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Abstract

Prior work on language model pre-training has
explored different architectures and learning
objectives, but differences in data, hyperparam-
eters and evaluation make a principled compar-
ison difficult. In this work, we focus on bidirec-
tionality as a key factor that differentiates exist-
ing approaches, and present a comprehensive
study of its role in next token prediction, text
infilling, zero-shot priming and fine-tuning. We
propose a new framework that generalizes prior
approaches, including fully unidirectional mod-
els like GPT, fully bidirectional models like
BERT, and hybrid models like CM3 and prefix
LM. Our framework distinguishes between two
notions of bidirectionality—bidirectional con-
text and bidirectional attention—and allows us
to control each of them separately. We find that
the optimal configuration is largely application-
dependent (e.g., bidirectional attention is bene-
ficial for fine-tuning and infilling, but harmful
for next token prediction and zero-shot prim-
ing). We train models with up to 6.7B parame-
ters, and find differences to remain consistent at
scale. While prior work on scaling has focused
on left-to-right autoregressive models, our re-
sults suggest that this approach comes with
some trade-offs, and it might be worthwhile
to develop very large bidirectional models.

1 Introduction

NLP has undergone a paradigm shift driven by pre-
trained models like GPT and BERT (Bommasani
et al., 2021). These models are trained on unla-
beled corpora in a self-supervised fashion, and
can be effectively adapted to downstream tasks ei-
ther through conventional fine-tuning (Devlin et al.,
2019) or few-shot priming (Brown et al., 2020).

Despite their widespread use, there is not a uni-
versal formula to pre-train language models: prior
work has explored different architectures and learn-
ing objectives, often focusing on different appli-
cations. For instance, BERT (Devlin et al., 2019)

pre-trained masked language models for NLU fine-
tuning, BART (Lewis et al., 2020) pre-trained
seq2seq models on denoising for both NLU and
generation tasks, and GPT-3 (Brown et al., 2020)
scaled autoregressive language models focusing
on zero- and few-shot priming. However, such
models differ on many factors in addition to their
architecture and learning objective (e.g., the pre-
training data, compute and hyperparameters), mak-
ing a principled comparison difficult. Motivated by
that, Raffel et al. (2020) presented a comprehensive
study exploring various pre-training objective and
architecture variants in a controlled environment.
However, they conducted most of the exploration
using small models, while recent work has found
that different approaches behave differently at scale
(Tay et al., 2022a,b), and their evaluation was lim-
ited to fine-tuning.

In this paper, we focus on a key factor
that differentiates many pre-training approaches—
bidirectionality—and study it in different settings
as a function of scale. We propose a new frame-
work that distinguishes between two notions of
bidirectionality: bidirectional context (whether
the prediction of a given token is conditioned on
both the right and the left context, or only on ei-
ther of them), and bidirectional attention (whether
there are blocks of tokens that can all attend to each
other, contrasting with triangular attention mask-
ing). Our framework offers knobs to control each
of them separately, generalizing several previous
approaches (e.g. BERT leverages both types of
bidirectionality, GPT does not use any, prefix LMs
only leverage bidirectional attention, and CM3 only
leverages bidirectional context).

We train a total of 24 models covering 6 variants
of our framework and 5 model sizes with up to 6.7B
parameters, and evaluate them on 4 settings: lan-
guage modeling, text infilling, zero-shot priming,
and fine-tuning. We find that bidirectional attention
and context have a different impact depending on
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Figure 1: Proposed framework. Starting from the original document, we mask nmask tokens at random and
move them—along with their positional embeddings—to the end. We define our loss over the last npredict tokens,
predicting the masked token for the last nmask, and the next token for the remaining npredict − nmask. We use
bidirectional attention over the first nbidir tokens, and unidirectional attention over the rest. Refer to Appendix A
for a more detailed description.

Name nmask nbidir npredict Related models

NXTUNI 0 0 n GPT (Radford et al., 2018, 2019; Brown et al., 2020)
NXTPRE† 0 U(1, n) n− nbidir Prefix LM (Raffel et al., 2020; Wu et al., 2021)
MSKUNI B(n, 0.15) 0 nmask –
MSKBI B(n, 0.15) n nmask BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019)
HYBUNI† B(n, 0.15) 0 n CM3 (Aghajanyan et al., 2022)
HYBPRE† B(n, 0.15) U(1, n) max(n− nbidir, nmask) –

Table 1: Variants of the proposed framework explored in this work. n denotes the document length; B(n, p)
denotes the binomial distribution; U(a, b) denotes the discrete uniform distribution. †We set nbidir = 0 and
nmask = 0 with probability p = 0.1, so that the model gets more exposure to regular language modeling.

the use case, and there is not a single configura-
tion that is optimal for all scenarios. Moreover, we
find this behavior to remain consistent at the scale
range considered in this study. With recent scal-
ing work focusing on fully unidirectional models,
this suggests that there is potential for alternative
architectures and learning objectives that might be
better suited for other use cases.

