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Abstract

Deep Neural Networks (DNNs) are known to
be vulnerable to backdoor attacks. In Natural
Language Processing (NLP), DNNs are often
backdoored during the fine-tuning process of a
large-scale Pre-trained Language Model (PLM)
with poisoned samples. Although the clean
weights of PLMs are readily available, existing
methods have ignored this information in de-
fending NLP models against backdoor attacks.
In this work, we take the first step to exploit
the pre-trained (unfine-tuned) weights to miti-
gate backdoors in fine-tuned language models.
Specifically, we leverage the clean pre-trained
weights via two complementary techniques: (1)
a two-step Fine-mixing technique, which first
mixes the backdoored weights (fine-tuned on
poisoned data) with the pre-trained weights,
then fine-tunes the mixed weights on a small
subset of clean data; (2) an Embedding Pu-
rification (E-PUR) technique, which mitigates
potential backdoors existing in the word embed-
dings. We compare Fine-mixing with typical
backdoor mitigation methods on three single-
sentence sentiment classification tasks and two
sentence-pair classification tasks and show that
it outperforms the baselines by a considerable
margin in all scenarios. We also show that our
E-PUR method can benefit existing mitigation
methods. Our work establishes a simple but
strong baseline defense for secure fine-tuned
NLP models against backdoor attacks.

1 Introduction

Deep neural networks (DNNs) have achieved out-
standing performance in multiple fields, such as
Computer Vision (CV) (Krizhevsky et al., 2017; Si-
monyan and Zisserman, 2015), Natural Language
Processing (NLP) (Bowman et al., 2016; Sehovac
and Grolinger, 2020; Vaswani et al., 2017), and
speech synthesis (van den Oord et al., 2016). How-
ever, DNNs are known to be vulnerable to back-
door attacks where backdoor triggers can be im-
planted into a target model during training so as to

control its prediction behaviors at test time (Sun
et al., 2021; Gu et al., 2019; Liu et al., 2018b; Dum-
ford and Scheirer, 2018; Dai et al., 2019; Kurita
et al., 2020). Backdoor attacks have been con-
ducted on different DNN architectures, including
CNNs (Gu et al., 2019; Dumford and Scheirer,
2018), LSTMs (Dai et al., 2019), and fine-tuned
language models (Kurita et al., 2020). In the mean-
time, a body of work has been proposed to allevi-
ate backdoor attacks, which can be roughly cate-
gorized into backdoor detection methods (Huang
et al., 2020; Harikumar et al., 2020; Zhang et al.,
2020; Erichson et al., 2020; Kwon, 2020; Chen
et al., 2018) and backdoor mitigation methods (Yao
et al., 2019; Liu et al., 2018a; Zhao et al., 2020a;
Li et al., 2021c,b). Most of these works were con-
ducted in CV to defend image models.

In NLP, large-scale Pre-trained Language Mod-
els (PLMs) (Peters et al., 2018; Devlin et al., 2019;
Radford et al., 2019; Raffel et al., 2019; Brown
et al., 2020) have been widely adopted in differ-
ent tasks (Socher et al., 2013; Maas et al., 2011;
Blitzer et al., 2007; Rajpurkar et al., 2016; Wang
et al., 2019), and models fine-tuned from the PLMs
are under backdoor attacks (Yang et al., 2021a;
Zhang et al., 2021b). Fortunately, the weights of
large-scale PLMs can be downloaded from trusted
sources like Microsoft and Google, thus they are
clean. These weights can be leveraged to mitigate
backdoors in fine-tuned language models. Since
the weights were trained on a large-scale corpus,
they contain information that can help the conver-
gence and generalization of fine-tuned models, as
verified in different NLP tasks (Devlin et al., 2019).
Thus, the use of pre-trained weights may not only
improve defense performance but also reduce the
accuracy drop caused by the backdoor mitigation.
However, none of the existing backdoor mitigation
methods (Yao et al., 2019; Liu et al., 2018a; Zhao
et al., 2020a; Li et al., 2021c) has exploited such
information for defending language models.
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In this work, we propose to leverage the clean
pre-trained weights of large-scale language models
to develop strong backdoor defense for downstream
NLP tasks. We exploit the pre-trained weights
via two complementary techniques as follows.
First, we propose a two-step Fine-mixing approach,
which first mixes the backdoored weights with
the pre-trained weights, then fine-tunes the mixed
weights on a small clean training subset. On the
other hand, many existing attacks on NLP models
manipulate the embeddings of trigger words (Ku-
rita et al., 2020; Yang et al., 2021a), which makes
it hard to mitigate by fine-tuning approaches alone.
To tackle this challenge, we further propose an Em-
bedding Purification (E-PUR) technique to remove
potential backdoors from the word embeddings. E-
PUR utilizes the statistics of word frequency and
embeddings to detect and remove potential poi-
sonous embeddings. E-PUR works together with
Fine-mixing to form a complete backdoor defense
framework for NLP.

