Lexicon-Enhanced Self-Supervised Training for
Multilingual Dense Retrieval

Houxing Ren'* Linjun Shou? Jian Pei®

Ning Wu? Ming Gong? Daxin Jiang?'

1School of Computer Science and Engineering, Beihang University
“Microsoft STC Asia
3Duke University, Durham, NC, USA 27705
renhouxing@buaa.edu.cn {lisho,wuning,migon,djiang } @microsoft.com j.pei@duke.edu

Abstract

Recent multilingual pre-trained models have
shown better performance in various multilin-
gual tasks. However, these models perform
poorly on multilingual retrieval tasks due to
lacking multilingual training data. In this pa-
per, we propose to mine and generate self-
supervised training data based on a large-scale
unlabeled corpus. We carefully design a min-
ing method which combines the sparse and
dense models to mine the relevance of unla-
beled queries and passages. And we introduce a
query generator to generate more queries in tar-
get languages for unlabeled passages. Through
extensive experiments on Mr. TYDI dataset
and an industrial dataset from a commercial
search engine, we demonstrate that our method
performs better than baselines based on various
pre-trained multilingual models. Our method
even achieves on-par performance with the su-
pervised method on the latter dataset.

1 Introduction

Information Retrieval (IR) aims to retrieve rel-
evant passages for a given query, which plays
a critical role in many industry scenarios such
as Open-Domain Question Answering (QA) (Lee
et al., 2019) and Web Search (Nguyen et al., 2016).
Traditionally, bag-of-words (BOW) retrieval sys-
tems such as TF-IDF and BM25 (Robertson and
Zaragoza, 2009) were widely used, which mainly
depend on keyword matching between queries and
passages. With the development of large-scale pre-
trained language models (PLMs) (Vaswani et al.,
2017; Devlin et al., 2019) such as BERT, dense re-
trieval methods (Lee et al., 2019; Karpukhin et al.,
2020) show quite effective performance. These
methods usually employed a dual-encoder architec-
ture to encode both queries and passages into dense
embeddings and then perform approximate nearest
neighbor searching (Johnson et al., 2021).

*Work done during internship at Microsoft STCA.
f Corresponding author.

Recently, some works found that dense retriev-
ers perform poorly in the zero-shot multilingual
settings (Zhang et al., 2021b) due to the distribu-
tional shift. To boost the performance of dense re-
trievers, some previous methods for cross-domain
retrieval can be directly adopted to unsupervised
multilingual dense retrieval. There are two impor-
tant kinds: 1) generating training data in target
languages. For example, Kulshreshtha et al. ap-
plied self-training to generate labeled data and fur-
ther proposed back-training (Kulshreshtha et al.,
2021) to obtain more high-quality data. QGen (Ma
et al., 2021a) proposed to use a query generator to
generate in-domain queries. 2) leveraging sparse
retrievers, which is more effective in the unsuper-
vised setting, to enhance dense retrievers. For ex-
ample, SPAR (Chen et al., 2021) proposed to distill
knowledge from BM25 to the dense model and
LaPraDoR (Xu et al., 2022) proposed to enhance
the dense model by multiplying the similarity with
the BM25 score.

However, there are three major problems when
directly adopting these methods to multilingual
dense retrieval. First, zero-shot multilingual query
generators suffer from grammatical adjustment and
accidental translation problems (Xue et al., 2021).
As a result, zero-shot query generators only pro-
vide little help in bridging the gap among different
languages. Second, hybrid dense and sparse mod-
els such as LaPraDoR and SPAR get high latency
in the inference stage'. Finally, dense retrieval is
different from other tasks, it not only needs pos-
itive query-passage pairs but also needs negative
query-passage pairs (Xiong et al., 2021). However,
previous methods such as the back-training focus
on positive pairs and simply take the top passages
of BM25 as negative passages.

Although training data in target languages is very
expensive, unlabeled queries and passages can be

'The latency of dense retriever on GPU is 32ms and the
latency of BM25 on CPU is 36ms (Gao et al., 2021).

444

Findings of the Association for Computational Linguistics: EMNLP 2022, pages 444-459
December 7-11, 2022 ©2022 Association for Computational Linguistics

easily obtained from search engines such as Google
and Bing. In this paper, we propose a novel method
that augments data in target languages by com-
bining sparse and dense models, namely LeSTM,
which stands Lexicon-enhanced Self-supervised
Training for Multilingual dense retrieval. First, as
we mentioned above, sparse retrievers mainly de-
pend on keyword matching between queries and
passages and dense retrievers mainly depend on
the language modeling ability of pre-trained mod-
els, which indicates the sparse and dense mod-
els perform retrieval in different aspects (Chen
et al., 2021). In addition, the sparse—dense hy-
brid retriever is significantly better than both sparse
and dense models (Zhang et al., 2021b; Ma et al.,
2021b). Both can demonstrate that sparse and
dense models notice different characteristics and
are complementary. Therefore, we craft a lexicon-
enhanced retrieval module to mine positive and
negative passages for each unlabeled query in tar-
get languages, which leverages the retrieval results
of both sparse and dense models. We treat passages
that both sparse and dense models regard are rel-
evant as positive passages, and passages that one
model regards are relevant but the other regards are
irrelevant as negative passages.

Furthermore, we employ a query generator to
generate queries for passages in target languages
due to the limited number of unlabeled queries.
The query generation methods have been shown to
significantly improve the performance of retrieval
models in the monolingual setting (Kulshreshtha
et al., 2021; Ma et al., 2021a). Considering the
grammatical adjustment and accidental translation
problems, we first use the mined positive query-
passage pairs to train a query generator. Then, we
use the trained model to generate more queries in
target languages. Considering that there may exist
more relevant passages to the generated queries, we
use both sparse and dense retrievers to filter the gen-
erated samples. Finally, using only unlabeled data
from target languages, LeSTM iteratively mines
query passage pairs by the lexicon-enhanced re-
triever and generator, trains a new better retriever
and query generator using these mined pairs, mines
again for better query passage pairs, and repeats.

In summary, our contributions are as follows.

* To the best of our knowledge, our approach is
the first attempt to combine sparse and dense
retrievers to mine high-quality positive and neg-
ative query-passage pairs for the multilingual

dense retriever.

* We propose to use a query generator to expand
the unlabeled queries in target languages and an
iterative training paradigm is introduced to fur-
ther enhance the dense retriever and generator.

» Extensive experiments on two datasets show
the effectiveness of our proposed approach. In
particular, experiments demonstrate that our
method is model-agnostic, they are effective
on various pre-trained language models.

2 Related Work

Information Retrieval. Information retrieval aims
to search relevant passages from a large corpus for
a given query. Traditionally, researchers use bag-
of-words (BOW) based methods such as TF-IDF
and BM25 (Robertson and Zaragoza, 2009). These
methods use a sparse vector to represent the text, so
we call them sparse retrievers. Recently, some stud-
ies use neural networks to improve the sparse re-
triever. For example, DocTTTTTQuery (Nogueira
et al., 2019) proposes to expand the document to
narrow the vocabulary gap and DeepCT (Dai and
Callan, 2020) generates a weight for each term to
emphasize the import terms.