2 Proposed framework

As illustrated in Figure 1, we propose a general-
ized framework to pre-train transformer models on
unlabeled corpora. Our framework supports both
unidirectional and bidirectional attention, as well
as next token prediction and single-token infilling,
using the following parameters to balance them:

• nbidir controls the length of the prefix using
bidirectional attention, whereas the rest of the
document uses unidirectional attention. More
concretely, we set the attention mask so that
the ith token can attend to the jth token if and
only if j ≤ max(i, nbidir).

• nmask controls how many tokens are masked.
Masked tokens are moved to the end along
with their positional embeddings.

• npredict controls the length of the suffix for
which we define our supervisory signal. We
use the cross-entropy loss to train the model,
predicting the masked tokens for the last
nmask, and the next token for the remaining
npredict − nmask.1

As such, our framework allows us to vary the
two notions of bidirectionality discussed above:
nbidir controls the weight of bidirectional attention,
whereas nmask and npredict control the weight of
bidirectional context. In addition, larger values of
npredict result in more tokens of supervision.

Table 1 summarizes the specific variants of this
general framework that we explore in our experi-
ments, along with a descriptive name that we will
use to refer to each of them. Some variants are
equivalent or closely related to existing approaches.
In particular, NXTUNI is equivalent to conventional
autoregressive language models, and NXTPRE is
equivalent to prefix language models. MSKBI is
closely related to the RoBERTa objective,2 except

1We set npredict ≤ n−nbidir +nmask so we only predict
tokens that are either masked or cannot attend to themselves.

2Moving masked tokens to the end becomes irrelevant
when nbidir = n, as their positional embeddings move with
them and transformers operate over sets.
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size cost l d h bs lr

125M 0.11 12 768 12 0.5M 6e-4
355M 0.31 24 1024 16 0.5M 3e-4
1.3B 1.11 24 2048 32 1M 2e-4
2.7B 2.23 32 2560 32 1M 1.6e-4
6.7B 5.49 32 4096 32 2M 1.2e-4

Table 2: Model details. size: number of parameters,
cost: training ZFLOPs, l: layers, d: hidden dimension,
h: attention heads, bs: batch size, lr: learning rate. All
models are trained for 100B tokens with a maximum
sequence length of 1024 tokens. We estimate training
ZFLOPs analytically following Artetxe et al. (2021).

that we do not replace 10% of the masked tokens
with the original or a randomly picked one. HY-
BUNI is similar to the CM3 objective, except that
we mask individual tokens instead of spans and we
draw the number of masks from a binomial distribu-
tion. Finally, we introduce MSKUNI as a variant of
MSKBI using unidirectional attention (or, from an-
other perspective, a variant of HYBUNI predicting
masked tokens alone), and HYBPRE as a variant of
HYBUNI using a bidirectional attention prefix.

3 Experimental settings

3.1 Models

For each variant in Table 1, we train models at
different scales using the same settings as Artetxe
et al. (2021), which at the same time roughly follow
Brown et al. (2020). So as to reduce the compu-
tational cost of our exploration, we differ from
Artetxe et al. (2021) in two ways: (i) we use a
maximum sequence length of 1024 tokens instead
of 2048, and (ii) we train for 100B tokens instead
of 300B. At the same time, we only train 125M
and 355M models for the NXTPRE and MSKUNI

variants. Table 2 summarizes the settings that we
use for each model.

We use the same training data as Artetxe et al.
(2021), which combines BookCorpus (Zhu et al.,
2015), CC-News (Nagel, 2016), OpenWebText
(Gokaslan and Cohen, 2019), CC-Stories (Trinh
and Le, 2018), and English CC100 (Wenzek et al.,
2020), totalling 112B tokens. Following them, we
also use the same BPE encoding as GPT-2 (Radford
et al., 2019) with a vocabulary of 50k.

