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Abstract
Due to the absence of connectives, implicit dis-
course relation recognition (IDRR) is still a
challenging and crucial task in discourse anal-
ysis. Most of the current work adopted multi-
task learning to aid IDRR through explicit dis-
course relation recognition (EDRR) or utilized
dependencies between discourse relation la-
bels to constrain model predictions. But these
methods still performed poorly on fine-grained
IDRR and even utterly misidentified on most
of the few-shot discourse relation classes. To
address these problems, we propose a novel
Prompt-based Connective Prediction (PCP)
method for IDRR. Our method instructs large-
scale pre-trained models to use knowledge rele-
vant to discourse relation and utilizes the strong
correlation between connectives and discourse
relation to help the model recognize implicit
discourse relations. Experimental results show
that our method surpasses the current state-of-
the-art model and achieves significant improve-
ments on those fine-grained few-shot discourse
relation. Moreover, our approach is able to
be transferred to EDRR and obtain acceptable
results. Our code is released in https://
github.com/zh-i9/PCP-for-IDRR.

1 Introduction

Discourse relations recognition (DRR) aims to
identify the semantic relation between two dis-
course units (e.g., sentences or clauses, they are
denoted as Arg1 and Arg2 respectively). DRR is es-
sential to many natural language processing (NLP)
downstream tasks involving more context, such as
document-level machine translation (Xiong et al.,
2019) and machine reading comprehension (Mi-
haylov and Frank, 2019), and text summarization
(Xu et al., 2020).

Compared with explicit discourse relation recog-
nition (EDRR), due to the absence of explicit con-
nectives, implicit discourse relation recognition
(IDRR) is more challenging and attractive to re-
searchers. Figure 1 shows an IDRR sample in the

Figure 1: An IDRR instance in PDTB 2.0. For IDRR,
the Connective are not present in the original discourse
context, but are assigned by the annotator according to
semantic relations between Arg1 and Arg2.

Penn Discourse Treebank 2.0 (PDTB 2.0) (Prasad
et al., 2008).

Traditional machine learning based methods pri-
marily relied on human-designed and shallow lin-
guistic features (Lin et al., 2009; Zhou et al., 2010).
With the rapid development of deep learning, a
large number of methods prefer to utilize deep neu-
ral networks to recognize discourse relation be-
tween two arguments (Liu et al., 2016; Liu and Li,
2016; Dai and Huang, 2018). Recently, pre-trained
language models (PLMs), such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019), play
a dominative role in many NLP tasks through con-
textual representation learning. Leveraging the suc-
cess of PLMs, extensive research work design a
wide variety of post-processing neural networks
(Liu et al., 2020; Wu et al., 2021) to extract the
semantic information by fine-tuning them on the
task-specific dataset.

On the other side, previous work showed the
accuracy of explicit discourse relation recognition
achieved more than 93% using the discourse con-
nective alone (Pitler and Nenkova, 2009), which re-
veals strong correlations between connectives and
discourse relations. Therefore, more and more stud-
ies focus on implicit discourse relation recognition
through connective prediction. Kishimoto et al.
(2020) applied an auxiliary pre-training task, which
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utilized the representation of the [CLS] token to
predict explicit connectives, to BERT using domain
text containing explicit connectives. Since the idea
of their method is contradictory with the original
next sentence prediction (NSP) task of BERT and
does not make use of the knowledge that BERT
had learned through the masked language model
(MLM) task. The experimental results showed
that their method does not perform well on coarse-
grained and fine-grained discourse relations. Kur-
falı and Östling (2021) came up with a pipeline
approach, where a connective selected from can-
didates and two implicit arguments were first inte-
grated as “Arg1 Connective Arg2” sequence. Then
this integrated sequence was input into an explicit
discourse relation classifier trained in explicit data
to identify implicit discourse relations in a distant
supervision manner. Since there are a lot of con-
nective candidates (about 100 in PDTB 2.0), and
it requires a large number of model inferences for
each sample. Obviously, the simple sequence does
not make full use of the semantic knowledge em-
bedded in the PLMs. Therefore, how to make better
connective prediction becomes a crucial step for
implicit discourse relation recognition.

