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Abstract

Code pre-trained models (CodePTMs) have
recently demonstrated significant success in
code intelligence. To interpret these mod-
els, some probing methods have been ap-
plied. However, these methods fail to con-
sider the inherent characteristics of codes. In
this paper, to address the problem, we pro-
pose a novel probing method CAT-probing
to quantitatively interpret how CodePTMs at-
tend code structure. We first denoise the in-
put code sequences based on the token types
pre-defined by the compilers to filter those to-
kens whose attention scores are too small. Af-
ter that, we define a new metric CAT-score to
measure the commonality between the token-
level attention scores generated in CodePTMs
and the pair-wise distances between corre-
sponding AST nodes. The higher the CAT-
score, the stronger the ability of CodePTMs
to capture code structure. We conduct ex-
tensive experiments to integrate CAT-probing
with representative CodePTMs for different
programming languages. Experimental re-
sults show the effectiveness of CAT-probing in
CodePTM interpretation. Our codes and data
are publicly available at https://github.
com/nchen909/CodeAttention.

1 Introduction

In the era of “Big Code” (Allamanis et al., 2018),
the programming platforms, such as Github and
Stack Overflow, have generated massive open-
source code data. With the assumption of “Soft-
ware Naturalness” (Hindle et al., 2016), pre-trained
models (Vaswani et al., 2017; Devlin et al., 2019;
Liu et al., 2019) have been applied in the domain
of code intelligence.

Existing code pre-trained models (CodePTMs)
can be mainly divided into two categories:
structure-free methods (Feng et al., 2020; Svy-

∗Equal contribution, authors are listed alphabetically.
†Corresponding author.

atkovskiy et al., 2020) and structure-based meth-
ods (Wang et al., 2021b; Niu et al., 2022b). The
former only utilizes the information from raw code
texts, while the latter employs code structures,
such as data flow (Guo et al., 2021) and flattened
AST1 (Guo et al., 2022), to enhance the perfor-
mance of pre-trained models. For more details,
readers can refer to Niu et al. (2022a). Recently,
there exist works that use probing techniques (Clark
et al., 2019a; Vig and Belinkov, 2019; Zhang et al.,
2021) to investigate what CodePTMs learn. For
example, Karmakar and Robbes (2021) first probe
into CodePTMs and construct four probing tasks
to explain them. Troshin and Chirkova (2022) also
define a series of novel diagnosing probing tasks
about code syntactic structure. Further, Wan et al.
(2022) conduct qualitative structural analyses to
evaluate how CodePTMs interpret code structure.
Despite the success, all these methods lack quan-
titative characterization on the degree of how well
CodePTMs learn from code structure. Therefore,
a research question arises: Can we develop a new
probing way to evaluate how CodePTMs attend
code structure quantitatively?

In this paper, we propose a metric-based probing
method, namely, CAT-probing, to quantitatively
evaluate how CodePTMs Attention scores relate to
distances between AST nodes. First, to denoise the
input code sequence in the original attention scores
matrix, we classify the rows/cols by token types
that are pre-defined by compilers, and then retain
tokens whose types have the highest proportion
scores to derive a filtered attention matrix (see Fig-
ure 1(b)). Meanwhile, inspired by the works (Wang
et al., 2020; Zhu et al., 2022), we add edges to im-
prove the connectivity of AST and calculate the dis-
tances between nodes corresponding to the selected
tokens, which generates a distance matrix as shown
in Figure 1(c). After that, we define CAT-score to
measure the matching degree between the filtered

1Abstract syntax tree.
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Figure 1: Visualization on the U-AST structure, the attention matrix generated in the last layer of CodeBERT (Feng
et al., 2020) and the distance matrix. (a) A Python code snippet with its corresponding U-AST. (b) Heatmaps of the
averaged attention weights after attention matrix filtering. (c) Heatmaps of the pair-wise token distance in U-AST.
In the heatmaps, the darker the color, the more salient the attention score, or the closer the nodes. In this toy
example, only the token “.” between “tmpbuf” and “append” is filtered. More visualization examples of filtering
are given in Appendix D.

attention matrix and the distance matrix. Specifi-
cally, the point-wise elements of the two matrices
are matched if both the two conditions are satisfied:
1) the attention score is larger than a threshold; 2)
the distance value is smaller than a threshold. If
only one condition is reached, the elements are un-
matched. We calculate the CAT-score by the ratio
of the number of matched elements to the summa-
tion of matched and unmatched elements. Finally,
the CAT-score is used to interpret how CodePTMs
attend code structure, where a higher score indi-
cates that the model has learned more structural
information.