Our implementation is based in fairseq (Ott et al.,
2019). We apply the procedure described in §2 to
each document separately, and combine multiple
documents into a single sequence to speed up train-

ing.3 As such, we move the masked tokens to
the end of each document (as opposed to the end
of the whole sequence), and apply a bidirectional
attention prefix to each document rather than the
sequence as a whole.4

3.2 Evaluation

We evaluate our models in the following settings:

Language modeling. We evaluate the ability of
our models to predict the next token in a sequence
as measured by perplexity.5 Different from training,
we do not concatenate different documents into the
same sequence, and instead score each document
as a separate sequence.6 Given that NXTPRE and
HYBPRE are primarily trained to predict the last
part of a document conditioned on the first part,
we also measure the perplexity at predicting the
last 20% tokens in each document conditioned on
the first 80%. So as to understand whether using
bidirectional attention in the prefix is useful to that
end, we try different values of nbidir according to
a ratio rbidir, so that nbidir = rbidir × nprefix and
nprefix = 0.8n is the length of the prefix we are
conditioning on.

Single token infilling. We mask a single word in
each document at random, and measure the accu-
racy at predicting it.7 To that end, we use the same
procedure used for training (illustrated in Figure 1),
which moves the mask token to the end of the se-
quence.8 This approach is not suitable for models
trained exclusively on next token prediction like
NXTUNI and NXTPRE, as they can only be condi-
tioned on the right context. However, one can still
use such models for infilling in a generative fash-
ion, replacing the masked token with each element
in the vocabulary, scoring the resulting sequences
autoregressively, and predicting the token yield-

3We achieve this using —sample-break-mode complete
in fairseq. This is different from Artetxe et al. (2021), who con-
catenated all documents and split the resulting sequence into
non-overlapping blocks without respecting document bound-
aries (—sample-break-mode none).

4As a consequence, a given token cannot attend to tokens
in future documents even when nbidir = n, but all tokens can
attend to tokens in previous documents.

5We exclude MSKBI and MSKUNI as they are not trained
on next token prediction.

6This corresponds to the —sample-break-mode
complete_doc option in fairseq.

7Similar to language modeling evaluation, we feed each
document as a separate sequence.

8For models trained with a bidirectional attention prefix,
we try different values of rbidir at inference time, so that
nbidir = rbidir × n.
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Figure 2: Main results. Unidir and Bidir denote using nbidir = 0 and nbidir = n after pre-training, respectively (or
nbidir = nprefix for suffix perplexity).

ing the highest scoring sequence. In addition to
our primary evaluation, we compare both of these
approaches, which we refer to as infill (direct infill-
ing) and full (full sequence scoring). Given that full
can be prohibitively expensive when considering
the full vocabulary, we constrain the set of options
to the top 32 candidates generated by the 125M
MSKBI model.9

Zero-shot priming. We evaluate our models
on zero-shot priming using the exact same set-
tings and tasks as Artetxe et al. (2021), which
comprises ReCoRD (Zhang et al., 2018), Hel-
laSwag (Zellers et al., 2019), PIQA (Bisk et al.,
2020), WinoGrande (Sakaguchi et al., 2020), Sto-
ryCloze (Mostafazadeh et al., 2016) and Open-
BookQA (Mihaylov et al., 2018). These are all
multiple choice tasks, so we score the populated
prompt corresponding to each option in an autore-
gressive fashion and predict the highest scoring
one.10 However, when the options differ in a sin-
gle token—as it is common for classification tasks
with single-token verbalizers—one can also score
such token directly in an infilling fashion. So as
to understand how both approaches compare, we
further evaluate our models on MNLI (Williams

9The top 32 candidates contain the correct one in 95.19%
of the cases, which is the upper bound accuracy in this setting.

10Refer to Artetxe et al. (2021) for a description of the
scoring function used for each task and the evaluatio protocol.

et al., 2018), using a single-token verbalizer placed
in the middle of the prompt.11

Fine-tuning. We experiment with the following
tasks from GLUE (Wang et al., 2019): COLA
(Warstadt et al., 2019), MNLI-m (Williams et al.,
2018), MRPC (Dolan and Brockett, 2005), QNLI
(Rajpurkar et al., 2016), RTE (Dagan et al., 2006;
Haim et al., 2006; Giampiccolo et al., 2007; Ben-
tivogli et al., 2009) and SST-2 (Socher et al., 2013).
Our fine-tuning approach closely follows BERT
and similar models: we place a special </s> token
at the end of the sequence (analogous to the special
<CLS> token used by BERT) and learn a new clas-
sification head on top. We ran a grid search with
the learning rate in {1e-0.5, 2e-05, 5e-05, 5e-06}
and batch size in {16, 32, 64}, and report the best
development accuracy for each model. The rest of
hyperparameters follow RoBERTa. For all variants,
we tried fine-tuning both with fully unidirectional
attention (rbidir = 0) and fully bidirectional atten-
tion (rbidir = 1). Refer to Appendix B for more
details.

