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Abstract

Narrative modelling is an area of active re-
search, motivated by the acknowledgement of
narratives as drivers of societal decision mak-
ing. These research efforts conceptualize narra-
tives as connected entity chains, and modeling
typically focuses on the identification of enti-
ties and their connections within a text. An
emerging approach to narrative modelling is
the use of semantic role labeling (SRL) to ex-
tract Entity-Verb-Entity (E-V-Es) tuples from
a text, followed by dimensionality reduction
to reduce the space of entities and connections
separately. This process penalises the seman-
tic richness of narratives and discards much
contextual information along the way. Here,
we propose an alternate narrative extraction ap-
proach - CANarEx, incorporating a pipeline
of common contextual constructs through co-
reference resolution, micro-narrative genera-
tion and clustering of these narratives through
sentence embeddings. We evaluate our ap-
proach through testing the recovery of "nar-
rative time-series clusters", mimicking a desir-
able text-as-data task. The evaluation frame-
work leverages synthetic data generated using
a GPT-3 model. The GPT-3 model is trained to
generate similar sentences using a large dataset
of news articles. The synthetic data maps to
three topics in the news dataset. We then gener-
ate narrative time-series document cluster rep-
resentations by mapping the synthetic data to
three distinct signals synthetically injected into
the testing corpus. Evaluation results demon-
strate the superior ability of CANarEx to re-
cover narrative time-series through reduced
MSE and improved precision/recall relative to
existing methods. The validity is further rein-
forced through ablation studies and qualitative
analysis1.

1 Introduction

Narratives are accounts of connected events, and
are a basic mechanism of communication and of

1Code: https://github.com/nandinisa/CANarEx

understanding our world (Piper et al., 2021). “Nar-
rative modelling” is the discovery of underlying
narratives (such as “politician is liar” or “infla-
tion is high”), as well as the analysis of how their
shape and prominence shifts over time (Zhang et al.,
2019; Ash et al., 2021). Narrative modelling offers
the potential to go beyond simple issue tagging or
topic modelling to get at the richer question of how
ideas are connected and framed, and when these
relationships form, arise, and change.

In the realm of the social sciences, quantita-
tive and causal analysis relies on structured, tab-
ular data, with researchers recognising the poten-
tial for ‘text as data’ to greatly expand the realm
of analysis into news, opinion, and political dis-
course (Gentzkow et al., 2019). In particular, if
semantically related narratives can be reliably iden-
tified in a large corpus over time using narrative
modelling, then established time-series techniques
in the social sciences can be leveraged in a wide ar-
ray of applications (Box-Steffensmeier et al., 2014).
Recent work on narrative extraction such as Rela-
tio (Ash et al., 2021) demonstrates the potential
of such approaches to discourse analysis, when
based on more traditional NLP techniques. The ad-
vances in Transformer-based language models such
as BERT (Devlin et al., 2019) and GPT-3 (Brown
et al., 2020) present the opportunity to vastly in-
crease the power of such methods, incorporating a
greater understanding of “context” into the model.
Context is especially important to narratives since
they are fundamentally composed of sequences of
coupled language components.

We demonstrate and evaluate, CANarEx, a
contextually-aware narrative modelling approach
which employs state-of-the-art Transformer mod-
els to unlock the potential of the context-sensitivity
of these models. We show the superiority of
CANarEx’s contextually-aware narrative modeling
technique to (already powerful) existing methods
in the literature. We discuss how these models can
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be used to conduct previously infeasible analysis of
the shifts in narratives through an illustration in the
social sciences by understanding social discourse
over time. We employ generative text models tuned
on narratives extracted from original news, opin-
ion and Parliamentary speeches to develop a highly
realistic narrative time-series recovery evaluation
task.

2 Related Work

Automated extraction of narratives and other arti-
facts for text as data is an area of ongoing research
(Piper et al., 2021), spanning from classical NLP
techniques to the new transformer architectures.
Given the typical multi-entity, discursive nature
of most narratives, identifying entities and interac-
tions between entities are common building blocks
of narrative modelling approaches. These interac-
tions can be framed as semantic triples extracted
using a semantic parser and can take forms such as
{Subject-Predicate-Object}, {Entity-Verb-Entity},
with the key idea being that the subject and ob-
ject of the triple represent entities and the verb
or predicate of triplet represents the interaction
(or event) between them (Rospocher et al., 2016;
Spiliopoulou et al., 2017; Ash et al., 2021). These
E-V-Es provide a succinct summary of the under-
lying events, actors addressing “who does what to
whom” (He et al., 2015) and thus provide a frame-
work that enables further downstream tasks. In
terms of the “minimal model of narrativity” (Piper
et al., 2021), the triples can be mapped to the fea-
tures ‘agents’ and ‘events’.

