a definition that does not describe the
correct sense of a predicate in a given context. For
example, the system provides the wrong definition
for the predicate “bumble” in the following sen-
tence s, misclassifying it as “speak quietly”:

s: Shane survived the week only to have an ex-
ecutive bumbling his way into a criminal in-
vestigation.

* Gold: speak or move in a confused way
* Pred: speak quietly

We note that, given the autoregressive nature of the
model, producing a wrong sense definition often
compromises the entire argument structure.

Ouf-of-inventory descriptions may be produced
by our approach since it is not strictly tied to the vo-
cabulary of a predefined linguistic resource. While
our model can generate predicate-argument struc-
tures not present in the inventory, they can still pro-
vide correct semantic explanations. For instance,
in the following sentence, the reference and the
generated definitions convey the same semantics:

* Gold: dupe: trick. He meets [a French
girl]{tricker} who dupes [him]{tricked} [into
providing a home for her pet and then steals
his car]{induced action}.

e Pred: dupe: deceive. He meets [a French
girl]{deceiver} who dupes [him]{victim}
[into providing a home for her pet and then
steals his car]{tricked into}.

Associating “victim” to “tricked” is far from trivial,
and such cases often result in retrieval errors, i.c.,
errors that are caused by the inability of the sen-
tence embedding model — SimCSE in our case — to
correctly capture the semantic similarity between
the gold and generated definitions.

7 Conclusion

Recent progress in SRL has mainly revolved
around the development of state-of-the-art systems
which, however, are bound to specific predicate-
argument inventories. In this paper, instead, we
proposed a novel task formulation that takes a
step towards putting interpretability and flexibil-
ity in the foreground: we reframed SRL as the
task of describing the predicate-argument structure
of a sentence using natural language only, which
is human-interpretable by definition. Our exper-
iments, supported by in-depth analyses, demon-
strated that prioritizing interpretability does not
come at the expense of performance. Furthermore,
our approach is flexible enough to achieve com-
petitive or even state-of-the-art results on popular
gold standard benchmarks for SRL, showing that
natural language can act as a bridge between hetero-
geneous linguistic resources, e.g., PropBank and
FrameNet, and also annotation formalisms, e.g.,
dependency- or span-based SRL. We hope that our
model will foster research in high-performance yet
interpretable systems in NLP, and provide a means
towards achieving easier integration of sentence-
level semantics into downstream applications.
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Limitations

Generation. Although our model achieves re-
sults on gold standard benchmarks that are on par
or even better than the current state of the art, its
generative nature certainly makes it slower than
previous work based on discriminative approaches
(He et al., 2019; Shi and Lin, 2019; Conia et al.,
2021). Indeed, our model generates the entire
semantically-augmented sentence, i.e., the input
sentence with its predicate-argument structures in
natural language, autoregressively. While this issue
also affects our most direct competitor (Blloshmi
et al., 2021), which generates discrete labels, this
is still a limitation — or, more precisely, a weak-
ness — we would like to remark. Indeed, before
deploying our system in production environments,
one should carefully weigh the advantages of our
method against its slower inference times. The de-
gree of slowdown will inevitably depend on the
hardware, but we estimate that a generative ap-
proach could be several times slower than a dis-
criminative one. However, this could also be a mat-
ter for further research on the topic; for example,
non-autoregressive generative models are steadily
narrowing the performance gap (Gu and Tan, 2022)
while mitigating the weaknesses of current autore-
gressive approaches.

Evaluation. Section 6 and Table 7 provide a qual-
itative analysis of the behavior of our proposed ap-
proach on out-of-inventory instances, which may
also include rare predicates or neologisms. We
acknowledge that a quantitative analysis of how
our model really performs on out-of-inventory in-
stances would provide sounder evidence of the ben-
efits of our approach. However, we do not possess
the economic and human resources required to cre-
ate a benchmark large enough for this purpose. We
believe that such a benchmark could be a great con-
tribution to the area of SRL, but the endeavor of
annotating a significant number of out-of-inventory
instances will require further study.

Multilinguality. Extending our work to multiple
languages is still a challenge and may require more
effort than current approaches, such as that pro-
posed by Conia et al. (2021) which uses language-
specific decoders on top of a shared cross-lingual
encoder. One could consider pursuing a similar
strategy, i.e., using a shared cross-lingual encoder
and multiple language-specific autoregressive de-
coders. However, the main limitation here is the

availability and the structure of current linguistic
inventories in other languages and, therefore, defini-
tions in languages other than English. For instance,
the Chinese PropBank inventory provided as part of
the CoNLL-2009 Shared Task lacks definitions for
the majority of the predicate senses, whereas the
latest version is not freely distributed. Fortunately,
the attention to multilingual SRL is increasing; for
example, it would certainly be interesting to ana-
lyze the feasibility of our approach to the recently
released global FrameNet project.