Inspired by Schick and Schütze (2021b), we pro-
pose a novel Prompt-based Connective Prediction
(PCP) method for implicit discourse relation recog-
nition. We exploit the advantage of prompt learning
(Liu et al., 2021) to bridge the gap between connec-
tive prediction in the pre-training and fine-tuning
stage and make better use of the knowledge of
PLMs. Specifically, we first manually design tem-
plates matching natural language patterns, which
elicit large-scale pre-trained language models for
connective prediction using specific knowledge (in
Section 3.2). Secondly, we select the less ambigu-
ous connectives corresponding to each discourse
relation based on the frequency of the connectives
in the dataset to implement answer mapping (map-
ping predicted connectives to discourse relaiton
labels) (in Section 3.3). Experimental results prove
that the simple but proper template can outperform
the current state-of-the-art (SOTA) model based
on fine-tuning and achieve zero breakthroughs on
few-shot fine-grained discourse relation. Further-
more, our approach based on connective frequency
effectively avoids the trouble of manually selecting
answer words and takes full advantage of the rele-
vance between discourse relations and connectives.

Our contributions are summarized as follows:

• We propose a Prompt-based Connective Pre-
diction (PCP) method for implicit discourse
relation recognition, which achieves SOTA
performance on the PDTB 2.0 dataset and
CoNLL-2016 Shared Task as well.

• The method we proposed breaks the bottle-
neck of previous work on the few-shot fine-
grained discourse relation of PDTB 2.0.

• Our approach can be easily transferred from
IDRR to EDRR, and we have experimentally
demonstrated that our approach still performs
well for EDRR.

2 Related Work

2.1 Implicit Discourse Relation Recognition
Previous methods based on machine learning pri-
marily relied on manually-designed linguistic fea-
tures (Lin et al., 2009; Zhou et al., 2010). With the
rapid development of deep learning, most of meth-
ods prefer to utilize deep neural networks, such as
RNN (Liu et al., 2016), CNN (Varia et al., 2019),
or LSTM (Liu and Li, 2016; Lan et al., 2017; Dai
and Huang, 2018), to recognize discourse relation
between two arguments.

Along with the booming development of pre-
trained language models, most work designs vari-
ous post-processing neural networks for informa-
tion interaction to improve overall performance
by fine-tuning their models (Van Ngo et al., 2019;
Wu et al., 2020). For example, Liu et al. (2020)
combines different levels of representation learn-
ing modules to address implicit discourse relation
recognition. Wu et al. (2021) designs a label at-
tentive encoder to learn the global representation
of an input instance and its level-specific context
and employs a label sequence decoder to output the
predicted labels in a top-down manner.

Recently, several methods have emerged for im-
plicit discourse relation recognition through con-
nective prediction (Kishimoto et al., 2020; Kurfalı
and Östling, 2021). They use efficient pre-trained
language models and additional explicit data, but
their performance is less than ideal. We think that
their methods are contradictory to the original pre-
training task, and there is a distribution difference
between the explicit and implicit data.

2.2 Prompt-based Models
Prompt-based methods have received considerable
attention with the emergence of GPT-3 (Brown
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et al., 2020). A series of research work (Schick and
Schütze, 2021b; Chen et al., 2022b) have demon-
strated that prompt learning can effectively stimu-
late knowledge from PLMs compared with conven-
tional fine-tuning. Therefore, many prompt-based
models have been proposed and they achieved out-
standing performance in widespread NLP tasks,
such as text classification (Schick and Schütze,
2021a; Hu et al., 2021), text matching (Jiang et al.,
2022), named entity recognition (Cui et al., 2021;
Chen et al., 2021), and relation extraction (Han
et al., 2021; Chen et al., 2022a), particularly on
few-shot and zero-shot settings. The main idea
of their approaches is to convert the downstream
task into a cloze-style task that is closer to the pre-
training step of PLMs with prompts.

As far as we know, we are the first to apply
prompt learning (Schick and Schütze, 2021b) for
implicit and explicit discourse relation recognition
task.

3 The Prompt-based Connective
Prediction Approach

In this section, we will introduce our prompt-based
connective prediction (PCP) approach to recog-
nize implicit discourse relations in detail. Figure 2
shows the overall architecture of our model.