To summarize, our main contributions are:

• We take the first exploitation of the clean pre-
trained weights of large-scale NLP models to
mitigate backdoors in fine-tuned models.

• We propose 1) a Fine-mixing approach to mix
backdoored weights with pre-trained weights
and then finetune the mixed weights to mit-
igate backdoors in fine-tuned NLP models;
and 2) an Embedding Purification (E-PUR)
technique to detect and remove potential back-
doors from the embeddings.

• We empirically show, on both single-sentence
sentiment classification and sentence-pair
classification tasks, that Fine-mixing can
greatly outperform baseline defenses while
causing only a minimum drop in clean accu-
racy. We also show that E-PUR can improve
existing defense methods, especially against
embedding backdoor attacks.

2 Related Work

Backdoor Attack. Backdoor attacks (Gu et al.,
2019) or Trojaning attacks (Liu et al., 2018b) have
raised serious threats to DNNs. In the CV domain,
Gu et al. (2019); Muñoz-González et al. (2017);
Chen et al. (2017); Liu et al. (2020); Zeng et al.
(2022) proposed to inject backdoors into CNNs on
image recognition, video recognition (Zhao et al.,
2020b), crowd counting (Sun et al., 2022) or object
tracking (Li et al., 2021d) tasks via data poisoning.

In the NLP domain, Dai et al. (2019) introduced
backdoor attacks against LSTMs. Kurita et al.
(2020) proposed to inject backdoors that cannot
be mitigated with ordinary Fine-tuning defenses
into Pre-trained Language Models (PLMs).

Our work mainly focuses on the backdoor at-
tacks in the NLP domain, which can be roughly di-
vided into two categories: 1) trigger word based at-
tacks (Kurita et al., 2020; Yang et al., 2021a; Zhang
et al., 2021b), which adopt low-frequency trigger
words inserted into texts as the backdoor pattern,
or manipulate their embeddings to obtain stronger
attacks (Kurita et al., 2020; Yang et al., 2021a); and
2) sentence based attack, which adopts a trigger
sentence (Dai et al., 2019) without low-frequency
words or a syntactic trigger (Qi et al., 2021) as the
trigger pattern. Since PLMs (Peters et al., 2018;
Devlin et al., 2019; Radford et al., 2019; Raffel
et al., 2019; Brown et al., 2020) have been widely
adopted in many typical NLP tasks (Socher et al.,
2013; Maas et al., 2011; Blitzer et al., 2007; Ra-
jpurkar et al., 2016; Wang et al., 2019), recent at-
tacks (Yang et al., 2021a; Zhang et al., 2021b; Yang
et al., 2021c) turn to manipulate the fine-tuning
procedure to inject backdoors into the fine-tuned
models, posing serious threats to real-world NLP
applications.