In contrast to sparse retrievers, dense retriev-
ers usually encode both queries and passages into
dense vectors whose lengths are much less than
sparse vectors. There are two kinds of dense re-
trieval methods: 1) pre-training with unlabeled
data and 2) fine-tuning with labeled data. For pre-
training, ORQA (Lee et al., 2019) proposes Inverse
Cloze Task (ICT) which aims to predict the con-
text of a given sentence, and REALM (Guu et al.,
2020) proposes to predict the masked text based
on an end-to-end retriever-reader model. Further-
more, SEED (Lu et al., 2021), Condenser (Gao
and Callan, 2021a), and coCondenser (Gao and
Callan, 2021b) propose pre-training tasks to en-
code more information into the dense vectors. For
fine-tuning, one major method is how to incorpo-
rate hard negative samples during training, includ-
ing static sparse hard negative samples (Karpukhin
et al., 2020; Luan et al., 2021) and dynamic dense
hard negative samples (Xiong et al., 2021; Zhan
et al., 2021). Another major method is training
the retriever with a cross-attention encoder jointly,
including extractive reader (Yang and Seo, 2020),
generative reader (Izacard and Grave, 2021), and
cross-encoder re-ranker (Qu et al., 2021; Ren et al.,

445

2021; Zhang et al., 2021a). In addition, some works
trade time for performance by using multiple vec-
tors to represent the passage (Khattab and Zaharia,
2020; Humeau et al., 2020; Tang et al., 2021; Zhang
et al., 2022a).

Cross-lingual (domain) Retrieval. These tasks
aims to investigate the retrieval capabilities un-
der cross-lingual (Zhang et al., 2021b; Asai et al.,
2021a) or cross-domain (Thakur et al., 2021) set-
ting. The methods for these tasks can be divided
into two main categories: model transfer methods
and data transfer methods.

The model transfer methods for cross-domain
focus on pre-training sentence representation. For
example, GTR (Nietal., 2021) and CPT (Neelakan-
tan et al., 2022) propose that scaling up the model
size can significantly improve the performance of
dense models. Contriever (Izacard et al., 2021)
and LaPraDoR (Xu et al., 2022) propose to use
contrastive learning to learn sentence aware repre-
sentation. For cross-lingual, they focus on learning
multilingual representations by pre-training (Con-
neau and Lample, 2019; Chi et al., 2021; Feng
et al., 2022) such as mBERT (Devlin et al., 2019)
and XLMR (Conneau et al., 2020).

The data transfer methods mainly focus on ob-
taining noisy training data in the target domain or
target languages. For example, Back-training (Kul-
shreshtha et al., 2021) and QGen (Ma et al., 2021a)
propose to use a query generator to generate in-
domain queries. CORA (Asai et al., 2021b) lever-
ages a generator to help mine retrieval training data
and DR.DECR (Li et al., 2021) mines lots of paral-
lel data to perform cross-lingual distillation.

3 Preliminaries

In this section, we give a brief review of dense
retrieval and then present how to apply models to
multilingual dense retrieval.

Overview. Given a query ¢ and a corpus C, the
retrieval task aims to find the relevant passages for
the query from a large corpus. Usually, a dense
retrieval model employs two dense encoders (i.e.,
BERT) Eq(-) and Ep(-). They encode queries
and passages into dense embeddings, respectively.
Then, the model uses a similarity function, often
dot-product, to perform retrieval:

f(g:p) = Eq(q) - Ep(p), ¢))

where f denotes the similarity function, ¢ and p
denote the query and the passage, respectively. Dur-

ing the inference stage, we apply the passage en-
coder Ep(-) to all the passages and index them
using FAISS (Johnson et al., 2021) which is an
extremely efficient, open-source library for simi-
larity search. Then given a query g, we derive its
embedding by v, = Eq(q) and retrieve the top k&
passages with embeddings closest to v,.

Training. The training of retrieval is metric learn-
ing essentially. The goal is to narrow the distance
between the query and the relevant passages (a.k.a.,
positive passages) and widen the distance between
the query and the irrelevant passages (a.k.a., neg-
ative passages). Let {Qiapj,pf,g,p;l, e ,p;n} be
the ¢-th training sample. It consists of one query,
one positive passage, and n negative passages.
Then we can employ a contrastive loss function,
called InfoNCE (van den Oord et al., 2018), to
optimize the model:

’ | ef(qmpf) ©
= —log —.)
efaini) 4 S ol (aipi ;)

In practice, we cannot use all passages in the
corpus C' as negative passages due to the limita-
tion of resources. Therefore, a common practice
is sampling a subset from the corpus C' as neg-
ative samples, and many studies focus on which
distribution the negative passages sampled from is
better (Xiong et al., 2021; Qu et al., 2021).

Multilingual Setting. This setting aims to transfer
knowledge from the source language to the tar-
get languages. In this setting, only labeled data
from the source language is available. And the
trained model will be directly evaluated on target
languages. Note that the setting is different to cross-
lingual retrieval whose queries and passages are in
different languages. In this setting, the queries and
the passages are in the same language and just train-
ing data from the source language (e.g., English) is
available.

4 Methodology

In this section, we present the proposed LeSTM.
The overview is presented in Figure 1. We first
present the augmentation method which combines
sparse and dense retrievers. Then, we present how
to use the mined data to train the query generator,
generate new data, filter the generated samples, and
fine-tune the dense retriever. Finally, we summa-
rize the full training process.

446

t
N
"
t t
[
/' ‘\‘\

Lexmon Enhanced Query Generation &
Retrieval Module —‘ Retrieval Flltermg
R: Mull\]mgual Mull]lmgual R Mululmg\nl
i P S
assages Queries Passages

oy - T ___

Ry Go
English T
Training Data

Figure 1: Overview of the training process.

G
L

4.1 Lexicon-enhanced Retrieval Module

In target languages, we do not have the labeled
training data, but we have unlabeled queries and
passages. To effectively utilize the unlabeled
queries and passages, we design a mining method
shown in Algorithm 1.

This augmentation is based on the intuition that
the sparse retriever and the dense retriever solve
different problems and they are complementary.
Specifically, the sparse retriever depends on word
match, it is more effective than the dense retriever
for words that do not appear in the training set. On
the contrary, the dense retriever depends on neu-
ral networks, it is more effective than the sparse
retriever for synonyms and semantics of the sen-
tence. As a result, for a passage, if both of them
regard it are relevant to the query, we then regard
the passage as a positive passage. If one of them
regards it as relevant but the other regards it as
irrelevant, we regard the passage does not meet
all conditions (i.e., keyword match and semantic
match), and the passage is a hard case. Although
we cannot judge whether it is a negative passage,
we think its relevance is weaker than the positive
passage. As a result, we hope the score of the posi-
tive passage is higher than the hard case and then
we regard the hard case as a hard negative passage.

In practice, because the score distributions of
sparse retrievers and dense retrievers are different,
we use the ranking position to measure the rele-
vance between passages and queries. Then, we
present our method as follows:

(1) We introduce two parameters to define rele-
vant and irrelevant passages: S and L, i.e., for

Algorithm 1: Lexicon-enhanced Retrieval

Module.
Input: One query ¢ and candidate passages P.
Output: Positive passages and Negative passages.
Set L and S,
L, & Ss < Top-L and Top-S of sparse retriever;
L4 & Sq < Top-L and Top-S of dense retriever;
Pt o P« o
for p € P do
if p €S; & p € Sy then
| PT+« PtuU{p}
end
ifpeSs &p ¢ L,y then
| PT« PTU{p}
end
ifp ¢ Ls & p € Sq then
| PT P U{p}
end

R T N N

e e
2L N ==

end
Return P, P~.