Zhang et al. (2019) propose a narrative mod-
elling framework with a particular focus on identi-
fying economic activities (debates, conflicts, com-
promise) around social processes such as industrial
regeneration. Towards this end, their work priori-
tises identifying the points of view of each entity
called attribution (beliefs, thoughts, speeches) in
a given narrative alongside identifying the entities
and events involved. Their pipeline includes manu-
ally annotated custom event labelling, pre-trained
entity recognition(NER) (Dernoncourt et al., 2017)
models and a semantic role labelling (SRL) ensem-
ble comprising of Semafor (Das et al., 2014) and
DeepSRL (He et al., 2017) for event and attribute
extractions of the narratives. The results from the
semantic frames (predicate with entities) is split
into entities, extracted with the NER, and events
through mapping to the custom event labels which

has the event type attribution. Through this process,
their framework is able to attribute the statements
and intents within a narrative to specific actors.

The ‘Relatio’ framework takes a more general-
ized approach to narrative modelling, seeking to
extract narratives from any text data, and without
extensive custom labelling. ‘Relatio’ (Ash et al.,
2021) framework enables identifying the opinions,
inflection points and changing trends from public
discourse through narrative extraction from news.
They use the {Entity-Verb-Entity} narrative struc-
ture, or the E-V-Es using SRL (Stanovsky et al.,
2018) to identify the entities in the discourse. They
have an additional step to convert the extracted high
dimensional entities to lower dimensional entities
using clustering of word vectors (Mikolov et al.,
2013; Cer et al., 2018). The workflow is presented
in Figure 1. The separation of the entities from their
verbs whilst clustering results in loss of contextual
information.

As seen from these examples, modelling the
multi-entity, discursive nature of narratives typi-
cally involves identifying entities and interactions
between these entities, with the rest of the pipeline
reflecting the specific goals of the model. The
implementations of these different tasks of the
pipeline have evolved to reflect the new transformer
architectures (Vaswani et al., 2017) and associated
improvements. Wankmuller (Wankmüller, 2021)
provided a review of the possibilities of transfer
learning with transformers in the domain of so-
cial science studies, highlighting the higher predic-
tion power and increased efficiencies of these pre-
trained language models (PLMs) compared to the
historically common supervised learning models.
The CANarEx framework builds on the work of
Relatio by incorporating more features to support
complex narratives, and by updating the existing
components to leverage transformer based models.

3 CANarEx

Here we propose the ‘Contextual narrative extrac-
tion’ (CANarEx) framework that enables contex-
tual narrative extraction. The framework is repre-
sented in Figure 3.

Contextual approach

CANarEx provides several improvements to the
original Relatio framework. The entities of a narra-
tive present themselves through multiple sentences
and thus have prior references to itself and to other
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Figure 1: Adapted from Figure 3: Program Flowchart:
Relatio Narrative Mining System, Ash et al., 2021 (Ash
et al., 2021)

entities. These prior references need to be resolved
in order to recover the context for the specific nar-
rative. The problem of prior references is solved
through the addition of co-reference resolution to
the pipeline to translate all the subsequent mentions
in a document to their respective named entities,
pronouns and noun phrases. We use the SpanBERT-
base model from Joshi et al. (Joshi et al., 2019b,a)
with domain set to newswire (‘nw’) for this step.

Next, the "interactions" between these entities
have to be recovered in order to formalize the ac-
tions being performed between entities. Relatio
views this as a predicate-argument resolution prob-
lem, and leverages SRL to extract this structure,
with the target outcome of identifying E-V-Es em-
bedded in the document. For SRL, we use the
AllenNLP framework (Gardner et al., 2017) specif-
ically the BERT-based models introduced by Shi
and Lin (2019). The SRL results in a frame file
of predicate constructs with the numbered argu-
ments (ARGx for example) representing entities
interacting via predicate V (verb). This translates
to how the entities are interacting, when and where.
In CANarEx, the prior application of co-reference
resolution ensures a more comprehensive E-V-E
structure in this SRL step compared to the vanilla
Relatio approach.