Our main contributions can be summarized as
follows:

• We propose a novel metric-based probing
method CAT-probing to quantitatively inter-
pret how CodePTMs attend code structure.

• We apply CAT-probing to several representa-
tive CodePTMs and perform extensive experi-
ments to demonstrate the effectiveness of our
method (See Section 4.3).

• We draw two fascinating observations from
the empirical evaluation: 1) The token types
that PTMs focus on vary with programming
languages and are quite different from the gen-
eral perceptions of human programmers (See
Section 4.2). 2) The ability of CodePTMs
to capture code structure dramatically differs
with layers (See Section 4.4).

2 Code Background

2.1 Code Basics

Each code can be represented in two modals: the
source code and the code structure (AST), as shown
in Figure 1(a). In this paper, we use Tree-sitter 2

to generate ASTs, where each token in the raw
code is tagged with a unique type, such as “iden-
tifier”, “return” and “=”. Further, following these
works (Wang et al., 2020; Zhu et al., 2022), we
connect adjacent leaf nodes by adding data flow
edges, which increases the connectivity of AST.
The upgraded AST is named as U-AST.

2.2 Code Matrices

There are two types of code matrices: the atten-
tion matrix and the distance matrix. Specifically,
the attention matrix denotes the attention score
generated by the Transformer-based CodePTMs,
while the distance matrix captures the distance be-
tween nodes in U-AST. We transform the original
subtoken-level attention matrix into the token-level
attention matrix by averaging the attention scores
of subtokens in a token. For the distance matrix, we
use the shortest-path length to compute the distance
between the leaf nodes of U-AST. Our attention
matrix and distance matrix are shown in Figure 1(b)
and Figure 1(c), respectively.

2github.com/tree-sitter
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3 CAT-probing

3.1 Code Matrices Filtering

As pointed out in (Zhou et al., 2021), the atten-
tion scores in the attention matrix follow a long
tail distribution, which means that the majority of
attention scores are very small. To address the prob-
lem, we propose a simple but effective algorithm
based on code token types to remove the small val-
ues in the attention matrix. For space limitation,
we summarize the pseudocodes of the algorithm in
Appedix Alg.1. We only keep the rows/cols cor-
responding to frequent token types in the original
attention matrix and distance matrix to generate
selected attention matrix and distance matrix.

3.2 CAT-score Calculation

After the two code matrices are filtered, we define a
metric called CAT-score, to measure the common-
ality between the filtered attention matrix A and
the distance matrix D. Formally, the CAT-score is
formulated as:

CAT-score =

∑
C

∑n
i=1

∑n
j=1 1Aij>θA and Dij<θD∑

C

∑n
i=1

∑n
j=1 1Aij>θA or Dij<θD

,

(1)
where C is the number of code samples, n is the
length of A or D, 1 is the indicator function, θA
and θD denotes the thresholds to filter matrix A
and D, respectively. Specifically, we calculate the
CAT-score of the last layer in CodePTMs. The
larger the CAT-score, the stronger the ability of
CodePTMs to attend code structure.

4 Evaluation

4.1 Experimental Setup

Task We evaluate the efficacy of CAT-probing on
code summarization, which is one of the most chal-
lenging downstream tasks for code representation.
This task aims to generate a natural language (NL)
comment for a given code snippet, using smoothed
BLEU-4 scores (Lin and Och, 2004) as the metric.