—
ENR

a query, the retriever retrieves passages and
ranks them with scores, if the ranking posi-
tion of a passage is less than .S, we regard
the passage is relevant to the query and if the
ranking position is greater than L, we regard
the passage is irrelevant to the query.

(2) We retrieve L and S passages by both sparse
and dense retrievers, respectively. We define
the top-L passage set as L and the top-S pas-
sage set as S, and use subscript s and d to de-
note sparse and dense retrievers, respectively.

(3) We traverse all passages in the corpus. For
each passage, if it exists in both S, and Sy, we
add it to the positive passage set; if it exists in
one S but does not exist in another I (a.k.a.,
exists in S; but not exists in IL; or exists in
S, but does not exist in IL,), we add it to the
negative passage set.

(4) For each mined sample, we add random neg-
ative passages like DPR (Karpukhin et al.,
2020): 1) random passages from the corpus;
2) positive passages of other queries (a.k.a.,
in-batch negative). And we use our mined
negative passage set to replace “top passages
returned by BM25” in DPR.

To sum up, our mined training data includes a
query, mined positive and negative passages, and
random negative passages.

4.2 Query Generation Module

Due to the limited number of unlabeled queries,
we leverage a query generator to generate more

447

Algorithm 2: The training algorithm.
Input: Labeled English training data and
unlabeled queries and passages in
target languages.
Construct index for sparse retriever;
Initialize the dense retriever and generator
with pre-trained models;
3 Train the retriever and generator with
English data;
Build ANN index for the retriever;
while models has not converged do

[SR

L7 B N

6 Generating training data D}, with
passage mining module;

7 Generating training data D, with query
generation module;

8 Fine-tune the generator and retriever
with both D, and D;

9 Refresh ANN index for the retriever.

10 end

queries for unlabeled passages in target languages.
Note that the generated queries are in the same
languages as the corresponding passage.

Specifically, for a trained generator, we ran-
domly select some passages and leverage the fine-
tuned query generator to generate queries for these
passages. To tackle the noisy label problem intro-
duced by the generator, we use both sparse and
dense retrievers to filter the generated pairs. We
retrieve the top-1 passage for each generated query
with both sparse and dense retrievers and only ac-
cept pairs where the best passages from both sparse
and dense retrievers are the corresponding passage.
Finally, for each filtered sample, we select nega-
tive passages like DPR (Karpukhin et al., 2020):
1) random passages from the corpus; 2) top pas-
sages returned by sparse and dense retrievers (the
passages returned by dense retriever are more ef-
fective (Xiong et al., 2021; Qu et al., 2021)); 3)
positive passages of other queries.

To sum up, our generated training data includes
one positive passage, generated query, random neg-
ative passages, and top passages returned by re-
trievers as hard negative passages.

4.3 Model Training

Previously, we introduced the lexicon-enhanced

retrieval module and the query generation module.

In this part, we present the full training process.
As shown in Algorithm 2, firstly, we train the

warm-up dense retriever and query generator with
data in the source language. We note that the in-
put to the generator is the positive passage, and
the label is the query. Secondly, we generate train-
ing data in target languages with the proposed two
modules. Finally, we fine-tune the retriever and the
generator with the generated data. Based on these
steps, we can conduct iteratively generating and
training procedures to improve the performance.
Note that due to the grammatical adjustment and
accidental translation problems in the zero-shot
multilingual generator, we only use the lexicon-
enhanced retrieval module to generate data in the
first iteration.

Considering the query generator is more sensi-
tive to the quality of data, we set S = 1 when
generating data for the query generator.

5 Experiments

In this section, we construct experiments to demon-
strate the effectiveness of the proposed method.

5.1 Experimental Setup
5.1.1 Dataset

Mr. TYDI. The Mr. TYDI dataset (Zhang et al.,
2021b) is constructed from TYDI (Clark et al.,
2020) dataset and can be viewed as the “open-
retrieval” condition of the TYDI dataset. It is a
multilingual dataset for monolingual retrieval in 11
languages. The detailed statistics of the Mr. TYDI
dataset are presented in Appendix A.

DeepQA. An Q&A task dataset from one com-
mercial Q&A system, with 18,000 labeled cases
in three languages: English (En), German (De),
French (Fr). Each case consists of two parts, i.e.,
query and passage. The detailed statistics of the
DeepQA dataset are presented in Appendix A.

5.1.2 Evaluation Metrics.

Following Mr. TYDI, we use MRR@ 100 and Re-
call@100 as evaluation metrics, where MRR de-
notes the mean of reciprocal rank across queries
and Recall @k denotes the proportion of queries
to which the top k retrieved passages contain posi-
tives. For DeepQA, due to the smaller size of the
corpus (only 1,220,030 passages in the corpus, for
comparison, the Mr. TYDI data has 58,043,326
passages, which is times that of DeepQA), we use
MRR @10 and Recall@10 as metrics.

448

Table 1: Results on Mr. TYDI test set. The best results
except supervised training are in bold. We copy the
results of BM25, tuned BM25, and zero-shot mBERT
from (Zhang et al., 2022b) and re-implement the zero-
shot mBERT. * denotes that our method significantly
outperforms self-training at the level of 0.01. 1 denotes
that our method significantly outperforms back-training
at the level of 0.01.

Methods | MRR@100 Recall@100
Sparse BM25 32.1 73.2
Method (tuned) 333 75.8
Zero-Shot 344 73.4
(reimpl) 36.5 73.3
Self-Training 37.2 78.5
mBERT | 5 ck-Training |~ 41.1 82.0
LeSTM 49.0° 83.6""
| Supervised | = 54.6 87.0
| Zero-Shot | 304 74.3
Self-Training 35.0 78.6
XLM-R | Back-Training 29.6 71.5
LeSTM 47.2*1 82.7*
| Supervised | 545 87.2

5.1.3 Implementation Details.

For the warm-up training stage, although Mr. TYDI
proposed to use NQ (Kwiatkowski et al., 2019)
as English training data, we follow Xinyu et
al. (Zhang et al., 2022b) to use MS-MARCO as
English training data. Xinyu ef al. find that MS-
MARCO is better than NQ for zero-shot multilin-
gual retrieval. We have further constructed experi-
ments on NQ in Appendix D.3.

For the iteratively training stage, both the re-
triever and the generator are scheduled to train with
500 mini-batches in each iteration. The document
index is refreshed after each iteration of training.
The hyper-parameters are shown in Appendix B.

All the experiments run on 8§ NVIDIA Tesla
A100 GPUs. The implementation code is based
on HuggingFace Transformers (Wolf et al., 2020).
For sentence embedding, we use the corresponding
hidden state of the [CLS] token for mBERT (Devlin
et al., 2019) and the average hidden states of all
tokens for XLM-R (Conneau et al., 2020). For the
generator, we leverage mBART (Liu et al., 2020)
as the pre-trained model.

5.2 Results
5.2.1 Baselines

As we investigate retrieval in the multilingual
setting, in this paper, the main baselines meth-

ods include BM25, and multilingual DPR with
mBERT (Devlin et al., 2019), XLM-R (Conneau
et al., 2020) as the multilingual pre-trained model.
Furthermore, we compare our method with two
state-of-the-art domain adaption methods: self-
training (Yarowsky, 1995) and back-training (Kul-
shreshtha et al., 2021). Following Back-training,
we train the models 3 iterations with 5 epochs per
iteration. Then we present the results with the best
MRR@100. In addition, we present the supervised
performance as an upper limit reference. When
constructing the supervised training data, we fol-
low DPR (Karpukhin et al., 2020) to select three
kinds of negative passages.