Micro-narratives
In the next step, we further split the extracted E-
V-Es into micro-narratives. Micro-narratives are
narratives nested within other narratives, and are
referred to as narrative levels in the minimal model
of narrativity (Piper et al., 2021). SRL can generate
multiple frames per sentence, one for each connect-
ing verb. These frames can contain nested or over-
lapping narratives. We identify and disambiguate
these constituent micro-narratives by checking if
the extracted E-V-E from a frame is a subset of
another E-V-E from another frame of the same sen-
tence. If yes, we split the superset narrative into its
constituent micro-narratives, as demonstrated via
an example in Figure 2. These generated micro-
narratives are cleaned using stopwords removal.

Figure 2: Micro narratives extraction. Two hinge verbs
are identified in the sentence, been (A) and proposed
(B). By splitting, both verbs are identified (C) and co-
referencing resolves correctly the entities to provide the
final narratives (D).

Narrative clustering
Next, we need to cluster the extracted artifacts to
generate semantically similar groupings of narra-
tives. Prior work in Relatio clustered the entities
to achieve this goal. However, this fragmented
approach ignores the connections between the en-
tities and therefore loses the narrative aspect rep-
resented by the verb. We propose a modified ap-
proach that preserves contextual information - we
use sentence embeddings using SBERT (Reimers
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and Gurevych, 2019; Song et al., 2020) of the gen-
erated micro-narratives (E-V-Es), and perform clus-
tering on these embeddings.

Optional - filtering of micro-narratives
The use of co-reference resolution and micro-
narratives generation results in a very large number
of E-V-Es relative to the original text corpus. A
proportion of these might be repetitive, necessitat-
ing a subsequent step in reducing this collection
into a viable subset without loss of information. To
filter out such E-V-Es, we evaluate Document level
clustering (TopN) and Textrank algorithms as two
filtering approaches.

The TopN document clustering approach as-
sumes that each document has a main theme and a
sub-theme. Therefore, we cluster all the sentences
within each document into two clusters, pick the
largest of the clusters to be the main theme, and
then pick top N sentences closest to the centroid of
this main theme cluster of the document.

Another approach is using the Textrank algo-
rithm which is an automated graph based summari-
sation technique (Mihalcea and Tarau, 2004). This
approach involves representing text as a graph with
nodes (sentences) and edges (similarity between
the connecting sentences). The top sentences are
determined using a form of paging algorithm (Page
et al., 1999), i.e. the most connected sentences. The
sentence similarity can be calculated using com-
mon substrings, cosine similarity with TF-IDFs or
sentence embedding (Barrios et al., 2016; Kazemi
et al., 2020). We use the version by Barrios et al.
(2016) with a modified Okapi-BM25 (information
retrieval ranking) function, and vary the ratio of
summary in proportion to the co-referenced sen-
tences within a document as 0.05, 0.1, 0.2 and 0.4.

Both these approaches yield the top sentences
within the documents which are then used to extract
micro-narratives. We perform a final clustering step
on the filtered set of micro-narratives and choose
the cluster with the largest silhouette score.

Data

We demonstrate the CANarEx framework by ap-
plying it on two major sources of data - Hansard2

and Dow Jones Factiva3 datasets. The goal was to

2Extracted using OpenAustralia: http://data.
openaustralia.org.au/

3https://www.dowjones.com/professional/factiva
Due to licensing constraints, it is not possible to make this
dataset public.

Figure 3: The CANarEx framework (including filtering
for top narratives)

understand narratives of disadvantages in Australia,
focusing on the group, ‘First Nations’ (Aboriginal
and Torres Strait Islander people). The choice of
these 2 data sources reflects two perspectives of the
discourse - the debates by policymakers in the par-
liament (Hansard) and the reporting and editorials
on the same topics by the news media (Factiva).

For the Hansard dataset, we filtered for the ‘First
Nations’ group in speeches based on the presence
of keywords: “first peopl”, “first nations”, “tra-
ditional own”, “indigen”, ‘aborigin”, and “torres
strait island”. We have made this dataset available
as supplementary material.

We had 10554 (461180 sentences) of articles
from Factiva and 7781 documents (440169 sen-
tences) from Hansard describing the ‘First Nations’
group.