Ethics Statement

Pretrained language models have been shown to
manifest undesirable biases, inherited from the cor-
pora on which they have been trained using self-
supervision strategies. We train our model starting
from the weights of BART (Lewis et al., 2020) and,
therefore, there is a high probability that these bi-
ases are also inherited, or even exaggerated, by our
final models. However, we did not investigate such
biases in this work; hence, we advise against using
our model in a production environment without a
careful analysis beforehand. Finally, we remark
that the test sets of CoNLL-2009, CoNLL-2012,
and FrameNet 1.7 also contain relatively old doc-
uments about economics, politics, and past events
that do not reflect the current situation. Therefore,
the results of such benchmarks are intended only
as a basis for comparison with previous approaches
and not as a measure of the performance of our
model in real-world applications.
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A Data License

Both the CoNLL-2009 and CoNLL-2012 datasets
are distributed by the Linguistic Data Consortium
(LDC) and can be used under the LDC license.’
FrameNet 1.7 — the linguistic resource and its an-
notated dataset — is freely available upon request.'®
We note that the original Shared Task of CoNLL-
2012 was concerned with the task of Coreference
Resolution; however, given its SRL annotations, it
soon also became a popular benchmark for span-
based SRL.

B Data Statistics

In Tables 8, 9, and 10, we provide an overview
of the statistics of the train, validation and test
sets, respectively, for the datasets we use in our
experiments, namely, the English splits of CoNLL-
2009, CoNLL-2012, and FrameNet 1.7. In par-
ticular, for each dataset, we report the number of
sentences and their average length in tokens, with
FrameNet having the longest sentences on average
(+20% over CoNLL-2009 and +40% over CoNLL-
2012). We also report the number of annotated
predicates for each dataset; interestingly, each pred-
icate in FrameNet features around 6 arguments per
predicate, a value that is much larger than those
of CoNLL-2009 and CoNLL-2012, which feature
around 2.5 arguments per predicate. These are
probably the reasons why the FrameNet dataset is
particularly challenging, even for modern neural-
based models.

Finally, we can also appreciate the heterogene-
ity between the characteristics of PropBank-style
and FrameNet-style SRL. Indeed, FrameNet clus-
ters predicate senses into frames, resulting in a
smaller number of predicate classes (around 1,000)
compared to PropBank (5,000 to 8,000). At the
same time, the frame-specific semantic roles of
FrameNet result in a much larger number of role
classes compared to the coarse-grained semantic
roles of PropBank.

C Training Sequence Statistics

In Table 11, we report the average length in char-
acters of the sequences used to train our model.
As we can see, FrameNet 1.7 features the longest
sequences among the three datasets we take into
account, in line with what we report in Appendix B.
9https://www.1dc.upenn.edu/data—management/

using/licensing
10https://framenet.icsi.berkeley.edu/fndrupal

D Argument Modifiers Definitions

The English PropBank features two categories of
semantic roles: core and adjunct. If we define a
semantic role as the relationship between an ac-
tion or event (predicate) and one of the participants
(argument), then the former category includes all
those semantic roles that mark an important par-
ticipant in the event, one that is expected to take
part in it. In PropBank, these core roles are iden-
tified using the labels ARGO, ARGI1, ..., ARGS,
and their definitions change from predicate sense
to predicate sense. Instead, the second category,
namely the adjunct roles or argument modifiers, are
general roles whose semantics is not specific to a
particular predicate and, therefore, can be used to
tag general arguments, e.g., the time of the action
(ARGM-TMP) or the place of the event (ARGM-
Loc). We use the PropBank guidelines to translate
such labels into natural language. In Tables 12 and
13, we list the argument modifiers definitions that
we use to train our model on CoNLL-2009 and
CoNLL-2012, respectively.

While we aimed at creating argument modifier
definitions that are homogeneous with the core role
definitions, we remark that we did not perform a
search for better definitions. As one can see, some
of the definitions reported in Tables 12 and 13 are
the natural language equivalent of the labels (e.g,
ARGM-ADV and its definition “adverbial modi-
fier”, ARGM-LVB and its definition “light verb”,
or ARGM-PRD and its definition “secondary predi-
cation”, among others). We believe that a possible
venue for future research is looking into how we
can create better definitions for such semantic roles.

E Definitions Statistics

The length of the sequence that our model gener-
ates in output is certainly dependent on the length
of the definitions we use to describe the sense of a
predicate and its arguments. In this Appendix, we
provide a broad look at the number of unique sense
and role definitions that appear in the train, valida-
tion, and test sets of CoNLL-2009, CoNLL-2012
and FrameNet 1.7.