5.2.2 Mr. TYDI

Table 1 shows the result on Mr. TYDI. The first
group is the sparse retriever, i.e., BM25 (Robert-
son and Zaragoza, 2009) and tuned BM25. For
each pre-trained model, the first group is the mul-
tilingual pre-trained models which are only fine-
tuned on MS-MARCO data. The second block
is the multilingual pre-trained models which are
fine-tuned on MS-MARCO data and data augmen-
tation method. We conduct pair t-test (Hsu and
Lachenbruch, 2014) between our method and other
data augmentation method (self-training and back-
training). The final block is the multilingual pre-
trained models which are fine-tuned on Mr. TYDI
dataset. Due to the limited space, we only present
the average performance among all languages in
Table 1 and present results for each language in
Appendix E.

Based on the results, we have the following find-
ings. Firstly, comparing the performance of domain
adaption methods (the second block for each pre-
trained model) and zero-shot performance, we can
find that all domain adaption methods are effective.
Secondly, comparing the three domain adaption
methods, we can find that our method is better
than the other methods. Finally, comparing our
method and supervised dense retriever, we can find
that the performance of our method is closed to
the supervised performance on Recall@100, but
is still worse than supervised performance with a
clear edge on MRR@100. This indicates that the
augmented data are noisy, for example, the mined
passages are relevant to the queries but are not the
best passages, and there may be more relevant pas-
sages for the queries. So, it is more helpful to
Recall@100 but less helpful to MRR@100.

449

Table 2: Results on DeepQA test set. The best results
except supervised training are in bold. * denotes that
our method significantly outperforms self-training at the
level of 0.01. { denotes that our method significantly
outperforms back-training at the level of 0.01.

(a) MRR@10
Methods | En De Fr | Avg
BM25 | 225 314 401 | 313
Zero-Shot | 24.0 294 377 | 303
Self-Training | 25.3 314 423 33.0
Back-Training | 25.8 32.0 420 333
LeSTM | 27.2°7 34.6°7 43.0°7 | 35.0""
Supervised | 23.0 339 397 | 322
(b) Recall@10
Methods En De Fr Avg

| |
BM25 | 372 521 568 | 487
| |

Zero-Shot 39.1 493 567 48.4
Self-Training | 41.8 559 60.9 52.7
Back-Training | 42.6 55.8 61.4 53.2
LeSTM | 44.2°T 57.9*7 62.9*T | 55.0""
Supervised | 38.8 628 63.0 | 547

Table 3: Performance of zero-shot dense retriever on
DeepQA training set and test set.

| MRR@10 Recall@10

Training set 35.1 48.5
Test set 30.3 48.4

5.2.3 DeepQA

Due to the limited space, we only construct ex-
periments on DeepQA based on mBERT. Table 2
presents the performance of all methods. As we
can see, our method achieves the best performance
among all the compared methods. It indicates that
our method is effective for unsupervised multilin-
gual dense retrieval.

In addition, we find that the unsupervised meth-
ods (i.e., self-training and back-training) perform
better than the supervised training on MRR @10
but worse on Recall@10. A possible reason is that
the size of DeepQA is small and there is a large gap
between the distributions of the training data and
test data. To demonstrate that, we evaluate the per-
formance of the zero-shot dense retriever on both
training data and test data. As shown in Table 3,
there is a large gap between the MRR @10 on the
training set and the test set of DeepQA. That indi-
cates the gap between the training set of the test set

Table 4: Ablation results based on mBERT. “LR” de-
notes the lexicon-enhanced retrieval module. “QG” de-
notes the query generation module.

Methods | MRR@100 Recall@100

LeSTM | 49.0 83.6
w/o LR 46.9 81.6
wioLRy | 379 77.9
w/o QG 48.1 83.2
wioALL | 365 733

is large. The dense model trained on the training
set may seriously suffer from the overfitting prob-
lem. These results also indicate that our method is
even more effective than supervised training when
the training data in target languages is limited.

5.3 Ablation Study

In our method, we have incorporated two data aug-
mentation modules, namely lexicon-enhanced re-
trieval, and query generation. Here, we would like
to check how each module contributes to the final
performance. We construct the ablation experi-
ments on the Mr. TYDI data. We prepare four
variants of our method that try all combinations:

¢ w/o LR denotes that the retriever does not be
fine-tuned with data from the lexicon-enhanced
retrieval module. But the generator also is fine-
tuned with data from the lexicon-enhanced re-
trieval module.

* w/o LR denotes that both the retriever and the
generator do not be fine-tuned with data from
the lexicon-enhanced retrieval module.

¢ w/o QG denotes that the retriever does not be
fine-tuned with data from the query generation
module.

¢ w/o ALL denotes without both the two modules,
a.k.a., zero-shot multilingual retrieval.

Table 4 presents all comparison results of the
four variants. Due to the limited space, we present
results for each language in Appendix E. As we
can see, the performance rank can be given as fol-
lows w/o ALL < w/o QG < LeSTM. These results
indicate that both the two augmentation modules
are essential to improve performance. And we can
find that the lexicon-enhanced retrieval module is
more effective than the query generation module,
because of w/o LR < w/o QG. In addition, we find
that w/o LR > w/o LR, it denotes the zero-shot
multilingual query generation suffers from lots of

450

Table 5: Effect of lexicon-enhanced retrieval module.

Methods | MRR@100 Recall@100
BM25 32.1 73.2
Zero-shot mBERT 36.5 73.3
LeSTM w/o QG \ 47.5 82.5
Sparse + Dense 46.6 81.1
Sparse x Dense 40.8 80.4
Double Dense Retrievers 44.5 81.9
w/o HN 42.5 80.4
w/ Sparse HN 43.3 79.2

problems and it also can demonstrate the effective-
ness of the lexicon-enhanced retrieval module.

5.4 Method Analysis
5.4.1 Effect of Lexicon-enhanced Retrieval

In our lexicon-enhanced retrieval module, we com-
bine the results of the sparse and dense retrievers to
mine new training data. To show the effectiveness
of our mining method, we construct the five vari-
ants (for more conciseness, we use mBERT w/o
QG + iterative refinement as the base model):

* Sparse + Dense combines results of sparse and
dense retrievers by adding their scores.

* Sparse x Dense combines results of sparse and
dense retrievers by multiplying their scores.

* Double Dense Retrievers mines positive and
negative passages with results from two
dense retrievers which are trained on different
data (MS-MARCO and NQ).

» w/o Hard Negatives (HN) fine-tunes the model
with mined positive passages and only in-batch
negative passages.

* w/ Sparse Hard Negatives (HN) fine-tunes the
model with mined positive passages, in-batch
negative passages, and top passages returned by
sparse retriever as negative passages.

Table 5 presents all comparison results of the five
variants. Based on the results, we have the follow-
ing findings. Firstly, our mining method is more
effective than the hybrid results of sparse and dense
models. It demonstrates that our method can effec-
tively leverage the knowledge of both sparse and
dense retrievers. Secondly, mining data with sparse
and dense retrievers are more effective than two
dense retrievers. It demonstrates that sparse and
dense retrievers have noticed different characteris-
tics of retrieval. Finally, mined negatives are more

50.0 —— Mrraio 360
49.0 —O— Recall®100 fo=)
480 '
S47.0
= 46.0
450
==
44.0
43.0

42.0

1 2 3 4 5

(a) S in Algorithm 1.