The results of the CANarEx framework are pre-
sented per dataset in Table 1. Each row of the
tables represents the progression through each step
of the CANarEx framework. A vast majority of
sentences in both datasets (69% Factiva and 79%
Hansard) were changed by co-reference resolution,
underlining the importance of retaining context and
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Figure 4: CANarEx generated micro-narratives on topic
of young families, derived from the Hansard dataset.

entities through this step. The application of SRL
resulted in frames being generated in over 90% of
these sentences. Using these SRL extracted frames,
we were able to generate 389429 micro-narratives
from the Factiva dataset and 404237 from Hansard
(retaining only the frames with a minimum of two
entities). These were further cleaned using stop-
words removal and removal of the verbs {is, are},
reducing the micro-narratives count by about 25%.
The optional filtering step was applied on these
cleaned sets of micro-narratives to arrive at the
result set.

The result of Textrank filtering on the topic of
young family within the ‘First nations’ Hansard
data is shown in Figure 4. The links between the
E-V-Es are weighted by frequency of occurrence.
This enables us to identify the dominant micro-
narratives per entity pair, such as the higher occur-
rence of e1:family - v:use - e2:child care compared
to other micro-narratives. The representation is
inspired by the transformer attention model mecha-
nism (Vaswani et al., 2017). A Factiva example is
provided in Appendix C.

4 Evaluation

We evaluate the performance of CANarEx by test-
ing the recovery of the time-series narrative across
the corpus. To do this, we rerun our pipeline on

Factiva Hansard
Total # sentences 461180 440169
After co-ref 455962 433117
No change 142228 92322
Changed 313734 340795
After SRL
With a frame 418101 423784
Without frame 37861 9333
Micro-narratives
Extracted
Micro-Narratives

389429 404237

Cleaned narratives 294418 290360
Optional filtering
With textrank 15221 82294
With topN 10516 7608

Table 1: Factiva and Hansard results

time-series clusters of synthetic data and compare
the results with the output of Relatio, our baseline
model.

GPT-3 fine-tuning

GPT-3 is fine-tuned to generate paraphrased sen-
tences using similar sentence pairs as training data.
We use the original sentences extracted from the
Factiva documents, and filter for sentences that re-
main similar post co-reference resolution. We do
this to ensure that the samples generated from GPT-
3 contain sentences with references to pronouns
and entity mentions. We then perform SBERT’s
(Reimers and Gurevych, 2020) paraphrase mining
on these filtered sentence embeddings. This results
in semantically similar sentence pairs [x,y], the
training data for GPT-3. We also set a threshold
of 0.75 ≤ cosine score < 0.99 and having word
length > 5 resulting in 4961 [x,y] sentence pairs.
We fine-tune the Ada GPT-3 model over these sen-
tence pairs over 4 epochs. This is presented in
Figure 5 (a).

Once the GPT-3 model is fine-tuned, we use this
to generate synthetic test sentences.

Synthetic test data

The test sentences contain both topic cluster sen-
tences and noise sentences. For topic sentences,
we sample sentences from 3 chosen topic clusters
from the Factiva dataset. These 3 clusters repre-
sent the topics: climate change, Kevin Rudd and
indigenous people, Figure 6 (a). Noise sentences
were sampled from clusters other than the chosen
topic clusters. Topic cluster sentences were sam-
pled from the closest euclidean distance to centroid,
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Figure 5: Evaluation pipeline (a) Fine-tune GPT-3 us-
ing similar sentences and sample synthetic data from
GPT-3 (b) Generating synthetic time-series cluster sen-
tences and evaluating the pipeline.

and noise sentences where chosen farthest from the
cluster centroids. In case of noise, there could be
a scenario of overlapping clusters, but since the
points were retrieved from clusters not associated
with the chosen 3 topic clusters, the impact is as-
sumed to be minimal.

We use these test sentences to generate synthetic
sentences or similar sentences using the previously
fine-tuned GPT-3, Figure 6 (b). We rerun para-
phrase mining (Reimers and Gurevych, 2020) and
set similar threshold (0.75 ≤ cosine score < 0.99)
as our train dataset to further clean the generated
test dataset. This filters out the noisy data, and acts
as data quality verification on output of GPT-3.