11We use <premise>, right? {Yes|No|Also},
<hypothesis> as our template and report results on the
matched development set.
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125M 355M 1.3B 2.7B 6.7B

NXTUNI 22.23 17.49 14.07 12.55 11.44
NXTPRE 22.75 18.06 – – –
HYBUNI 23.26 18.19 14.65 13.16 12.03
HYBPRE 23.91 18.81 15.33 13.92 12.86

Table 3: Full document perplexity.

rbidir 125M 355M 1.3B 2.7B 6.7B

NXTUNI 0.00 19.99 15.67 12.57 11.17 10.15

NXTPRE

0.00 20.29 16.05 – – –
0.25 20.25 16.00 – – –
0.50 20.21 15.96 – – –
0.75 20.17 15.92 – – –
1.00 20.16 15.88 – – –

HYBUNI 0.00 20.91 16.30 13.08 11.73 10.70

HYBPRE

0.00 21.34 16.74 13.60 12.32 11.35
0.25 21.30 16.69 13.56 12.29 11.33
0.50 21.26 16.66 13.54 12.26 11.30
0.75 21.23 16.62 13.51 12.23 11.28
1.00 21.18 16.56 13.46 12.19 11.24

Table 4: Suffix perplexity. We measure perplexity at
predicting the last 20% of the tokens in each document
conditioned on the first 80%, using nbidir = rbidir ×
nprefix for inference, where nprefix = 0.8n is the length
of the prefix we are conditioning on.

4 Results

We visualize our main results in Figure 2, and dis-
cuss each setting in more detail next.

4.1 Language modeling

We report full document perplexities in Table 3.
NXTUNI obtains the best results, followed by HY-
BUNI and HYBPRE, and NXTPRE doing slightly
better than HYBUNI at small scale. This is con-
sistent with how close the pre-training objective is
to the end task: NXTUNI is exclusively trained on
next token prediction, HYBUNI combines it with
masking (which is not used here), and HYBPRE

further combines it with a bidirectional attention
prefix (which is not used here either). However, it
is interesting that scaling up does not reduce the
gap between them. This suggests that there is some
fundamental interference between these different
capabilities,12 and increasing capacity does not mit-

12There are various factors that could explain this. Both
masking and the bidirectional attention prefix reduce the su-
pervision on next token prediction, and masking further intro-
duces some noise in the original sequence. Moreover, training
to use both unidirectional and bidirectional attention and/or
context might provide a conflicting signal, although our results
later in §4.2 suggest that this does not have a major impact at

rbidir 125M 355M 1.3B 2.7B 6.7B

MSKUNI 0.00 69.61 73.43 – – –

MSKBI 1.00 71.00 75.06 77.43 78.46 79.16

HYBUNI 0.00 66.86 71.88 75.56 77.19 78.29

HYBPRE

0.00 67.70 72.25 75.49 76.95 78.02
0.25 68.02 72.57 75.77 77.25 78.22
0.50 68.23 72.85 76.05 77.48 78.52
0.75 68.47 73.13 76.32 77.74 78.70
1.00 68.71 73.38 76.59 78.00 78.91

Table 5: Single token infilling accuracy. We mask a
random token in each validation document and measure
the accuracy at predicting it, using nbidir = rbidir × n
for inference.

igate it.
Table 4 reports suffix perplexity results, where

we predict the last 20% of the tokens in each doc-
ument conditioned on the rest. Compared to the
previous results, NXTPRE and HYBPRE reduce
the gap with NXTUNI and HYBUNI, but they still
lag behind them. In both cases, we find that the
models benefit from using bidirectional attention
in the prefix at inference time (i.e., higher values of
rbidir yield lower perplexity), but the improvement
is relatively small. It is intriguing that NXTUNI

outperforms NXTPRE, when the latter was trained
on suffix prediction and can leverage bidirectional
attention. We attribute this to the bidirectional pre-
fix reducing the number of tokens of supervision
during training.