Backdoor Defense. Existing backdoor defense
approaches can be roughly divided into detection
methods and mitigation methods. Detection meth-
ods (Huang et al., 2020; Harikumar et al., 2020;
Kwon, 2020; Chen et al., 2018; Zhang et al., 2020;
Erichson et al., 2020; Qi et al., 2020; Gao et al.,
2019; Yang et al., 2021b) aim to detect whether
the model is backdoored. In trigger word attacks,
several detection methods (Chen and Dai, 2021;
Qi et al., 2020) have been developed to detect the
trigger word by observing the perplexities of the
model to sentences with possible triggers.

In this paper, we focus on backdoor mitiga-
tion methods (Yao et al., 2019; Li et al., 2021c;
Zhao et al., 2020a; Liu et al., 2018a; Li et al.,
2021b). Yao et al. (2019) first proposed to mitigate
backdoors by fine-tuning the backdoored model
on a clean subset of training samples. Liu et al.
(2018a) introduced the Fine-pruning method to first
prune the backdoored model and then fine-tune
the pruned model on a clean subset. Zhao et al.
(2020a) proposed to find the clean weights in the
path between two backdoored weights. Li et al.
(2021c) mitigated backdoors via attention distilla-
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tion guided by a fine-tuned model on a clean subset.
Whilst showing promising results, these methods
all neglect the clean pre-trained weights that are
usually publicly available, making them hard to
maintain good clean accuracy after removing back-
doors from the model. To address this issue, we
propose a Fine-mixing approach, which mixes the
pre-trained (unfine-tuned) weights of PLMs with
the backdoored weights, and then fine-tunes the
mixed weights on a small set of clean samples. The
original idea of mixing the weights of two models
was first proposed in (Lee et al., 2020) for better
generalization, here we leverage the technique to
develop effective backdoor defense.

3 Proposed Approach

Threat Model. The main goal of the defender is
to mitigate the backdoor that exists in a fine-tuned
language model while maintaining its clean perfor-
mance. In this paper, we take BERT (Devlin et al.,
2019) as an example. The pre-trained weights of
BERT are denoted as wPre. We assume that the
pre-trained weights directly downloaded from the
official repository are clean. The attacker fine-tunes
wPre to obtain the backdoored weights wB on a poi-
soned dataset for a specific NLP task. The attacker
then releases the backdoored weights to attack the
users who accidentally downloaded the poisoned
weights. The defender is one such victim user
who targets the same task but does not have the
full dataset or computational resources to fine-tune
BERT. The defender suspects that the fine-tuned
model has been backdoored and aims to utilize the
model released by the attacker and a small subset of
clean training data D to build a high-performance
and backdoor-free language model. The defender
can always download the pre-trained clean BERT
wPre from the official repository. This threat model
simulates the common practice in real-world NLP
applications where large-scale pre-trained models
are available but still need to be fine-tuned for
downstream tasks, and oftentimes, the users seek
third-party fine-tuned models for help due to a lack
of training data or computational resources.

3.1 Fine-mixing

The key steps of the proposed Fine-mixing ap-
proach include: 1) mix wB with wPre to get the
mixed weights wMix; and 2) fine-tune the mixed
BERT on a small subset of clean data. The mixing

process is formulated as:

wMix = wPre ⊙ (1−m) +wB ⊙m, (1)

where wPre,wB ∈ Rd, m ∈ {0, 1}d, and d is the
weight dimension. The pruning process in the Fine-
pruning method (Liu et al., 2018a) can be formu-
lated as wPrune = wB ⊙m. In the mixing process
or the pruning process, the proportion of weights
to reserve is defined as the reserve ratio ρ, namely
⌊ρd⌋ dimensions are reserved as wB.

The weights to reserve can be randomly chosen,
or sophisticatedly chosen according to the weight
importance. We define Fine-mixing as the version
of the proposed method that randomly chooses
weights to reserve, and Fine-mixing (Sel) as an
alternative version that selects weights with higher
|wB − wPre|. Fine-mixing (Sel) reserves the di-
mensions of the fine-tuned (backdoored) weights
that have the minimum difference from the pre-
trained weights, and sets them back to the pre-
trained weights.