104 —— 84
MRR@100 {84.0

49.2 —O— Recall@100

49.0 83.8

S 488
2186
£ 484
~ 482

48.0 83.0

478 _
0 1000 2000 3000 4000 5009

8343
83.26

(b) The number of generated queries.

Figure 2: Parameter sensitivity.

effective than sparse negatives. It demonstrates that
negatives are important in dense retrieval tasks and
our methods can provide more effective negatives.

5.4.2 Effect of Parameters

In our method, we introduce two parameters in
the lexicon-enhanced retrieval module to define
relevant and irrelevant passages: S and L. And
the number of generated queries also influences
the final performance. Here, we tune the S and L
based on mBERT w/o QG. We vary S in the set
{1,2,3,4,5}. And for more conciseness, we set
L = S x 10. In addition, we tune the number of
generated queries based on mBERT. We vary the
number of generated queries per language in the
set {1000, 2000, 3000, 4000, 5000}.

Figure 2(a) presents the effect of the parame-
ter S. We can observe that S = 1 leads to poor
performance on both MRR @ 100 and Recall@100.
Because the method with little .S mines few sam-
ples and leads to the overfitting problem. When
we set S > 2, it leads to better Recall@ 100 but
poorer MRR@100. A possible reason is that large
S leads to more noisy samples. As we mentioned
above, noisy samples are helpful to Recall@ 100
but harmful to MRR @100.

Figure 2(b) presents the effect of the number of
generated queries. As we can see, the large number
of generated queries improves the MRR @ 100 but
cannot improve the Recall@100. A possible reason

451

is that the generated queries mainly focus on a few
kinds (e.g., when or where something happened).
They are helpful to MRR @100 for these kinds of
queries but less helpful to both Recall@100 and
MRR @100 for other kinds of queries.

6 Conclusion

In this paper, we propose a novel augmentation
method that combines sparse and dense retriev-
ers for multilingual retrieval. We firstly designed
a passage mining method based on the results of
both sparse and dense retrievers. After that, we
utilized the mined data to train a query generation
model and generate more training data. Exten-
sive experimental results show that the proposed
method outperforms the baselines, and can signif-
icantly improve the state-of-the-art performance.
Currently, we directly utilize a large number of un-
labeled queries in target languages. As future work,
we will investigate how to augment training data
without any unlabeled queries in target languages.

7 Limitations

The limitations are summarized as follows.

* The method needs unlabeled queries. For se-
riously rare languages, there are no unlabeled
queries in search engines and we cannot per-
form our passage mining method in this condi-
tion. Although our query generation module can
alleviate this problem, the zero-shot query gen-
erator suffers from grammatical adjustment and
accidental translation problems and can only
provide limited help.

* The method performs inconsistently on the two
metrics (MRR@100 and Recall@100). Due
to the quality of augmented data, we need to
set some threshold to filter the augmented data,
where different parameters lead to optimal per-
formance on different metrics.

* The sparse retriever is fixed during training. The
fixed sparse retriever leads to the rapid conver-
gence of the dense retriever. We believe that
if both sparse and dense retrievers can be im-
proved in the iterative process, the dense re-
triever may achieve better performance.

Acknowledgments

Jian Pei’s research is supported in part by the
NSERC Discovery Grant program. All opinions,

findings, conclusions and recommendations in this
paper are those of the authors and do not necessar-
ily reflect the views of the funding agencies.

References

Akari Asai, Jungo Kasai, Jonathan H. Clark, Kenton
Lee, Eunsol Choi, and Hannaneh Hajishirzi. 2021a.
XOR QA: cross-lingual open-retrieval question an-
swering. In NAACL-HLT, pages 547-564. Associa-
tion for Computational Linguistics.

Akari Asai, Xinyan Yu, Jungo Kasai, and Hanna Ha-
jishirzi. 2021b. One question answering model for
many languages with cross-lingual dense passage
retrieval. In NeurIPS, pages 7547-7560.

Xilun Chen, Kushal Lakhotia, Barlas Oguz, Anchit
Gupta, Patrick S. H. Lewis, Stan Peshterliev, Yashar
Mehdad, Sonal Gupta, and Wen-tau Yih. 2021.
Salient phrase aware dense retrieval: Can a dense re-
triever imitate a sparse one? CoRR, abs/2110.06918.

Zewen Chi, Li Dong, Furu Wei, Nan Yang, Saksham
Singhal, Wenhui Wang, Xia Song, Xian-Ling Mao,
Heyan Huang, and Ming Zhou. 2021. InfoxIm: An
information-theoretic framework for cross-lingual
language model pre-training. In NAACL-HLT, pages
3576-3588. Association for Computational Linguis-
tics.

Jonathan H. Clark, Jennimaria Palomaki, Vitaly Niko-
laev, Eunsol Choi, Dan Garrette, Michael Collins,
and Tom Kwiatkowski. 2020. Tydi QA: A bench-
mark for information-seeking question answering in
typologically diverse languages. Trans. Assoc. Com-
put. Linguistics, 8:454-470.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In ACL,
pages 8440-8451. Association for Computational
Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In NeurlPS,
pages 7057-7067.

Zhuyun Dai and Jamie Callan. 2020. Context-aware
term weighting for first stage passage retrieval. In
SIGIR, pages 1533-1536. ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT (1), pages 4171-4186. As-
sociation for Computational Linguistics.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
BERT sentence embedding. In ACL (1), pages 878-
891. Association for Computational Linguistics.

452

Luyu Gao and Jamie Callan. 2021a. Condenser: a pre-
training architecture for dense retrieval. In EMNLP
(1), pages 981-993. Association for Computational
Linguistics.

Luyu Gao and Jamie Callan. 2021b. Unsupervised cor-
pus aware language model pre-training for dense pas-
sage retrieval. CoRR, abs/2108.05540.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL:
revisit exact lexical match in information retrieval
with contextualized inverted list. In NAACL-HLT,
pages 3030-3042. Association for Computational
Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. REALM: retrieval-
augmented language model pre-training. CoRR,
abs/2002.08909.

Henry Hsu and Peter A Lachenbruch. 2014. Paired t
test. Wiley StatsRef: statistics reference online.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2020. Poly-encoders: Architec-
tures and pre-training strategies for fast and accurate
multi-sentence scoring. In JICLR. OpenReview.net.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Towards unsupervised
dense information retrieval with contrastive learning.
CoRR, abs/2112.09118.

Gautier Izacard and Edouard Grave. 2021. Distilling
knowledge from reader to retriever for question an-
swering. In ICLR. OpenReview.net.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-scale similarity search with gpus. [EEE
Trans. Big Data, 7(3):535-547.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Dangi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In EMNLP (1),
pages 6769—6781. Association for Computational
Linguistics.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over BERT. In SIGIR, pages 39—-48.
ACM.

Devang Kulshreshtha, Robert Belfer, Tulian Vlad Ser-
ban, and Siva Reddy. 2021. Back-training excels
self-training at unsupervised domain adaptation of
question generation and passage retrieval. In EMNLP
(1), pages 7064—7078. Association for Computational
Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob

Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering

research. Trans. Assoc. Comput. Linguistics, 7:452—
466.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In ACL (1), pages 6086—
6096. Association for Computational Linguistics.

Yulong Li, Martin Franz, Md. Arafat Sultan, Bhavani
Iyer, Young-Suk Lee, and Avirup Sil. 2021. Learning
cross-lingual IR from an english retriever. CoRR,
abs/2112.08185.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Trans. Assoc.
Comput. Linguistics, 8:726-742.