4.2 Single token infilling

We report infilling results in Table 5. MSKBI ob-
tains the best results, which can be explained by
its use of bidirectional attention and the fact that
it is exclusively trained on masking. Our results
suggest that both of these factors play a role, but
their impact varies at scale. As for the first factor,
we find that bidirectional attention has a larger im-
pact on infilling compared to next token prediction
(§4.1), as reflected by MSKBI doing substantially
better than MSKUNI. Moreover, we find that this
also holds at scale, as reflected by HYBPRE doing
better with larger values of rbidir, while outperform-
ing HYBUNI. Regarding the second factor, we find
that combining masking with next token predic-
tion significantly hurts infilling performance for
small models, as reflected by the large gap between
MSKUNI and HYBUNI. However, we also find

scale.
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125M 355M 1.3B 2.7B 6.7B

NXTUNI full 69.83 73.13 75.90 77.26 77.98

NXTPRE full 69.40 72.75 – – –

MSKUNI infill 69.65 73.39 – – –

MSKBI infill† 71.00 74.98 77.17 78.07 78.70

HYBUNI
full 68.94 72.77 75.43 76.61 77.76
infill 67.02 71.90 75.38 76.90 77.88

HYBPRE
full 68.53 72.05 74.75 76.03 76.87
infill 67.82 72.24 75.35 76.66 77.63
infill† 68.78 73.35 76.36 77.63 78.47

Table 6: Single token infilling accuracy, re-ranking
the top 32 candidates from 125M MSKBI. † denotes
nbidir = n, the rest use nbidir = 0. Refer to §3.2 for
more details.

the impact of this to vanish at scale, as reflected
by the gap between MSKBI and HYBPRE with
rbidir = 1.0 becoming smaller for larger models.
This also explains why HYBPRE with rbidir = 0.0
outperforms HYBUNI for small models, but the
trend is reversed as we scale up: the bidirectional
prefix in HYBPRE reduces the relative weight of
next token prediction during training, which out-
weighs the discrepancy with not using bidirectional
attention at inference time for small models, but
not for larger ones. Interestingly, this is different
from the behavior observed for language modeling
in §4.1, where scale did not significantly mitigate
the negative impact of combining masking and next
token prediction during training. We attribute this
to masking introducing noise in the original docu-
ment, as well as reducing the amount of tokens that
we train on next token prediction.13

Table 6 reports infilling results re-ranking the top
32 candidates from the 125M MSKBI model. The
best results are still obtained by MSKBI, but we
find the generative approach described in §3.2 to
be competitive, with NXTUNI obtaining the second
best results at 125M and the third best results for
larger models. This suggests that models trained
exclusively on next token prediction can also be
used for infilling as long as the set of candidates
is small, even outperforming hybrid models like
HYBUNI that are trained both on next token pre-
diction and infilling itself. In fact, it is remarkable
that NXTUNI is only outperformed by models us-

13Note that the reverse is not true: the addition of next
token prediction in HYBUNI does not reduce the amount of
supervision on infilling with respect to MSKUNI, as we use
the same value of nmask in both cases.

RE HS PI WG SC OB avg

125M

NXTUNI 66.7 32.2 65.3 51.9 64.3 33.0 52.3
NXTPRE 65.8 31.2 64.1 54.1 63.5 35.0 52.3
HYBUNI 65.4 30.8 63.1 50.9 63.6 34.4 51.4
HYBPRE 64.9 30.5 64.2 51.9 63.0 35.2 51.6

355M

NXTUNI 74.8 41.0 69.5 52.2 70.0 38.6 57.7
NXTPRE 74.3 40.0 68.9 52.6 69.2 37.8 57.1
HYBUNI 73.9 39.3 68.1 52.3 69.3 37.2 56.7
HYBPRE 72.9 37.8 67.6 50.4 68.4 37.4 55.8

1.3B
NXTUNI 81.0 52.6 73.8 55.6 74.1 43.6 63.5
HYBUNI 80.0 50.3 72.1 53.7 74.1 43.0 62.2
HYBPRE 79.4 48.5 71.4 52.9 73.9 38.2 60.7

2.7B
NXTUNI 83.8 58.8 75.0 60.1 76.6 50.8 67.5
HYBUNI 83.1 57.5 73.9 58.0 76.9 45.8 65.9
HYBPRE 81.7 54.7 72.4 56.7 75.3 46.6 64.6

6.7B
NXTUNI 85.2 63.6 76.2 60.0 77.6 51.6 69.0
HYBUNI 84.2 61.7 75.5 59.7 76.8 49.0 67.8
HYBPRE 83.9 58.9 73.9 58.7 76.9 50.8 67.2

Table 7: Zero-shot priming accuracy. We use nbidir =
0 for inference. RE: ReCoRD, HS: HellaSwag, PI: PIQA,
WG: WinoGrande, SC: StoryCloze, OB: OpenBookQA.