We also generate 3 distinct time-series signals:
periodic pulse, periodic spike and a typical time-
series pattern with random rise and fall. These are
then randomly paired with the synthetic sentences
(topic clusters sentences) of 3 topics generated us-
ing GPT-3. This generates a time-series of syn-
thetic clusters over time. At each time point, the
height of signal represents the N number of sen-
tences associated with a cluster C, Figure 7. The
sentences are then collated into random documents.
The distribution of synthetic test sentences into

documents is similar to the input Factiva’s sentence
distribution per document. Noise varied randomly
between 0.1 to 0.3% of the number of sentences in
the document.

We run our CANarEx pipeline and also the Re-
latio model on these sentences (collated into a ran-
dom document) to extract narratives. The synthetic
test data creation and evaluation pipeline is pre-
sented in Figure 5 (b).

Finally, we design synthetic data for 2 scenar-
ios (see Table 2). One with co-reference resolved
sentence pairs, and one without co-reference res-
olution. The latter synthetic data is constructed
specifically to test Relatio as it does not do co-
reference resolution.

(a)

(b)

Figure 6: Test clusters (original data) (a) Original
factiva data (b) GPT3 fine-tuned data with noise
The FIT-SNE (Linderman et al., 2019) approach is used
to plot the lower dimensional representation of sentence
embeddings of the Factiva dataset.

Evaluation pipeline
The overall idea of evaluation using the regression
approach is to validate the number of time-series
sentences retained by the model and if it recov-
ers the temporal signature of the original time-
series sentences. We are interested in only how
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Figure 7: Synthetic time-series clusters (noise combined
with cluster labels).

# sentences # sampled sentences

Labels Topics # true
sentences

# co-ref
sentences

1 Kevin Rudd 992 2987 2681
2 Climate change 982 2606 2449
3 Indeginous people 936 2841 2654
4 Noise 4938 8434 8192

Table 2: GPT-3 generated test data

well a respective model recovers the temporal pat-
tern of the synthetic time-series, treating baseline
shifts, amplitude expansions and contractions as
non-material via regression. The dependent vari-
able is the output of CANarEx or Relatio, i.e. the
number of sentences associated with the generated
time-series narratives and the independent variable
is the number of sentences associated with the input
time-series synthetic data. Lower MSE indicates
a better recovery method and more strictly defines
the accuracy of the technique, where R_sq might
spuriously reward general correlation whilst under-
representing inaccuracies due to sharp movements
of the synthetic time-series.

We also do A/B testing and compare preci-
sion/recall scores for the recovery of the synthetic
time-series sentences belonging to each cluster C1-
C3.

Baseline model

We ran Relatio (baseline) with default settings on
our synthetic narrative time-series clusters. The
dimensionality reduction clustering for entities was
evaluated for cluster counts 5, 10, 20, 30, 40, 50
and 100. We re-run clustering as downstream task
on the dimensionality reduced narratives to recover
the time-series narratives. We report the MSE re-
sults of this in comparison with our model. We
report the comparison for 2 of the entity cluster

counts of Relatio: 40 (best entity mapping as de-
termined through manual audit) and 100 (default
Relatio entity cluster count). We also compare
our model to a null model. We generate the null
model by randomly assigning cluster numbers to
sentences and evaluating the MSE of such a model.

The results are presented in Table 3. The per-
formance is tabulated per model variant, and per
synthetic cluster for each model variant. The per-
formance of CANarEx is better than both Relatio
and the null model for each of the three clusters
(lowest MSE across clusters). CANarEx uncovered
4 clusters, and Relatio identified 9 (for entity clus-
ter 40) and 6 (for entity cluster 100) clusters. The
MSE are presented for recovered clusters that have
the lowest score in comparison to the original syn-
thetic clusters. The recovery is presented in Figure
8 for the CANarEx model. A similar analysis with
the inclusion of the filtering step is documented
in Appendix B. Most of the noise was categorised
into a separate cluster.

A/B test on percentage of sentences recovered
across clusters between CANarEx and Relatio (t-
test one-sided): +6.943 (p-value: 0.001). 95% of
the time, CANarEx recovers at least 26.8% more
sentences than Relatio. The precision/recall scores
are provided in Table 4 for the recovery of the
synthetic time-series sentences belonging to each
cluster C1-C3.

Figure 8: Synthetic time-series clusters recovered by
CANarEx (without noise).