Shugi Lu, Di He, Chenyan Xiong, Guolin Ke, Waleed
Malik, Zhicheng Dou, Paul Bennett, Tie-Yan Liu,
and Arnold Overwijk. 2021. Less is more: Pretrain a
strong siamese encoder for dense text retrieval using
a weak decoder. In EMNLP (1), pages 2780-2791.
Association for Computational Linguistics.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, dense, and atten-
tional representations for text retrieval. Trans. Assoc.
Comput. Linguistics, 9:329-345.

Ji Ma, Ivan Korotkov, Yinfei Yang, Keith B. Hall, and
Ryan T. McDonald. 2021a. Zero-shot neural passage
retrieval via domain-targeted synthetic question gen-
eration. In EACL, pages 1075-1088. Association for
Computational Linguistics.

Xueguang Ma, Kai Sun, Ronak Pradeep, and Jimmy
Lin. 2021b. A replication study of dense passage
retriever. CoRR, abs/2104.05740.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming
Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy,
Johannes Heidecke, Pranav Shyam, Boris Power,
Tyna Eloundou Nekoul, Girish Sastry, Gretchen
Krueger, David Schnurr, Felipe Petroski Such, Kenny
Hsu, Madeleine Thompson, Tabarak Khan, Toki
Sherbakov, Joanne Jang, Peter Welinder, and Lilian
Weng. 2022. Text and code embeddings by con-
trastive pre-training. CoRR, abs/2201.10005.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In CoCo@NIPS, vol-
ume 1773 of CEUR Workshop Proceedings. CEUR-
WS.org.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernandez Abrego, Ji Ma, Vincent Y. Zhao,
Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yinfei
Yang. 2021. Large dual encoders are generalizable
retrievers. CoRR, abs/2112.07899.

453

Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019.
From doc2query to doctttttquery. Online preprint.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. Rocketqa: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In NAACL-HLT, pages
5835-5847. Association for Computational Linguis-
tics.

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao,
Qiaogiao She, Hua Wu, Haifeng Wang, and Ji-Rong
Wen. 2021. Rocketqav2: A joint training method
for dense passage retrieval and passage re-ranking.
In EMNLP (1), pages 2825-2835. Association for
Computational Linguistics.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Found. Trends Inf. Retr., 3(4):333-389.

Hongyin Tang, Xingwu Sun, Beihong Jin, Jingang
Wang, Fuzheng Zhang, and Wei Wu. 2021. Im-
proving document representations by generating
pseudo query embeddings for dense retrieval. In
ACL/IJCNLP (1), pages 5054-5064. Association for
Computational Linguistics.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogenous benchmark for zero-shot evalu-

ation of information retrieval models. CoRR,
abs/2104.08663.

Adron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998—-6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
EMNLP (Demos), pages 38—45. Association for Com-
putational Linguistics.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In ICLR. OpenReview.net.

Canwen Xu, Daya Guo, Nan Duan, and Julian
McAuley. 2022. Laprador: Unsupervised pretrained
dense retriever for zero-shot text retrieval. CoRR,
abs/2203.06169.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mt5: A massively multilingual
pre-trained text-to-text transformer. In NAACL-HLT,
pages 483—498. Association for Computational Lin-
guistics.

Sohee Yang and Minjoon Seo. 2020. Is retriever merely
an approximator of reader? CoRR, abs/2010.10999.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In ACL,
pages 189-196. Morgan Kaufmann Publishers / ACL.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min
Zhang, and Shaoping Ma. 2021. Optimizing dense re-
trieval model training with hard negatives. In SIGIR,
pages 1503-1512. ACM.

Hang Zhang, Yeyun Gong, Yelong Shen, Jiancheng
Lv, Nan Duan, and Weizhu Chen. 2021a. Adversar-
ial retriever-ranker for dense text retrieval. CoRR,
abs/2110.03611.

Shunyu Zhang, Yaobo Liang, Ming Gong, Daxin Jiang,
and Nan Duan. 2022a. Multi-view document repre-
sentation learning for open-domain dense retrieval.
In ACL (1), pages 5990-6000. Association for Com-
putational Linguistics.

Xinyu Zhang, Xueguang Ma, Peng Shi, and Jimmy Lin.
2021b. Mr. tydi: A multi-lingual benchmark for
dense retrieval. CoRR, abs/2108.08787.

Xinyu Zhang, Kelechi Ogueji, Xueguang Ma, and
Jimmy Lin. 2022b. Towards best practices for train-
ing multilingual dense retrieval models. CoRR,
abs/2204.02363.

454

Appendix

A Dataset Statistics

Mr.TYDI Mr. TYDI is a multilingual retrieval
benchmark based on the TYDI dataset. Mr. TYDI
covers 11 languages. The corpus for each language
is drawn from Wikipedia, and the query and judg-
ments are prepared by native speakers of that lan-
guage. Table 12 presents statistics of the Mr. TYDI
dataset, copied from the original paper.

DeepQA. DeepQA is a Q&A dataset from one com-
mercial Q&A system, with 18,000 labeled cases in
three languages. Each case consists of two parts,
i.e., query and passage. The following briefly de-
scribes how the data is collected. Firstly, for each
query, the top 10 relevant documents returned by
the search engine are selected to form <query, url>
pairs; Then passages are further extracted from
these documents to form <query, url, passage>
triples; These <query, passage> pairs are sampled
and sent to crowd sourcing judges. Specifically,
each <query, passage> pair is required to get judged
by three judges. Those cases with more than 2/3
positive labels will get positive labels, otherwise
negative. The detailed statistics of the DeepQA
dataset are presented in Table 6.

Table 6: Statistics for DeepQA: number of queries (#
Q), judgments (# J), and the number of passages.

| Train | Test |)
Corpus Size
| #Q #1 | #Q #1 |
En | 4437 6,022 | 1,703 1,978 741,840
De | 2,401 3,977 910 1,023 385,440
Fr | 2,976 4,000 936 1,000 92,750
All | 9,814 13,999 | 3,549 4,001 | 1,220,030

B Hyper-parameters

We have analyzed the parameters of our method
in Section 5.4.2. Here, we present the other hyper-
parameters of our method in Table 7, most of them
follow Back-training (Kulshreshtha et al., 2021)
and DPR (Karpukhin et al., 2020).

C Efficiency Report

We list the time cost of training and inference in
Table 8. The evaluation is made with 8 NVIDIA
A100 GPUs. The number of iterations is set as 3.

Table 7: Hyper-parameters.

| Parameters | Value
Max Query Length 32
Max Passage Length 128
Learning Rate le-5
Batch Size 128
Train Negative Size 255
warm-up | QOptimizer AdamW
retriever | Scheduler Linear
‘Warmup Proportion 0.1
Training Epoch 3
Learning Rate le-5
. Batch Size 64
nggﬂlp Optimizer AdamW
generator Scheduler . Linear
Warmup Proportion 0.1
Training Epoch 1
Learning Rate le-6
Batch Size 128
Negative Size 255
Tteraively Optimizer AdamW
training of Scheduler Linear
. Warmup Proportion 0.1
retriever Training Epoch 5
S in Algorithm 1 2
L in Algorithm 1 20
of Generated Queries 5000
of Iteration 3
Learning Rate le-5
. Batch Size 64
tIrZ:l?Irglgf Optimizer AdamW
Scheduler Linear
generator Warmup Proportion 0.1
Training Epoch 5
of Iteration 3
Table 8: Efficiency Report.
Warm-up 0.5h
Per Iteration 0.2h
Training | Index Refresh 1.7h
Generate Queries | 0.5h
Overall 8.9h
Build Index 1.7h
Inference | Query Encoding 40ns
Dense Retrieval 2ms

D Additional Experiments

D.1 Effect of Query Filter

In our query generation module, we use the dense
retriever to filter the generated queries. Here, we an-
alyze the effectiveness of filtering based on mBERT.
We present the result for w/o Queries Filter and
w/o Queries Filter & Hard Negative passages in
Table 10. As we can see, filtering generated queries
can lead to better performance. We also find
that w/o QF & HN > LeSTM > w/o QF on Re-

455

Table 9: A filtered out generated query.