125M 355M 1.3B 2.7B 6.7B

NXTUNI full 44.79 50.12 53.63 55.09 55.27

NXTPRE full 45.41 49.15 – – –

MSKUNI infill 41.69 44.15 – – –

MSKBI infill† 41.56 48.34 52.24 55.59 53.97

HYBUNI
full 45.12 47.92 52.59 53.40 54.47
infill 43.03 44.54 48.13 49.94 51.26

HYBPRE
full 43.37 47.54 51.53 52.36 54.01
infill 42.16 44.47 47.36 49.98 50.24
infill† 42.95 46.57 49.13 51.85 52.41

Table 8: Zero-shot MNLI accuracy. † denotes nbidir =
n, the rest use nbidir = 0.

ing bidirectional attention which, consistent with
our previous results, seems strongly beneficial for
infilling. Nevertheless, we also find direct infilling
(infill) to scale better than generative full sequence
scoring (full) for both HYBUNI and HYBPRE, al-
though this could (partly) be explained by the inter-
ference between next token prediction and masking
diminishing at scale as discussed previously.

4.3 Zero-shot priming

We report zero-shot priming results in Table 7. We
observe the same general trends as in language
modeling (§4.1), with NXTUNI performing best,
followed by HYBUNI and HYBPRE. The results
are generally consistent across tasks.

Table 8 reports MNLI results, comparing full
sequence scoring and direct infilling. Consistent
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rbidir 125M 355M 1.3B 2.7B 6.7B

NXTUNI
0.0 83.6 85.8 87.2 88.7 88.6
1.0 75.9 77.1 79.0 79.2 80.3

NXTPRE
0.0 84.2 85.8 – – –
1.0 83.5 86.2 – – –

MSKUNI
0.0 82.7 85.2 – – –
1.0 83.2 85.1 – – –

MSKBI
0.0 79.6 81.0 81.9 81.6 82.6
1.0 84.4 88.0 89.6 90.8 91.0

HYBUNI
0.0 83.5 85.9 87.6 88.6 88.8
1.0 80.8 82.5 84.0 85.0 84.7

HYBPRE
0.0 83.6 86.1 87.1 88.2 88.2
1.0 84.8 86.7 88.8 89.8 90.3

Table 9: Average fine-tuning accuracy.

with the intrinsic evaluation in §4.2, we find full
sequence scoring with NXTUNI to be competitive
with direct infilling with MSKBI. In fact, full se-
quence scoring does even better comparatively, ob-
taining the best results in all but one of the model
sizes. Moreover, it is remarkable that both HY-
BUNI and HYBPRE obtain better results with full
sequence scoring compared to direct infilling in all
cases. Consistent with our previous results, this
suggests that left-to-right language models can be
a valid or even superior alternative to masked lan-
guage models for single-token infilling tasks, as
long as one can afford scoring each candidate sepa-
rately.

4.4 Fine-tuning

We report average fine-tuning results comparing
unidirectional and bidirectional attention in Table
9, and full results for the optimal setting for each
variant in Table 10.

Our results show that bidirectional attention is
helpful for fine-tuning regardless of scale, with
fully bidirectional models (MSKBI) performing
the best, followed by models pre-trained with a
bidirectional attention prefix (HYBPRE, NXTPRE),
and fully unidirectional models performing the
worst (HYBUNI, NXTUNI, MSKUNI). Interest-
ingly, changing the attention type at fine-tuning
time (using unidirectional attention for pre-training
and bidirectional attention for fine-tuning, or the
other way around) works poorly.

At the same time, we find that the role of bidirec-
tional context is dependant on the type of attention
used. When using fully unidirectional attention,
bidirectional context has no clear impact, with NX-

TUNI and HYBUNI performing similarly. In con-
trast, when using bidirectional attention, bidirec-
tional context seems beneficial, with HYBPRE per-
forming better than NXTPRE at small scale. This
suggests that pre-training with bidirectional con-
text is important for the model to learn to make
effective use of bidirectional attention.