3.1 Connective Prediction with Prompt
For convenience and clarity, we discuss our method
with a simple template “Arg1 <mask> Arg2.”. In
this template, Arg1 and Arg2 correspond to two ar-
guments in the original texts respectively (as shown
in Figure 1), and the symbol <mask> represents the
masked token in place of their connective. Given
a pair of arguments xarg1 and xarg2, we transfer
them to xprompt with the template:

xprompt = T(xarg1, xarg2) (1)

where T represents template function. Then we
feed xprompt to the RoBERTa (Liu et al., 2019)
model to obtain the representation of <mask> token
hmask:

hmask = RoBERTa(xprompt) (2)

Same as MLM task in pre-training step, we in-
put hmask into MLMHead model, which predicts
scores of the language modeling head (scores for
each vocabulary token before SoftMax), and ac-
quire the output emask:

emask = MLMHead(hmask) (3)

We select the token with the highest score in emask

as the connective predicted by the model. During
the training, we use cross-entropy to calculate the
loss between the model prediction and the golden
connective:

Loss = CE(target, SoftMax(emask)) (4)

where CE is cross-entropy loss function and
target is golden connective (mapped from golden
discourse relation label) index in the vocabulary.
Finally, we are mapping the predicted connective
(e.g., because) to the corresponding discourse rela-
tion label (e.g., Cause).

Then, we will detail the two above-mentioned
crucial parts in our methods, prompt construction
(Section 3.2) and answer search (Section 3.3).

3.2 Prompt Construction

For prompt-based methods, one key challenge is
to find an appropriate template matching the target
task. In this work, we transfer implicit discourse
relation recognition to a connective prediction task
and utilize manual search to identify suitable tem-
plates for the connective prediction task. Moreover,
we use the accuracy of the top-level senses of the
PDTB 2.0 development set as the main metric to
evaluate different templates. Table 1 shows our
designed templates based on the frequent position
of connectives and natural language instructions.

In PDTB 2.0 dataset, for all implicit discourse
relation samples, their connective position is be-
tween Arg1 and Arg2. In other words, they all
satisfy the “Arg1 connective Arg2” sequence order.
Therefore, we designed the first two templates in
Table 1 based on the position of connectives. Per-
haps because there are some connectives that may
not be appropriate for the sentence form “That’s
connective ...” (e.g., but), the accuracy value of the
second template is lower than the first.

Inspired by (Schick and Schütze, 2021b), we
design templates conforming to natural language
patterns to instruct PLMs to output the content we
want to obtain. In this work, our target is connective
prediction using PLMs and then mapping connec-
tive to the final discourse relation label. Therefore,
we use the template “The connective (or conjunc-
tion) between Arg1 and Arg2 is <mask>.” to direct
PLMs for connective prediction. Meanwhile, we
also attempt to place segment token </s> between
two arguments and instruction sentences, which is
to allow the model to take the coherence of overall
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Figure 2: The model architecture of our Prompt-based Connective Prediction method.

Template PDTB Top-level Acc.

Arg1 <mask> Arg2. 69.23
Arg1. That’s <mask> Arg2. 67.37

Arg1: Arg1. Arg2: Arg2. The connective between Arg1 and Arg2 is <mask>. 71.09
Arg1: Arg1. Arg2: Arg2. The conjunction between Arg1 and Arg2 is <mask>. 71.43
Arg1: Arg1. Arg2: Arg2.</s></s>The connective between Arg1 and Arg2 is <mask>. 71.68
Arg1: Arg1. Arg2: Arg2.</s></s>The conjunction between Arg1 and Arg2 is <mask>. 72.27

Table 1: Searching templates on RoBERTa-large. The symbol </s> and <mask> represents segment and mask token
in RoBERTa tokenizer.

inputs into account. We can see that the last tem-
plate achieves the best performance on the accuracy
value, and our final experimental results are also
based on this template (as shown in Figure 2).

3.3 Answer Search

For other prompt-based methods, like Schick and
Schütze (2021a), they regarded “terrible”, “bad”,
“okay”, “good”, and “great” as the answer word to
the rating that a customer gave to a restaurant on a
1- to 5-star scale based on their review’s text. They
artificially selected answer words that appear to fit
the golden label, but these words may not fit well
with most of the samples in the dataset.