Passage: Baada ya uhuru wa Fiji (1970) kutoka kwa
Waingereza, yalifuata mapinduzi ya kijeshi yaliyotokea
mwaka 1987, hali iliyosababishwa na wakazi wa Fiji
kulaumu serikali yao kutawaliwa na watu wa kabila la
Indofijian au Wahindi.

Translation: After Fiji’s independence (1970) from the
British, it followed a military coup in 1987, a situation in
which Fijians blamed their government for being ruled
by Indofijian or Indian people.

Generated query: Kwa upi uhuru wa Fiji ulifanyika
mwaka gani?

Translation: In what year did Fiji’s independence take
place?

Top-1 passage: Fiji ilijipatia uhuru wake kutoka katika
utawala wa kikoloni wa Uingereza tarehe 10 Oktoba
1970.

Translation: Fiji gained its independence from British
colonial rule on October 10, 1970.

call@100. It denotes that the generated queries
are relevant to the passages but the top passages
returned by retrievers may be more relevant. We
present an example of a query that is filtered out
in Table 9. As we can see, although the generated
query can be answered by the passage, the main
statement of the passage is not intended to answer
the generated query and there is a more relevant
passage to answer the generated query. As a result,
these samples (w/o hard negative passages) are
helpful to Recall@ 100 but harmful to MRR @ 100.

D.2 Visualization of the Training Procedure

Our method employs iteratively training to improve
the performance. Here, we report the iterative per-
formance of our method in Figure 3. To better show
the effectiveness of our method, we set the number
of iterations as 5 in the experiments. As we can
see, the performance of our method increases with
iteration and it holds steady when the model con-
vergences. It shows that the distribution of mined
data is similar to the distribution of real data, so
the model does not suffer from the overfitting prob-
lem. In the end, the MRR@100 is improved by
approximately 12%, and Recall@100 is improved
by approximately 10%. It demonstrates the effec-
tiveness of the mined data.

D.3 Effect of English Data

In this section, we test the influence of different
English data. As Xinyu et al. (Zhang et al., 2022b)
said, MS-MARCO (Nguyen et al., 2016) has a
larger dataset size than NQ (Kwiatkowski et al.,
2019), and the data size is a more critical factor. To

84.0
82.0
(e}
8003
78.0=
3
76.0~
500 —)— MRR@100 740
32.0 —O— Recall@100 :

0 1 2 3 4 5

@

Figure 3: Iterative performance for the proposed LeSTM
based on mBERT.

test the effectiveness of our methods, we construct
experiments on both MS-MARCO and NQ. Note
that the only difference is the English data and we
directly use the tuned parameters based on MS-
MARCO for all experiments. Table 11 presents the
performance of two English data based on mBERT.
Note that our re-implement mBERT based on NQ
is better than the Mr. TYDI paper (Zhang et al.,
2021b)?. Because we share the parameters of the
query encoder and the passage encoder, the trick
leads to better performance.

As we can see, the gap between the performance
of our method based on MS-MARCO data and
NQ data is smaller than other methods. And the
Recall@100 on NQ data is even higher than Re-
call@100 on MS-MACRO data. A possible rea-
son is that NQ is closer to Mr. TYDI, both of
them contain relatively well-formed queries posed
against Wikipedia. The zero-shot performance of
English data in Mr. TYDI data (the Recall@100
of English is 75.1 for the model trained on MS-
MARCO data and 78.3 for the model trained on
NQ data) can demonstrate that. So, the mined data
of dense retriever trained by NQ is more effective
than MS-MARCO, and more effective data in tar-
get languages can lead to better performance.

E Detailed Results

Due to the limited space, we only present average
performance in the experiment section. Here, we
present the performance of each language. First,
we present the detailed performance of both our
method and baselines in Table 13. Second, we
present the detailed performance of ablation results
in Table 14. Finally, we present the detailed perfor-
mance of variants of the passage mining module
in Table 15. As we can see, our method performs
better in most languages in these settings.

Zhttps://github.com/castorini/mr.tydi

456

https://github.com/castorini/mr.tydi

Table 10: Effect of query filter. “QF” denotes query filter and “HN” denotes hard negative passages which are top
passages returned by sparse and dense retrievers.

(2) MRR@100

Methods | Ar Bn En Fi Id Ja Ko Ru Sw Te Th | Avg
LeSTM 585 495 373 456 513 38.6 436 462 486 665 53.1 | 49.0
w/o QF 535 47.1 331 399 475 36.6 362 440 442 276 420 | 41.1
w/o QF & HN | 58.1 48.6 37.0 452 50.6 384 43.6 460 477 546 53.0 | 475

(b) Recall@100
Methods | Ar Bn En Fi Id Ja Ko Ru Sw Te Th | Avg

LeSTM 859 892 776 831 864 770 749 818 834 956 853 | 83.6
w/o QF 83.7 914 745 793 854 767 695 821 81.6 919 819 | 81.6
w/ioQF & HN | 862 90.1 79.1 834 873 775 768 833 829 96.1 86.7 | 84.5
Table 11: Performance comparison for different English data based on mBERT.
() MRR@100
Methods | Ar Bn En Fi Id Ja Ko Ru Sw Te Th | Avg
MS-MARCO
Zero-Shot ‘ 477 415 324 349 419 309 30.8 356 404 348 302 ‘ 36.5
Self-Training | 45.4 40.5 285 33.8 402 321 321 341 438 429 362 | 372
Back-Training | 49.0 48.7 31.7 389 445 345 348 383 46.0 467 389 | 41.1
LeSTM 585 495 373 456 513 386 43.6 462 48.6 0665 53.1 | 49.0
NQ
Zero-Shot \ 30.0 38.7 306 256 307 306 234 296 28.1 241 226 \ 28.5
Self-Training | 32.2 415 279 273 335 304 242 304 333 365 280|314
Back-Training | 354 423 297 285 332 315 277 328 40.8 247 305 | 325
LeSTM 548 56.6 41.0 423 512 41.6 389 46.1 462 66.7 49.1 | 48.6
(b) Recall@100
Methods | Ar Bn En Fi Id Ja Ko Ru Sw Te Th | Avg
MS-MARCO
Zero-Shot ‘ 80.6 78.8 751 747 793 678 655 731 704 771 637 ‘ 73.3
Self-Training | 823 869 744 782 813 727 670 776 787 91.0 73.6 | 785
Back-Training | 84.6 90.1 765 814 844 762 73.6 822 80.8 89.6 83.1 | 82.0
LeSTM 859 892 776 831 864 770 749 81.8 834 956 853 | 835
NQ

Zero-Shot ‘ 703 802 783 692 764 743 609 727 657 699 599 ‘ 70.7
Self-Training | 789 86.5 79.1 77.7 833 79.0 69.6 779 767 905 748 | 79.5
Back-Training | 81.7 88.7 80.1 80.0 86.0 808 735 819 834 93.6 83.0 | 83.0
LeSTM 859 919 839 843 887 832 784 855 829 957 857 | 86.0