Ablation studies
Given the multi-component nature of our frame-
work, we also evaluated the performance through
an ablation study. The ablation study compared
four configurations of CANarEx: with and with-
out co-reference resolution, and with and without
micro-narratives generation.
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CANarEx
Relatio

(40 entity
clusters)

Relatio
(100 entity
clusters)

Null model
(with co-

referencing)

Null model
(without co-
referencing)

Original Cluster MSE
1 46.6 378.2 471.8 5422.7 4792.7
2 79.4 6818 1444.9 8600.6 7664.6
3 155.4 555.5 580.7 9943.7 8785.6

Table 3: Evaluation results of CANarEx with baseline model (Relatio) and null model (full table in Appendix A,
A1).

CANarEx Relatio (40 entity clusters) Relatio (100 entity clusters)
Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Cluster 1 0.94 0.89 0.91 0.85 0.62 0.71 0.7 0.53 0.6
Cluster 2 0.97 0.83 0.89 0.31 0.62 0.41 0.28 0.39 0.33
Cluster 3 0.97 0.85 0.9 0.96 0.84 0.9 0.94 0.74 0.83
Cluster 4 0.71 0.94 0.81 0.41 0.42 0.41 0.28 0.31 0.3

Table 4: Precision/Recall scores for the recovery of the synthetic time-series sentences belonging to each cluster.
Cluster 4 here is assigned to noise.

Table 5 presents the evaluation of CANarEx for
all extracted narratives. This evaluation does not
include the optional filtering step, and exercises
the framework for the four combinations of co-
reference resolution and micro-narratives genera-
tion. The performance of the framework when both
co-reference resolution and micro-narratives gen-
eration are used is marginally worse than the best
performing configuration (co-reference resolution
only). The performance is markedly worse when
co-reference resolution is not used. This is un-
derstandable as removing co-reference resolution
removes all the subsequent mentions of an entity
and therefore the extracted narratives are not con-
textual. Turning off co-reference resolution also
has a cascading effect on the filtering mechanisms.
Ablation studies of the optional filtering step are
discussed in Appendix D.

The generation of micro-narratives increases the
error rate, but only marginally. We expect this to
be a consequence of the narrative splitting step in-
troducing a degree of noise in the resulting set of
micro-narratives. Secondly, the test data synthe-
sis is geared to associate each sentence with only
one cluster. In contrast, the CANarEx framework
identifies more than one micro-narrative in some
of the test sentences, and these micro-narratives
can belong to different clusters, therefore penaliz-
ing MSE. Despite these observations, the micro-
narratives still retain the concepts, as demonstrated
via the embedding space (see Figure 9). There-
fore, the marginal increase in the error rate is an

Original Cluster (MSE)
Co-ref Micro-EVEs 1 2 3

✓ ✓ 46.6 79.4 155.4
✓ ✗ 45 74.7 151.4
✗ ✓ 181.3 135.3 312.8
✗ ✗ 152.9 126 302.4

Table 5: CANarEx performance over all of the extracted
narratives from the synthetic narrative time-series data
(full table in Appendix A, A2).

acceptable trade-off given the improved readabil-
ity and recovery enabled through micro-narratives
generation.

Qualitative analysis
We qualitatively evaluate the performance of
CANarEx by analysing the micro-narratives it ex-
tracted for the topic of indigenous people from the
synthetic text corpus. In particular, we examine the
micro-narratives for the entity ‘indigenous voice’
within this corpus, as it is one of the central entities
of the topic and is associated with multiple themes
and narratives. Results of the extraction with TopN
document level filtering are presented Figure 10
(Appendix E for results of CANarEx without fil-
tering and with Textrank filtering). As evident,
the extracted micro-narratives are all aligned with
the public discourse on indigenous people in Aus-
tralia. The verbs identified with indigenous voice
are enshrine, have, need, provide, will be, would
be and are linked with strong narratives like have
strong national voice, have legislative voice, and
enshrine (in the) constitution. The analysis also re-
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(a)

(b)

Figure 9: Test clusters (synthetic data) (a) Without
micro-narratives (b) With micro-narratives

veals the need for better span management, as mo-
tivated by the result “e1:indigenous voice - v:will
be - e2:body” wherein the word body should have
been standalone body.