Datasets We use the code summarization dataset
from CodeXGLUE (Lu et al., 2021) to evaluate the
effectiveness of our methods on four programming
languages (short as PLs), which are JavaScript, Go,
Python and Java. For each programming language
(short as PL), we random sample C = 3, 000 ex-
amples from the training set for probing.

Pre-trained models We select four models, in-
cluding one PTM, namely RoBERTa (Liu et al.,
2019), and three RoBERTa-based CodePTMs,
which are CodeBERT (Feng et al., 2020), Graph-
CodeBERT (Guo et al., 2021), and UniX-
coder (Guo et al., 2022). All these PTMs are com-
posed of 12 layers of Transformer with 12 attention
heads. We conduct layer-wise probing on these
models, where the layer attention score is defined
as the average of 12 heads’ attention scores in each
layer. The comparison of these models is intro-
duced in Appedix B. And the details of experimen-
tal implmentaton are given in Appedix C.

In the experiments, we aim to answer the three
research questions in the following:

• RQ1(Frequent Token Types): What kind
of language-specific frequent token types do
these CodePTMs pay attention to?

• RQ2(CAT-probing Effectiveness): Is CAT-
probing an effective method to evaluate how
CodePTMs attend code structure?

• RQ3(Layer-wise CAT-score): How does the
CAT-score change with layers?
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Figure 2: Visualization of the frequent token types on
four programming languages.

4.2 Frequent Token Types
Figure 2(a)-(d) demonstrates the language-specific
frequent token types for four PLs, respectively.
From this figure, we see that: 1) Each PL has
its language-specific frequent token types and
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Figure 3: Comparisons between the CAT-score and the
performance on code summarization task.

these types are quite different. For example, the
Top-3 frequent token types for Java are “public”,
“s_literal” and “return”, while Python are “for”, “if”,
“)”. 2) There is a significant gap between the fre-
quent token types that CodePTMs focus on and the
general perceptions of human programmers. For
instance, CodePTMs assigned more attention to
code tokens such as brackets. 3) Attention distribu-
tion on Python code snippets significantly differs
from others. This is caused by Python having lesser
token types than other PLs; thus, the models are
more likely to concentrate on a few token types.

4.3 CAT-probing Effectiveness

To verify the effectiveness of CAT-probing, we
compare the CAT-scores with the models’ perfor-
mance on the test set (using both best-bleu and
best-ppl checkpoints). The comparison among
different PLs are demonstrated in Figure 3. We
found strong concordance between the CAT-score
and the performance of encoder-only models, in-
cluding RoBERTa, CodeBERT, and GraphCode-
BERT. This demonstrates the effectiveness of our
approach in bridging CodePTMs and code struc-
ture. Also, this result (GraphCodeBERT > Code-
BERT > RoBERTa) suggests that for PTMs, the
more code features are considered in the input and
pre-training tasks, the better structural information
is learned.

In addition, we observe that UniXcoder has com-
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Figure 4: Layer-wise CAT-score results.

pletely different outcomes from the other three
CodePTMs. This phenomenon is caused by UniX-
coder utilizing three modes in the pre-training stage
(encoder-only, decoder-only, and encoder-decoder).
This leads to a very different distribution of learned
attention and thus different results in the CAT-
score.

4.4 Layer-wise CAT-score

We end this section with a study on layer-wise CAT-
scores. Figure 4 gives the results of the CAT-score
on all the layers of PTMs. From these results, we
observe that: 1) The CAT-score decreases in gen-
eral when the number of layers increases on all the
models and PLs. This is because attention scores
gradually focus on some special tokens, reducing
the number of matching elements. 2) The relative
magnitude relationship (GraphCodeBERT > Code-
BERT > RoBERTa) between CAT-score is almost
determined on all the layers and PLs, which indi-
cates the effectiveness of CAT-score to recognize
the ability of CodePTMs in capturing code struc-
ture. 3) In the middle layers(4-8), all the results of
CAT-score change drastically, which indicates the
middle layers of CodePTMs may play an important
role in transferring general structural knowledge
into task-related structural knowledge. 4) In the
last layers (9-11), CAT-scores gradually converge,
i.e., the models learn the task-specific structural
knowledge, which explains why we use the score
at the last layer in CAT-probing.
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5 Conclusion