457

Table 12: Statistics for Mr. TYDI: number of queries (# Q), judgments (# J), and the number of passages.

| Train | Dev | Test |)
Corpus Size
| #Q #1 | #Q #1 | #Q #J |

Ar 12,377 12,377 3,115 3,115 | 1,081 1,257 2,106,586

Bn 1,713 1,719 440 443 111 130 304,059

En 3,547 3,547 878 878 744 935 32,907,100

Fi 6,561 6,561 1,738 1,738 | 1,254 1,451 1,908,757

Id 4,902 4,902 1,224 1,224 829 961 1,469,399

Ja 3,697 3,697 928 928 720 923 7,0000,027

Ko 1,295 1,317 303 307 421 492 1,496,126

Ru 5,366 5,366 1,375 1,375 955 1,168 9,597,504

Sw 2,072 2,401 526 623 670 743 136,689

Te 3,880 3,880 983 983 646 664 548,224

Th 3,319 3,360 807 817 | 1,190 1,368 568,855

All ‘ 48,729 49,127 ‘ 12,317 12,431 ‘ 8,661 10,092 ‘ 58,043,326

Table 13: Detail results on Mr. TYDI test set.
(a) MRR@100
Methods | Ar Bn En Fi Id Ja Ko Ru Sw Te Th | Avg
Sparse BM25 36.8 41.8 140 284 376 21.1 285 313 389 343 40.1 | 32.1
Retriever (tuned) 36.7 413 151 288 382 21.7 28.1 329 396 424 41.7 | 333
Zero-Shot 444 383 315 306 37.8 314 297 337 369 363 282 | 344
(reimpl) 477 415 324 349 419 309 308 356 404 348 30.2 | 365
mBERT Self-Training | 454 40.5 285 33.8 40.2 32.1 321 341 438 429 362 | 372
Back-Training | 49.0 48.7 31.7 389 445 345 348 383 46.0 467 389 | 41.1
LeSTM 585 495 373 456 513 38.6 43.6 462 486 665 53.1 | 49.0
‘ Supervised ‘ 642 552 454 527 538 431 428 464 588 833 545 ‘ 54.6
‘ Zero-Shot ‘ 317 409 18.1 303 317 229 31.7 270 244 360 395 ‘ 30.4
Self-Training | 37.8 41.6 21.6 31.6 36.0 256 294 28.1 405 546 384 | 350
XLM-R | Back-Training | 32.0 43.0 202 287 31.3 251 304 290 202 275 388|296
LeSTM 540 517 33.0 439 499 348 403 414 451 701 549 | 47.2
‘ Supervised ‘ 629 61.5 430 51.6 536 399 412 440 576 833 609 ‘ 54.5
(b) Recall@100

Methods | Ar Bn En Fi Id Ja Ko Ru Sw Te Th | Avg
Sparse BM25 793 869 537 719 843 645 619 648 764 758 853 | 732
Retriever (tuned) 80.0 874 554 725 846 656 797 660 764 813 853 | 758
Zero-Shot 799 82.0 758 693 758 738 645 728 686 797 648 | 734
(reimpl) 80.6 78.8 751 747 793 678 655 73.1 704 77.1 63.7 | 73.3
mBERT Self-Training | 823 869 744 782 813 727 67.0 77.6 787 910 73.6 | 785
Back-Training | 84.6 90.1 765 814 844 762 736 822 808 89.6 83.1 | 82.0
LeSTM 859 892 776 831 864 77.0 749 818 834 956 853 | 83.6
‘ Supervised ‘ 90.2 923 842 858 877 821 788 847 859 962 88.7 ‘ 87.0
‘ Zero-Shot ‘ 763 842 688 746 823 667 679 689 603 812 86.5 ‘ 74.3
Self-Training | 789 85.1 68.8 78.6 84.0 702 668 71.6 782 936 884 | 78.6
XLM-R | Back-Training | 789 883 724 773 845 73.1 71.1 752 597 806 O91.1 | 775
LeSTM 850 860 762 826 864 746 736 77.8 80.2 954 92.1 | 82.7
‘ Supervised ‘ 89.3 928 831 863 898 80.1 787 826 87.0 96.7 92.6 ‘ 87.2

458

Table 14: Ablation results based on mBERT.

(a) MRR@100

Methods | Ar Bn En Fi Id Ja Ko Ru Sw Te Th | Avg
All ‘ 585 495 373 456 513 38.6 436 462 486 665 53.1 ‘ 49.0
w/o LR 557 49.6 359 43.0 49.7 38.1 40.1 435 469 669 459 | 46.9
w/o LR 49.1 455 324 364 434 320 324 390 419 459 39.0 | 39.7
w/o QG 588 494 37.0 451 510 38.0 427 455 472 627 514 | 48.1
w/oLR+QG | 47.7 415 324 349 419 309 308 356 404 348 302 | 36.5
(b) Recall@100
Methods | Ar Bn En Fi Id Ja Ko Ru Sw Te Th | Avg
All ‘ 859 892 776 831 864 77.0 749 818 834 956 853 ‘ 83.6
w/o LR 84.0 874 760 804 851 762 70.7 80.7 81.7 938 81.6 | 81.6
w/o LR 80.8 85.1 737 768 825 71.1 657 777 715 895 1766 | 779
w/o QG 857 883 786 833 869 762 744 817 80.8 954 843 | 832
w/oLR+QG | 80.6 78.8 751 747 793 678 655 73.1 704 77.1 637 | 733
Table 15: Effect of lexicon-enhanced retrieval module.
(a) MRR@100
Methods | Ar Bn En Fi Id Ja Ko Ru Sw Te Th | Avg
Sparse 36.8 418 140 284 376 21.1 285 313 389 343 40.1 | 32.1
Dense 477 415 324 349 419 309 308 356 404 348 302 | 36.5
LeSTM w/o QG ‘ 58.5 50.8 37.0 45.0 521 382 417 450 466 599 482 ‘ 47.5
Sparse + Dense 57.1 541 343 436 502 374 38.6 443 477 557 499 | 46.6
Sparse x Dense 48.5 483 257 37.1 440 312 346 39.0 424 498 47.8 | 40.8
Double Dense Retrievers | 52.5 525 364 40.6 482 379 38.1 40.8 451 564 40.7 | 445
w/o HN 522 474 326 399 467 353 366 398 455 532 385 | 425
w/ Sparse HN 543 456 348 415 493 357 37.1 415 46.1 509 399 | 433
(b) Recall@100
Methods | Ar ' Bn En Fi Id Ja Ko Ru Sw Te Th | Avg
Sparse 793 869 537 719 843 645 619 648 764 758 853 | 732
Dense 80.6 788 751 747 793 678 655 731 704 771 637 | 733
LeSTM w/o QG ‘ 859 892 789 825 858 752 736 813 793 940 819 ‘ 82.5
Sparse + Dense 8.1 896 770 798 858 774 755 793 783 858 78.7 | 81.1
Sparse x Dense 845 896 753 789 850 76.1 751 786 765 857 787 | 804
Double Dense Retrievers | 84.5 88.7 79.5 81.7 855 77.1 739 79.7 1793 922 782 | 819
w/o HN 84.8 869 770 806 830 742 724 802 775 922 756 | 804
w/ Sparse HN 842 833 774 802 838 71.8 703 781 774 89.9 747 | 79.2

459