For implicit discourse relation data, each sample
has been annotated with the connective appropriate
to this sample on PDTB 2.0 and CoNLL16 dataset
(detailed in Section 4.1). As a result, we select the
most frequent and less ambiguous connectives as
the answer words of the corresponding discourse
relations based on the frequency of connectives in
each discourse relation and the repetition rate of
some connectives in different discourse relations.
At the same time, to unify the model’s input and
output and facilitate the mapping between answer
words and discourse relation labels, we select those
connectives that are tokenized as a single token by

Top-level Second-level Answer Set

Comparison
Concession although, nevertheless

Contrast but, however

Contingency
Cause

because, as, so,
consequently, thus

Pragmatic cause since

Expansion

Alternative instead, rather, or
Conjunction and, also, furthermore
Instantiation instance, example

List first
Restatement indeed, specifically

Temporal
Asynchronous

then, subsequently,
previously, earlier, after

Synchrony meanwhile

Table 2: Mapping between implicit discourse relation
labels and connectives on PDTB 2.0 dataset, which has
four top-level and 11 second-level senses. The answer
set of top-level senses is a union set of second-level.

the RoBERTa tokenizer.
Table 2 and 3 show the final answer sets we se-

lected based on the above conditions on PDTB 2.0
and CoNLL16 dataset. It is worth mentioning that
some second-level senses have subtypes (also be
called the third-level senses). For examples, the
second-level sense Cause has two subtypes Reason
and Result. We select the connectives for each sub-
type and merge them into the second-level senses.
Moreover, for those samples whose connectives are
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Cross-level Senses Answer Set

Comp.Concession
although,

nevertheless
Comp.Contrast but, however

Cont.Cause.Reason because, as

Cont.Cause.Result
so, thus,

consequently
Cont.Condition if
Exp.Alternative unless, or

Exp.Alternative.Chosen alternative instead

Exp.Conjunction
and, also,

furthermore
Exp.Exception rather

Exp.Instantiation instance, example
Exp.Restatement specifically

Temp.Asynchronous.Precedence then, subsequently

Temp.Asynchronous.Succession
previously,
earlier, after

Temp.Synchrony meanwhile
EntRel none

Table 3: Mapping between implicit discourse relation
labels and connectives on CoNLL16 dataset which has
15 cross-level senses. The EntRel sense represents that
there is no discourse relation between two arguments,
but there is a relation between the entities in them.

not in the corresponding answer set, we select the
first connective of the corresponding answer set as
the golden connective of this sample.

4 Experiments

4.1 Dataset

The Penn Discourse Treebank 2.0 (PDTB 2.0)
PDTB 2.0 is a large scale corpus annotated with in-
formation related to discourse relation, containing
2,312 Wall Street Journal (WSJ) articles (Prasad
et al., 2008). PDTB 2.0 has three senses levels (i.e.,
classes, types, and sub-types). We follow Ji and
Eisenstein (2015) to take the sections 2-20 as the
training set, 0-1 as the development set, and 21-
22 as the testing set. Meanwhile, we evaluate our
model on the four top-level implicit classes and the
11 major second-level implicit types (Varia et al.,
2019; Liu et al., 2020; Wu et al., 2021). Table 4
and 5 show the detailed statistics of the top-level
and second-level senses respectively1.

The CoNLL 2016 Shared Task (CoNLL16)
The CoNLL 2016 shared task (Xue et al., 2016)

1We found that there are some data samples with two
senses. In our data statistics and experiments process, we
uniformly considered the first sense of these samples as their
golden label for avoiding ambiguity. The same operation was
performed on CoNLL16 dataset.

Top-level Senses Train Dev. Test

Comparison (Comp.) 1894 191 146
Contingency (Cont.) 3281 287 276

Expansion (Exp.) 6792 651 556
Temporal (Temp.) 665 54 68

Total 12632 1183 1046

Table 4: The implicit data statistics of top-level senses
in PDTB 2.0.

Second-level Senses Train Dev. Test

Comp.Concession 180 15 17
Comp.Contrast 1566 166 128

Cont.Cause 3227 281 269
Cont.Pragmatic cause 51 6 7

Exp.Alternative 146 10 9
Exp.Conjunction 2805 258 200
Exp.Instantiation 1061 106 118

Exp.List 330 9 12
Exp.Restatement 2376 260 211

Temp.Asynchronous 517 46 54
Temp.Synchrony 147 8 14

Total 12406 1165 1039

Table 5: The implicit data statistics of second-level
senses in PDTB 2.0.

provides more abundant annotation than PDTB
for shadow discourse parsing. The PDTB section
23 and Wikinews texts following the PDTB anno-
tation guidelines were organized as the test sets.
CoNLL16 merges several labels of PDTB. For ex-
ample, Contingency.Pragmatic cause is merged
into Contingency.Cause.Reason to remove the for-
mer type with very few samples. Finally, there is a
flat list of 15 sense classes to be classified, detailed
senses as shown in Table 3 the first column.