5 Related work

While it was once common to use random ini-
tialization for supervised learning, a series of
works showed substantial improvements from pre-
training autoregressive models on next token pre-
diction (Dai and Le, 2015; Peters et al., 2018;
Howard and Ruder, 2018; Radford et al., 2018).
The pre-train/fine-tune paradigm was further popu-
larized by BERT (Devlin et al., 2019) and its deriva-
tives like RoBERTa (Liu et al., 2019), which ob-
tained further gains from pre-training bidirectional
encoders on masked language modeling. Subse-
quent work explored masking spans instead of in-
dividual tokens, using either bidirectional encoder-
only models (Joshi et al., 2020) or encoder-decoder
models (Lewis et al., 2020; Raffel et al., 2020).
More recently, there has been a reborn interest on
scaling left-to-right autoregressive language mod-
els with a focus on few-shot priming (Radford et al.,
2019; Brown et al., 2020; Rae et al., 2021; Hoff-
mann et al., 2022; Smith et al., 2022; Chowdhery
et al., 2022; Zhang et al., 2022).

While unidirectional and bidirectional models
have largely been developed as separate strains of
work serving a different purpose, there have also
been some attempts to combine the best of both
worlds. XLNet (Yang et al., 2019) pre-trained au-
toregressive models over all permutations of the
factorization order, enabling the model to use bidi-
rectional context with strong results on fine-tuning.
Similarly, CM3 (Aghajanyan et al., 2022) trained
left-to-right autoregressive models, masking some
spans that are predicted at the end of the sequence.
ERNIE 3.0 (Sun et al., 2021) proposed a modu-
lar architecture, combining a shared unidirectional
module with either another unidirectional module
for NLG or a bidirectional module for NLU. Fi-
nally, Raffel et al. (2020) and Wu et al. (2021)
explored splitting documents in two halves and pre-
dicting the second one conditioned on the first one,
using unidirectional attention for the former and
bidirectional attention for the latter.

Despite the large body of work on language
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COLA MNLI MRPC QNLI RTE SST2 avg

125M

NXTUNI 82.4 83.1 82.8 88.8 70.4 93.9 83.6
NXTPRE 81.3 83.3 83.1 90.1 69.3 93.7 83.5
MSKUNI 82.6 82.2 81.4 88.4 68.6 93.1 82.7
MSKBI 83.2 84.8 85.5 91.0 68.6 93.5 84.4
HYBUNI 82.7 83.1 83.6 89.3 69.3 93.0 83.5
HYBPRE 82.5 84.2 85.5 90.9 72.6 93.2 84.8

355M

NXTUNI 84.2 85.8 84.1 91.2 74.7 94.8 85.8
NXTPRE 83.8 86.3 86.5 92.0 73.3 95.4 86.2
MSKUNI 84.0 84.4 84.6 90.5 73.6 94.2 85.2
MSKBI 85.2 87.7 89.7 92.9 76.2 96.2 88.0
HYBUNI 85.4 85.3 85.3 91.0 73.3 94.8 85.9
HYBPRE 84.5 86.5 87.3 92.5 74.4 95.2 86.7

1.3B

NXTUNI 87.0 87.3 85.3 92.4 75.1 95.9 87.2
MSKBI 85.7 89.1 89.7 93.9 82.3 96.8 89.6
HYBUNI 86.3 87.0 86.0 92.3 78.0 96.3 87.6
HYBPRE 85.1 88.4 90.0 93.6 79.4 96.2 88.8

2.7B

NXTUNI 86.0 88.5 85.5 93.0 83.0 96.2 88.7
MSKBI 87.2 89.8 91.7 94.0 85.2 96.8 90.8
HYBUNI 86.2 88.1 86.8 93.0 80.9 96.7 88.6
HYBPRE 86.2 89.4 89.5 94.1 82.7 96.7 89.8

6.7B

NXTUNI 86.3 88.5 85.8 93.4 81.2 96.7 88.6
MSKBI 86.7 89.6 90.9 94.5 87.7 96.8 91.0
HYBUNI 86.7 88.4 87.7 93.4 80.5 96.1 88.8
HYBPRE 86.0 89.5 89.5 94.3 85.6 96.7 90.3

Table 10: Fine-tuning accuracy. We use nbidir = 0 for NXTUNI, MSKUNI and HYBUNI, and nbidir = n for the
rest.

model pre-training, there is little work comparing
different approaches in a systematic manner. As a
notable exception, Raffel et al. (2020) compared
various architectures and learning objectives with
a focus on fine-tuning. Concurrent to our work,
Wang et al. (2022) conduct a comprehensive study
with a focus on zero-shot learning and multi-task
fine-tuning. In contrast, we focus on the specific
role of bidirectionality, and compare models of dif-
ferent sizes.