As we can see in Table 14, even though CoNLL-
2009 and CoNLL-2012 are both tagged using
PropBank labels, the number of distinct predicate
sense definitions is quite different between the two
datasets (1,317 unique definitions in the training
set of CoNLL-2009 against 4,401 in CoNLL-2012).
This difference is probably due to the narrower
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Sentences Predicates Arguments
Totals Distinctg Annotated Avg. Len. Total, Senses Total, Roles
CoNLL-2009 39,279 38,770 37,847 244 179,014 8,237 393,699 52
CoNLL-2012 115,812 109,374 90,856 19.0 253,070 5,287 598,983 66
FrameNet 19,391 3,353 19,391 29.5 20,105 859 123,977 2,042

Table 8: Overview of the CoNLL-2009, CoNLL-2012, and FrameNet training datasets. For each dataset we report
the number of sentences (7otal,), the number of sentences with at least an annotated predicate (Annotated), the
average number of tokens per sentence (Avg. Len.), the number of predicates (Total,,) and predicate senses (Senses),
and also the number of arguments (7otal,) and argument roles (Roles).

Sentences Predicates Arguments
Total, Distincts Annotated Avg. Len. Total, Senses Total, Roles
CoNLL-2009 1,334 1,334 1,283 25.0 6,390 1,990 13,865 32
CoNLL-2012 15,680 15,086 12,600 194 35297 2912 83,362 48
FrameNet 2,272 326 2,272 35.2 2,382 394 17,347 893

Table 9: Overview of the CoNLL-2009, CoNLL-2012, and FrameNet validation datasets. For each dataset we report
the number of sentences (7otal,), the number of sentences with at least an annotated predicate (Annotated), the
average number of tokens per sentence (Avg. Len.), the number of predicates (Total,,) and predicate senses (Senses),
and also the number of arguments (7otal,) and argument roles (Roles).

Sentences Predicates Arguments
Total, Distinct, Annotated Avg. Len. Total,, Senses Total, Roles
CoNLL-2009 2,000 1,999 1,913 24.4 8,987 2,254 19,949 35
CoNLL-2012 27,897 26,698 21,863 192 62,012 3,489 145,078 50
FrameNet 6,714 1,247 6,714 27.2 6,872 620 34,454 1,354

Table 10: Overview of the CoNLL-2009, CoNLL-2012, and FrameNet test datasets. For each dataset we report the
number of sentences (7orals), the number of sentences with at least an annotated predicate (Annotated), the average
number of tokens per sentence (Avg. Len.), the number of predicates (Total,) and predicate senses (Senses), and
also the number of arguments (7otal,) and argument roles (Roles).

Dataset Avg. Len.
(characters)
CoNLL-2009 83.1
CoNLL-2012 127.6
FrameNet 1.7 205.3

Table 11: CoNLL-2009, CoNLL-2012, and FrameNet
training sequence statistics. For each dataset, we report
the average length in characters of the sequence used
for training the model.

domain of CoNLL-2009, which features a signif-
icant portion of sentences about finance from the
Wall Street Journal, whereas CoNLL-2012 covers a
more varied set of domains. Although the number

of unique sense definitions is different, the aver-
age length of these definitions between CoNLL-
2009 and CoNLL-2012 is close, suggesting homo-
geneous definitions despite the use of two differ-
ent versions of the English PropBank. This is not
the case when comparing the average length of
the PropBank definitions used for CoNLL-2009
and CoNLL-2012 with those of FrameNet. Indeed,
predicate sense definitions in FrameNet are two
to three times longer on average than PropBank’s.
However, the experimental results reported in Ta-
bles 3 and 6 show that our proposed generative
model is still able to produce longer sense defini-
tions.

We can observe a similar picture in Table 15
for the definitions of the semantic roles. Interest-
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Argument Modifier Definition Argument Modifier Definition
AM-ADV adverbial modifier ARGM-ADJ] adjectival modifier
AM-CAU cause or reason ARGM-ADV adverbial modifier
AM-DIR direction or source ARGM-CAU cause or reason
AM-DIS discourse connective ARGM-COM comitative
AM-EXT amount or extent ARGM-DIR direction or source
AM-LOC location or position ARGM-DIS discourse connective
AM-MNR instrument or manner ARGM-EXT amount or extent
AM-MOD modal auxiliary ARGM-GOL goal or destination
AM-NEG negation marker ARGM-LOC location or position
AM-PNC purpose, not cause ARGM-LVB light verb
AM-PRD secondary predication ARGM-MNR instrument or manner
AM-TMP time or duration ARGM-MOD modal auxiliary
ARGM-NEG negation marker
Table 12: CoNLL-2009 argument modifiers definitions. ARGM-PNC purpose, not cause
We provide desc?iptio.ns for argument modiﬁers when ARGM-PRD secondary predication
they are not specified in the given predicate roleset. ARGM-PRP purpose or motivation
ARGM-TMP time or duration