4.2 Baselines
To validate the effectiveness of our method, We
compare our method with previous state-of-the-art
methods. First of all, we select some strong base-
lines based on neural network including NNMA
(Liu and Li, 2016), ESDP (Wang and Lan, 2016),
MANN (Lan et al., 2017), PDRR (Dai and Huang,
2018) and RWP-CNN (Varia et al., 2019). Their
work mainly focused on the top-level senses of
PDTB 2.0 and CoNLL16 cross-level senses. Sec-
ondly, we compare our method with competitive
baselines based on PLMs, such as DER (Bai and
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Model PDTB-Top PDTB-Second CoNLL-Test CoNLL-Blind
Macro-F1 Acc. Macro-F1 Acc. Acc. Acc.

NNMA (Liu and Li, 2016) 46.29 57.57 - - - -
ESDP (Wang and Lan, 2016) - - - - 40.91 34.20
MANN (Lan et al., 2017) 47.80 57.39 - - 39.40 40.12
PDRR (Dai and Huang, 2018) 48.82 57.44 - - - -
RWP-CNN (Varia et al., 2019) 50.20 59.13 - - 39.39 39.36

DER (Bai and Zhao, 2018) 51.06 - - 48.22 - -
ELMo-C&E (Dai and Huang, 2019) 52.89 59.66 - 48.23 - -
MTL-MLoss (Van Ngo et al., 2019) 53.00 - - 49.95 - -
HierMTN-CRF (Wu et al., 2020) 55.72 65.26 33.91 52.34 - -
BERT-FT (Kishimoto et al., 2020) 58.48 65.26 - 54.32 - -
DS-CP (Kurfalı and Östling, 2021) 59.24 - 39.33 55.42 - -
BMGF-RoBERTa (Liu et al., 2020) 63.39 69.06 37.95 58.13 57.26 55.19
LDSGM (Wu et al., 2021) 63.73 71.18 40.49 60.33 - -

PCP w/ RoBERTa-base (PCP-base) 64.95 70.84 41.55 60.54 60.98 57.31
PCP w/ RoBERTa-large (PCP-large) 67.79 73.80 44.04 61.41 63.36 58.51

Table 6: Experimental results on PDTB 2.0 and CoNLL16. The best results of previous baselines are underlined.
Models in the first part of table are based on neural networks and others in the second part (including our method)
are based on different PLMs. We have bolded the best performance results in each of the two parts.

Zhao, 2018), ELMo-C&E (Dai and Huang, 2019),
MTL-MLoss (Van Ngo et al., 2019), HierMTN-
CRF (Wu et al., 2020), BERT-FT (Kishimoto et al.,
2020), DS-CP (Kurfalı and Östling, 2021), BMGF-
RoBERTa (Liu et al., 2020) and LDSGM (Wu et al.,
2021). These methods achieve impressive perfor-
mance at the fine-grained second-level senses with
the help of large-scale PLMs.

4.3 Implementation Details

In this work, we use RobertaForMaskedLM as the
backbone of our method, in which RobertaEncoder
is used for obtaining context representation of in-
puts and RobertaLMHead is to acquire each vo-
cabulary token prediction score for <mask> token
position. About prompt settings, we select the last
template in Table 1 and answer set in Table 2 and
3 to perform our expreiments on PDTB 2.0 and
CoNLL16 dataset.

We adopt AdamW optimizer (Loshchilov and
Hutter, 2017) with the learning rate of 1e−5 and
weigh decay coefficient of 1e−4 to update the
model parameters and set batch size as 4 for train-
ing and validation. At the same time, we add label
smoothing with a coefficient of 0.05 into the cross-
entry loss function to alleviate overfitting. Based
on the above settings, we can usually get the best
performance results in the first 3 epochs. All our
experiments were performed on one RTX 3090.
All other parameters are initialized with the default

values in PyTorch Lightning2 and our model are all
implemented by transformers3.

4.4 Experimental Results and Analysis

We first evaluate our model on the four coarse-
grained top-level and 11 fine-grained second-level
senses (denoted as PDTB-Top and PDTB-Second)
of PDTB 2.0 with Macro-F1 score and accuracy
value. Then we conduct 15-class classification on
the CoNLL16 dataset and consider accuracy as the
main metric, denoted as CoNLL-Test and CoNLL-
Blind for the test and blind-test set.