6 Conclusions

In this work, we study the role of bidirectionality in
language model pre-training through a new frame-
work that generalizes previous approaches. Our
main findings are as follows:

• Bidirectional attention is strongly beneficial
for infilling and fine-tuning. In contrast, prefix
language models lag behind regular language
models on next token prediction, even if they
get a small benefit from leveraging bidirec-
tional attention in the prefix. This behavior is
consistent at scale.

• Models trained jointly to use unidirectional
and bidirectional context, like HYBUNI, lag

behind regular language models on next token
prediction, and scale does not mitigate this.
Such models also lag behind pure masked lan-
guage models on infilling, but scale does help
close this gap as long as they are trained with a
bidirectional attention prefix. For fine-tuning,
bidirectional context is beneficial when used
in conjunction with bidirectional attention, but
not when used with unidirectional attention.

• While direct infilling requires bidirectional
context and benefits from bidirectional atten-
tion as discussed above, models using unidi-
rectional context and attention are also com-
petitive in infilling when one can separately
score each candidate. For settings where the
set of candidates is small (e.g., zero-shot prim-
ing for classification), regular language mod-
els obtain comparable or even superior results
to models pre-trained on infilling.

All in all, our results show that there is not a sin-
gle configuration that is optimal for all use cases,
and this remains generally consistent within the
scale range explored in this work. While prior work
on scaling has focused on left-to-right autoregres-
sive models, this suggests that there might be other

3980



objectives and architectures that are better suited
for other applications like fine-tuning. Given the
cost of pre-training several models, we would like
to explore modular (Sun et al., 2021) or adaptation
(Wang et al., 2022) approaches in the future, where
one would either have a single model with modular
components specialized for different use cases, or
efficiently adapt an existing model by changing the
parameters in our framework instead of training
several models from scratch.

Limitations

Our study focuses on the role of bidirectionality on
language model pre-training, and does not explore
other factors that might affect model performance.
In particular, we mask individual tokens without
considering longer spans, and do not explore the
impact of the masking rate. In addition, we do
not consider sequence-to-sequence models in our
study, which combine bidirectional attention in the
encoder and unidirectional attention in the decoder.
Finally, we train all variants for the same number
of tokens, making them comparable in terms of
training cost, but resulting in models using a bidi-
rectional attention prefix or a masking objective
seeing less tokens of supervision.
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A Proposed framework

Figure 3 provides a step-by-step description of how
we define our objective starting from the original
sequence.

task # of updates

CoLA 5336
SST-2 20935
MNLI 123873
QNLI 33112

MRPC 2296
RTE 2036

Table 11: Number of fine-tuning updates for each task.

B Fine-tuning settings

For fine-tuning, we did grid search on learning rate
∈ {5e− 06, 5e− 05, 1e− 05, 2e− 05} and batch
size ∈ {16, 32, 64}. For each task, we trained the
same numbers of updates for different setups and
reported the best numbers across the grid. The
details of fine-tuning tasks and numbers of updates
can be found in Table 11, which were chosen to
follow the original settings from RoBERTa. We
used Adam and polynomial decay scheduler for
optimization.
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</s> tok 1 tok i-1 tok i tok i+1 tok j-1 tok j tok j+1 tok n-1… … …
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❶
tok 1 tok 2 tok i tok i+1 tok i+2 tok j tok j+1 tok j+2 </s>… … …

pos 0 pos 1 pos i-1 pos i pos i+1 pos j-1 pos j pos j+1 pos n-1… … …

</s> tok 1 tok i-1 <mask> tok i+1 tok j-1 <mask> tok j+1 tok n-1… … …
Input:

Output:

❷
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Input:
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❸
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…

…

…

</s> tok 1 tok i-1 tok i+1 tok j-1 tok j+1 tok n-1 <mask> <mask>… … …
Input:

Output:

❹
tok j+2 </s> tok i tok j…

pos 0 pos 1 pos i-1 pos i+1 pos j-1 pos j+1 pos n-1 pos i pos j… … …

…

…

…

tok j

nbidir npredict

nmask

Figure 3: Proposed framework. 1) We start with the original sequence in the input, and predict the next token
in the output; 2) We choose nmask tokens at random, replace them with the special <mask> token in the input,
and predict the masked token (rather than the next token) in the output; 3) We move the masked tokens and their
corresponding positional embeddings to the end; 4) We only predict the last npredict tokens, using bidirectional
attention for the first nbidir tokens and unidirectional attention for the rest (final objective).
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