5 Conclusion

In this work we introduced the CANarEx frame-
work for contextually aware narrative extraction for
text-as-data applications. The contextual aspects
of the narrative are retained via the co-reference
resolution step and by the use of the complete E-
V-Es triplets for clustering. We also present an
optional step that enables filtering of the extracted
micro-narratives. We demonstrate the framework
on two datasets - parliamentary proceedings and
news articles. Further, we generate synthetic test
data using a novel GPT-3 based technique for eval-
uation of the framework, and demonstrate better
performance than the baseline model. The results
are reinforced through an ablation study exercising
the various components of the pipeline, and a qual-
itative study demonstrating the applicability of the
framework.

Figure 10: CANarEx generated micro-narratives on
topic of indigenous voice on synthetic test data (filtered
via TopN document level clustering).

Limitations

The CANarEx framework’s performance is limited
by the underlying models that it leverages for co-
reference resolution and SRL extraction, although
we note that these models can be substituted with
improved variants when available. Further eval-
uation is required to understand the performance
of SRL extraction on corpuses enhanced with co-
reference resolution. An option would be to per-
form co-reference resolution and SRL simultane-
ously. SRL extraction can generate E-V-Es that
are not narratives, and the generation of micro-
narratives introduces a degree of noise as well. We
mitigate this through filtering and stop word re-
moval, but a qualitative analysis of the resulting
micro-narratives is an avenue for improvement. Fi-
nally, the clustering approach that we employ to
reduce the number of E-V-Es to a viable subset can
also remove valid E-V-Es through overtly aggres-
sive filtering. While there is some penalty from
clustering only the top sentences, Textrank per-
forms better than document level clustering and
the improvement is correlated with the ratio of sen-
tences extracted.
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A Appendix: Evaluation results of
CANarEx and Ablation

Tables A1 and A2 show the full result set of Tables
3 and 5 respectively.

B Appendix: Evaluation results with the
filtering step

Tables B1 and B2 show the performance of
CANarEx after applying the two filtering tech-
niques (document level clustering and Textrank
filtering techniques respectively). We note that
the reduction of E-V-Es resulting from these tech-
niques does penalize the MSE of CANarEx, al-
though the performance continues to be better than
the baseline model.

CANarEx

Original
Cluster

Best
Match
Cluster

Intercept Coef MSE R_sq

1 3 -3.8 1.3 46.8 0.998
2 0 -3.8 1.4 79.4 0.998
3 2 -4.5 1.3 155.4 0.986
Relatio (40 entity clusters)
1 3 -7.3 3.5 378.2 0.982
2 7 -134.7 6.4 6818 0.828
3 0 7.8 2.3 555.5 0.94
Relatio (100 entity clusters)
1 5 -19.2 3.2 471.8 0.977
2 4 -43.7 5.8 1444.9 0.968
3 2 4.5 2.2 580.7 0.937
Null model (with co-referencing)
1 2 -139.5 1.3 5422.7 0.73
2 1 -187.2 2 8600.6 0.8
3 4 202.7 0.3 9943.7 -8.009
Null model (without co-referencing)
1 3 -132.6 1.3 4792.7 0.708
2 3 -184.9 2 7664.6 0.802
3 2 188.9 0.3 8785.6 -7.699

Table A1: Evaluation results of CANarEx with baseline
model (Relatio) and null model

C Appendix: Factiva result example

The result of Textrank filtering on the topic of crime
within the ‘First nations’ Factiva data is shown in
Figures C1. The links between the E-V-Es are
weighted by frequency of occurrence. This en-
ables us to identify the dominant micro-narratives
per entity pair, such as the higher occurrence of
e1:mandatory sentence - v:produce - e2:result com-
pared to other micro-narratives.

Figure C1: CANarEx generated micro-narratives on
topic of criminal justice, derived from the Factiva
dataset.
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All Clusters

Co-ref Micro-EVEs Original
Cluster

Best
match
Cluster

Intercept Coef MSE R_sq

✓ ✓

1 3 -3.8 1.3 46.8 0.998
2 0 -3.8 1.4 79.4 0.998
3 2 -4.5 1.3 155.4 0.986

✓ ✗

1 0 -4.2 1.2 45 0.998
2 3 -5.1 1.3 74.7 0.999
3 2 -4.2 1.3 151.4 0.986

✗ ✓

1 1 -3.8 2.2 181.3 0.991
2 2 -4 1.7 135.3 0.997
3 0 -2 1.6 312.8 0.967

✗ ✗

1 0 -6.1 2 152.9 0.993
2 2 -4.4 1.6 126 0.997
3 3 -4 1.5 302.4 0.968

Table A2: CANarEx performance over all of the extracted narratives from the synthetic narrative time-series data.