Table 6 shows the main experimental results of
our method and other baselines. Intuitively, our
method achieves the new SOTA performance with
substantial improvements for coarse-grained and
fine-grained implicit discourse relation recognition,
which demonstrates that prompt-based connective
prediction can effectively mine specific knowledge
about connectives and discourse relations in the
large-scale PLMs and improve the model’s ability
to recognize implicit discourse relations.

To better evaluate the performance of our method
on fine-grained implicit discourse relation recogni-
tion, we compare it with two previous competitive
models at each second-level sense of PDTB 2.0.

2https://github.com/Lightning-AI/
lightning

3https://github.com/huggingface/
transformers

3853

https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


Second-level Senses BMGF-RoBERTa LDSGM PCP-large PCP-large w/o </s>
Comp.Concession 0.0 0.0 8.00 14.81

Comp.Contrast 59.75 63.52 63.88 63.49
Cont.Cause 59.60 64.36 65.64 64.90

Cont.Pragmatic cause 0.0 0.0 0.0 0.0
Expa.Alternative 60.0 63.46 66.67 70.00
Expa.Conjunction 60.17 57.91 57.78 58.35
Expa.Instantiation 67.96 72.60 74.01 73.39

Expa.List 0.0 8.98 29.63 37.50
Expa.Restatement 53.83 58.06 61.00 55.32

Temp.Asynchronous 56.18 56.47 57.81 60.00
Temp.Synchrony 0.0 0.0 0.0 12.50

Macro-F1 37.95 40.49 44.04 46.38
Acc 58.13 60.33 61.41 60.64

Table 7: Experimental results on PDTB 2.0 second-level senses. The best results of previous baselines are underlined
and the best performance of our method is bolded. We also show changes in the results of our approach (PCP-large
and PCP-large without segment token </s>) compared to previous best model.

As shown in Table 7, our PCP approach surpasses
the previous state-of-the-art model in almost all
second-level senses, except for Expa.Conjunction.
Noticeable improvements were also achieved by
our method on two few-shot second-level senses
(i.e. Comp.Concession and Expa.List).

In addition, in order to further explore our model
performance on some few-shot senses, we removed
the segment token </s> from the inputs to make it
more consistent with the pre-training step of the
RoBERTa (corresponding to the forth template in
Table 1). The new experimental results are shown
in the last part of Table 7. The results indicate that
our model without segment token breaks the bot-
tleneck of previous work in three few-shot second-
level senses (i.e. Comp.Concession, Expa.List and
Temp.Synchrony) of PDTB 2.0. We achieved sig-
nificant improvements in these few-shot senses.

4.5 Case Study

For the fine-grained sense Cont.Pragmatic cause,
our method and previous state-of-the-art model pre-
dict incorrectly for all samples. Therefore, we
check our model prediction results for all seven
samples of this sense in test set, and the final re-
sults statistics are summarized in Table 8.

We can see that our method tends to predict the
connectvies of these samples as high-frequency
connectvies, like because and and, that belong
to other discourse relations. So after the answer
mapping, the model predicts them as other second-

Mapped Senses Predicted Connectvies Count
Exp.Restatement indeed 1
Exp.Conjunction and 2

Cont.Cause
because 3

as 1

Table 8: Statistics on the prediction results of our
method for the second-level sense Pragmatic cause.

level senses. However, after successively examin-
ing these samples, we found that the results pre-
dicted by our method seemed to be closer to its
actual discourse relation. In other words, the actual
discourse relation of these samples that annotated
as Cont.Pragmatic cause is more similar to the
Cont.Cause sense. This is probably the reason for
merging Cont.Pragmatic cause into Cont.Cause in
CoNLL16 dataset.

5 Discussion

5.1 Why not Predict Discourse Relations
Directly

Our approach to implicit discourse relation recogni-
tion is prompt-based connective prediction. What
happens if we use prompt directly to predict im-
plicit discourse relations. To figure out this ques-
tion, we construct a new template and search new
answer set for prompt-based implicit discourse re-
lation prediction (PIDRP). Specifically, the new
template is shown below:

3854



• Arg1: Arg1. Arg2: Arg2. The discourse rela-
tion between Arg1 and Arg2 is <mask>.

and we directly use the top-level senses as their
answer sets (i.e. mapping the sense Comparison to
answer set [comparison]).