ingly, the difference between CoNLL-2009 and
CoNLL-2012 in the average length of the seman-
tic role definitions is even narrower, whereas the
difference in length between PropBank-style and
FrameNet-style role definitions widens even fur-
ther, with FrameNet using role definitions that are
almost four times longer than PropBank’s. The
difference in length between the predicate sense
and semantic role definitions between FrameNet
and PropBank can be explained by the fact that,
in the former resource, the definitions are richer
and more detailed. For example, the agent of the
predicate provide is defined just as “giver” in Prop-
Bank, whereas in FrameNet is defined as “person
that begins in possession of the theme and causes
it to be in the possession of the recipient”.

F Special Tokens

As mentioned in Section 3.2, we use some special
tokens to instruct the model on some task-specific
functions. For example, we pre-identify a predi-
cate in an input sentence by surrounding its tokens
with the special tokens <p> and </p>, indicating
the start and the end of a predicate, respectively.
Table 16 lists all the special tokens we use in our
model in addition to the standard ones (e.g., <s>
and </s> to indicate the start and end of the gener-
ated sequence).

We note that some of these special tokens
can be used in combination. For example, com-
bining <propbank<span-srl> informs the model
that we want it to generate a sentence anno-

Table 13: CoNLL-2012 argument modifiers definitions.
We provide descriptions for argument modifiers when

they are not specified in the given predicate roleset.

tated with PropBank-style definitions according
to the span-based formalism; instead, combining
<framenet<span-srl> will result in a sentence
annotated with FrameNet-style definitions using a
span-based formalism.

For reference, we also provide a few examples
of how these special tokens are inserted in an input
or output sequence in Table 17, using sentences
from the training set of CoNLL-2012.

For the implementation, we simply add these
special tokens to the input and output vocabulary
of the underlying language model (i.e., BART). The
embeddings corresponding to the special tokens are
randomly initialized and updated during training.

4269



Train Validation Test

Distincty Avg. Len.4 Distincty Avg. Len.4 Distincty Avg. Len.q
CoNLL-2009 1,317 16.0 1,207 16.5 1,317 16.0
CoNLL-2012 4,401 19.5 2,393 18.4 2,864 18.7
FrameNet 3,750 46.7 882 473 1,982 48.1

Table 14: CoNLL-2009, CoNLL-2012, and FrameNet predicate definitions statistics. For each dataset and split we
report the number of distinct definitions (Distinct,), and their average length in characters (Avg. Len.q).

Train Validation Test
Distincty Avg. Len.4 Distincty Avg. Len.4 Distincty Avg. Len.q
CoNLL-2009 1,255 15.6 1,161 154 1,255 15.6
CoNLL-2012 5,002 16.9 2,477 16.4 3,032 16.4
FrameNet 2,167 58.7 634 58.2 1,184 57.0

Table 15: CoNLL-2009, CoNLL-2012, and FrameNet role definitions statistics. For each dataset and split we report
the number of distinct definitions (Distinct;), and their average length in characters (Avg. Len. ).

Used in  Special Token(s) Description

Input <p></p> indicate the start/end of a predicate

Output  <reference-to> argument referring to another one (e.g., R-Argl)
Output  <continuation-of> continuation of another argument (e.g., C-Argl)
Output  <propbank> Instructs the model to perform PropBank-style SRL
Output  <framenet> Instructs the model to perform FrameNet-style SRL
Output  <span-srl> Instructs the model to perform span-based SRL
Output  <dep-srl> Instructs the model to perform dependency-based SRL

Table 16: List of the special tokens and their use in our model. For each special token, we indicate whether it
is used in the input or in the output sequence. Some of these special tokens can be used in combination, e.g.,
<propbank><dep-srl> to instruct the model to perform PropBank-style dependency-based SRL.

Special Token Example

<p></p> Not all those who <p> wrote </p> oppose the changes.

<p></p> A <p> record </p> date has not been set.

<reference-to> ...It was [during this year]{time or duration} [that]{ <reference-to> time or duration} [the Japanese...

<continuation-of> [Japan]{helper}, [in terms of ...]{ adverbial modifier} , [it]{<continuation-of> helper} could have helped...

Table 17: Examples of how the special tokens are inserted in the input or output sequence.
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