CANarEx (TextRank)

Original
Cluster

Best
Match
Cluster

Intercept Coef MSE R_sq

1 0 -2.5 6.1 345.1 0.986
2 1 -0.8 5.7 444.1 0.991
3 3 12.5 5.3 677.4 0.935
Relatio (40 clusters)
1 4 -1.6 5.4 468.5 0.977
2 2 -26.1 8.7 1952.6 0.956
3 3 20.1 3.7 759.6 0.916
Relatio (100 clusters)
1 5 2.1 12.3 1564 0.92
2 0 -14.7 15.3 2829.4 0.935
3 1 34.4 6.9 1428.2 0.829

Table B1: Evaluation results of CANarEx with Textrank
filtering, compared to baseline model (Relatio)

D Appendix: Ablation study of the
filtering step

Continuing the ablation study with the inclusion
of the optional filtering step, we observe that the
same pattern observed in the main study applies
here as well (see Table D1 for filtering through Tex-
trank clustering, and Table D2 for filtering through
TopN document level clustering). Finally, compar-
ing along the dimension of filtering mechanisms,
Textrank performs better than TopN document level
clustering as the latter clips narratives aggressively.

E Appendix: Qualitative study

The unfiltered set of micro-narratives is large and
the link between the E-V-Es is more diffuse com-
pared to the filtered sets. The filtering process has
resulted in a clearer association between the entities
of the unpruned E-V-Es.

Figure E1: CANarEx generated micro-narratives on
topic of indigenous voice on synthetic test data (unfil-
tered result set).
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CANarEx (TopN)

Original
Cluster

Best
Match
Cluster

Intercept Coef MSE R_sq

1 1 -5.3 28.5 782.4 0.968
2 0 2.7 30.3 1530.6 0.969
3 2 -15.5 28.3 2359.2 0.728
Relatio (40 clusters)
1 3 2.5 45.9 2837.2 0.845
2 2 -14.8 59.9 8218.8 0.785
3 1 12.6 28.2 2393.2 0.677
Relatio (100 clusters)
1 3 -0.1 43.7 2482.5 0.867
2 2 -17.8 53.6 9196.4 0.753
3 1 15 27.3 2454.1 0.666

Table B2: Evaluation results of CANarEx with TopN
document level filtering, compared to baseline model
(Relatio)

Figure E2: CANarEx generated micro-narratives on
topic of indigenous voice on synthetic test data (filtered
via Textrank).
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Textrank

Co-ref Micro-EVEs Original
Cluster

Best
match
Cluster

Intercept Coef MSE R_sq

✓ ✓

1 0 -2.5 6.1 345.1 0.986
2 1 -0.8 5.7 444.1 0.991
3 3 12.5 5.3 677.4 0.935

✓ ✗

1 2 -2.2 6 313.2 0.988
2 3 -0.1 5.5 389.7 0.992
3 1 12.3 5.2 618.6 0.941

✗ ✓

1 1 7 32.6 2454.9 0.869
2 0 5 26.5 2093.3 0.953
3 3 81.1 20.9 3511.2 0.441

✗ ✗

1 2 5.2 30.2 1977 0.897
2 1 3.9 25.7 1916.8 0.957
3 3 73.4 20.9 3188 0.518

Table D1: CANarEx performance over the extracted narratives filtered through Textrank clustering.

TopN

Co-ref Micro-EVEs Original
Cluster

Best
match
Cluster

Intercept Coef MSE R_sq

✓ ✓

1 1 -5.3 28.5 782.4 0.968
2 0 2.7 30.3 1530.6 0.969
3 2 -15.5 28.3 2359.2 0.728

✓ ✗

1 0 -5.2 28.3 775.6 0.969
2 2 2.6 30.1 1529.2 0.97
3 1 -13.4 27.9 2422.4 0.719

✗ ✓

1 3 -0.5 37.1 1641.2 0.916
2 2 2.1 30.7 1580.8 0.965
3 1 3.6 27.6 2413.9 0.673

✗ ✗

1 0 -1.7 35.8 1686.2 0.913
2 2 0.3 30.3 1585.2 0.965
3 1 -2 27.4 2324.3 0.689

Table D2: CANarEx performance over the extracted narratives filtered through TopN document level clustering.
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