We use the same pre-trained model and data pro-
cessing on top-level senses of PDTB to compare
the performance gap between the two methods. As
shown in Table 9, the PIDRP method performs
worse than the PCP method on all four top-level
senses of the PDTB, especially on the Temporal
sense. We think that the main reason of poor per-
formance is that connective prediction is closer to
the natural language patterns when the model is
in pre-training stage than direct implicit discourse
relation prediction.

Top-level Senses PCP PIDRP

Comparison 70.38 65.26
Contingency 64.18 64.02
Expansion 80.17 79.80
Temporal 56.41 39.13

Macro-F1 67.79 62.05

Table 9: Performance comparison between PCP and
PIDRP on four top-level senses of PDTB 2.0.

5.2 Generalization to Explicit Discourse
Relation Recognition

Inspired by the attempt of section 5.1, we trans-
fer our PCP method to explicit discourse relation
recognition. We want to explore how well the
prompt-based method predicts discourse relation
when given connectives.

Similarly, we have designed a simple template
in line with natural language conventions for the
prompt-based explicit discourse relation recogni-
tion (PEDRR). The new template is as follows:

• Arg1: Arg1. Arg2: Arg2. The connective
between Arg1 and Arg2 is Connective. In
summary, the discourse relation between Arg1
and Arg2 is <mask>.

where the Connective represents connectives that
appear in the original text but ont in Arg1 or Arg2.

We are equal to regard the second-level sense as
the corresponding answer set (detailed in Table 10).
But for some special senses in which their output of
RoBERTa tokenizer is not a single token, we find

Top-level Second-level Answer Set

Comparison
Concession concession

Contrast contrast

Contingency
Cause cause

Pragmatic cause justification

Expansion

Alternative alternative
Conjunction conjunction
Instantiation instance

List list
Restatement repetition

Temporal
Asynchronous asynchronous

Synchrony simultaneous

Table 10: Mapping between explicit discourse relation
labels and connectives on PDTB 2.0 dataset.

synonyms for them (e.g. Instantiation, Restatement
and Synchrony) or use the corresponding subtype as
the answer word (e.g. Pragmatic cause) to ensure
that the result after tokenization is a single token.

As shown in Table 11, the variant of our method
PEDRR is also able to achieve results close to those
of previous SOTA models on the top-level senses
of PDTB 2.0, which effectively demonstrates the
generalizability of our approach to EDRR.

Model Acc. F1

(1)Connective Only (Pitler and Nenkova, 2009) 93.67 -
(1)+Syntax+Conn-Syn (Pitler and Nenkova, 2009) 94.15 -
(2)ELMo-C&E (Dai and Huang, 2019) 95.39 94.84
(3)RWP-CNN (Varia et al., 2019) 96.20 95.48

PEDRR (Ours) 94.78 93.59

Table 11: Experimental results of our PEDRR method
and other strong baselines on PDTB 2.0 top-level senses
for EDRR.

6 Conclusion

In this paper, we propose a novel prompt-based
connective prediction method for coarse-grained
and fine-grained implicit discourse relation recog-
nition. Experimental results demonstrate that our
method achieves state-of-the-art performance on
the PDTB 2.0 dataset and the CoNLL-2016 Shared
Task. Furthermore, our proposed method breaks
the bottleneck of previous work in the few-shot
fine-grained discourse relation of PDTB 2.0. Fi-
nally, we experimentally prove that our approach
can be transferred from IDRR to EDRR and still
performs well for EDRR. We will later explore
the applicability of our approach to some Chinese
discourse relations datasets for fine-grained DRR.
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Limitations

In this section, we will point out the limitations of
our work, which can be summarized in the follow-
ing two aspects.

Firstly, in the step of prompt construction (Sec-
tion 3.2), we manually design templates that meet
the task goal of connective prediction and follow
natural language patterns. But we do not make
more attempts at other templates. We think there
may be a new template more suitable for this task
goal, which could achieve better performance. Fur-
thermore, we have not explored how well template
ensemble works. Therefore, this is a crucial re-
search area in our future work.

Secondly, the data statistics in Table 5 show a
category imbalance issue in the second-level senses
of PDTB 2.0. The experimental results in Table
7 also show that our method does not solve this
problem well, as it markedly improves the model
performance on few-shot classes while there is a
slight decrease on "more-shot" classes. In the fu-
ture, we will explore new methods that can sig-
nificantly improve the model performance in fine-
grained implicit discourse relation recognition on
few-shot classes while also improving the model
performance on "more-shot" classes.
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