In this paper, we proposed a novel probing method
named CAT-probing to explain how CodePTMs
attend code structure. We first denoised the in-
put code sequences based on the token types pre-
defined by the compilers to filter those tokens
whose attention scores are too small. After that,
we defined a new metric CAT-score to measure
the commonality between the token-level atten-
tion scores generated in CodePTMs and the pair-
wise distances between corresponding AST nodes.
Experiments on multiple programming languages
demonstrated the effectiveness of our method.

6 Limitations

The major limitation of our work is that the adopted
probing approaches mainly focus on encoder-only
CodePTMs, which could be just one aspect of the
inner workings of CodePTMs. In our future work,
we will explore more models with encoder-decoder
architecture, like CodeT5 (Wang et al., 2021b) and
PLBART (Ahmad et al., 2021), and decoder-only
networks like GPT-C (Svyatkovskiy et al., 2020).
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A Frequent Token Types Filtering
Algorithm

Algorithm 1 describes the procedure to generate
frequent token types.

B Comparsion of CodePTMs

Table 2 gives the comparison of the PTMs used in
our experiments from three perspectives: the inputs
of model, the pre-training task, and the training
mode.

C Experimental Implementation

We keep the same hyperparameter setting for all
CodePTMs. The detailed hyperparameters are
given in Table 1.

Our codes are implemented based on PyTorch.
All the experiments were conducted on a Linux
server with two interconnected NVIDIA-V100
GPUs.

Hyperparameter value

Batch Size 48
Learning Rate 5e-5
Weight Decay 0.0

Epsilon 1e-8
Epochs 15

Max Source Length 256
θA third quartile of values in A
θD first quartile of values in D

Table 1: Hyperparameters for CAT-probing

D Case Study

In addition to the example visualized in Figure 1,
we have carried out three new examples to show
the effectiveness of filtering strategy in Section 3.1,
The visualization are shown in Table 3.
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Algorithm 1 Frequent Token Type Selection

Input: Language lang
Output: Frequent token type list type_list

1: rank = len(token types) * [0] . Initialize rank for each token type
2: for t in token types do
3: for m in CodePTM models do
4: confidence[t,m] = 0
5: for c in code cases do
6: att = get_att(m,lang,c) . Get attention matrix
7: mask_theta = is_gt_theta(att) . Set att position greater than θA to 1, otherwise 0
8: mask_type = is_type_t(att) . Set att position is type t to 1, otherwise 0
9: part = sum_mat(mask_theta&mask_type) . Sum all elements of the matrix

10: overall = sum_mat(mask_type)
11: confidence[t,m]← confidence[t,m] + part / overall . Compute confidence
12: end for
13: confidence[t,m]← confidence[t,m] / len(c) . Average confidence
14: rank[t]← rank[t] + get_rank(confidence,m) . Rank confidence for m, and sum rank for t
15: end for
16: end for
Return: token type list includes those t with rank[t]<40

Models Inputs Pre-training Tasks Training Mode

RoBERTa Natural Language(NL) Masked Language Modeling(MLM) Encoder-only

CodeBERT NL-PL Pairs MLM+Replaced Token Detection(RTD) Encoder-only

GraphCodeBERT NL-PL Pairs & AST MLM+Edge Prediction+Node Alignment Encoder-only

UniXcoder NL-PL Pairs & Flattened AST
MLM Encoder &

ULM(Unidirectional Language Modeling) Decoder &
Denoising Objective(DNS) Encoder-decoder

Table 2: The comparison of different language models mentioned in this paper.
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Source Code Attention Heatmap Attention Heatmap with
Token Type Selection
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Table 3: Heatmaps of the averaged attention weights in the last layer before and after using token selection, includ-
ing Go, Java, and JavaScript code snippets (from top to bottom).
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