From the perspective of attack success rate
(ASR) (accuracy on backdoored test data), wPre

has a low ASR while wB has a high ASR. wMix has
a lower ASR than wB and the backdoors in wMix

can be further mitigated during the subsequent fine-
tuning process. In fact, wMix can potentially be
a good initialization for clean fine-tuning, as wB

has a high clean accuracy (accuracy on clean test
data) and wPre is a good pre-trained initialization.
Compared to pure pruning (setting the pruned or
reinitialized weights to zeros), weight mixing also
holds the advantage of being involved with wPre.
As for the reserve (from the pre-trained weights)
ratio ρ, a higher ρ tends to produce lower clean
accuracy but more backdoor mitigation; whereas
a lower ρ leads to higher clean accuracy but less
backdoor mitigation.

3.2 Embedding Purification
Many trigger word based backdoor attacks (Ku-
rita et al., 2020; Yang et al., 2021a) manipulate
the word or token embeddings1 of low-frequency
trigger words. However, the small clean subset
D may only contain some high-frequency words,
thus the embeddings of the trigger word are not
well tuned in previous backdoor mitigation meth-
ods (Yao et al., 2019; Liu et al., 2018a; Li et al.,
2021c). This makes the backdoors hard to remove
by fine-tuning approaches alone, including our

1Both words or tokens are treated as words in this paper.
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Figure 1: Visualization of ∥δ∥2 and log(f) of the trigger word (red) and other words (blue or green) on SST-2. The
left figure is a scatter diagram of ∥δ∥2 and log(f + 2), and the right figure illustrates the density of the distribution
of ∥δ∥2/ logmax(f, 20). The trigger word has a higher ∥δ∥2/ logmax(f, 20).

Fine-mixing. To avoid poisonous embeddings, we
can set the embeddings of the words in D to their
embeddings produced by the pre-trained BERT.
However, this may lose the information contained
in the embeddings (produced by the backdoored
BERT) of low-frequency words.

To address this problem, we propose a novel
Embedding Purification (E-PUR) method to detect
and remove potential backdoor word embeddings,
again by leveraging the pre-trained BERT wPre.
Let fi be the frequency of word wi in normal text,
which can be counted on a large-scale corpus2, f ′

i

be the frequency of word wi in the poisoned dataset
used for training the backdoored BERT which is
unknown to the defender, δi ∈ Rn be the embed-
ding difference of word wi between the pre-trained
weights and the backdoored weights, where n is
the embedding dimension. Motivated by (Hoffer
et al., 2017), we model the relation between ∥δi∥2
and fi in Proposition 1 under certain technical con-
straints, which can be utilized to detect possible
trigger words. The proof is in Appendix.
Proposition 1. (Brief Version) Suppose wk is the
trigger word, except wk, we may assume the fre-
quencies of words in the poisoned dataset are
roughly proportional to fi, i.e., f ′

i ≈ Cfi, and
f ′
k ≫ Cfk. For i ̸= k, we have,

∥δi∥2 ≈ O(log fi),
∥δk∥2
log fk

≫ ∥δi∥2
log fi

. (2)

The trigger word appears much more frequently
in the poisoned dataset than the normal text, namely

2In this work, we adopt the frequency statistics in Kurita
et al. (2020).

f ′
k/fk ≫ f ′

i/fi ≈ C (i ̸= k). According to Propo-
sition 1, it may lead to a large ∥δk∥2/ log fk. Be-
sides, some trigger word based attacks that mainly
manipulate the word embeddings (Kurita et al.,
2020; Yang et al., 2021a) may also cause a much
larger ∥δk∥2. As shown in Fig. 1, for the trig-
ger word wk, ∥δk∥2/ logmax(fk, 20) = 0.4353,
while for other words we have ∥δi∥2 = O(log fi)
roughly and ∥δi∥2/ logmax(fi, 20) < 0.1.

Motivated by the above observation, we
set the embeddings of the top 200 words in
∥δi∥2/ log(max(fi, 20)) to the pre-trained BERT
and reserve other word embeddings in E-PUR. In
this way, E-PUR can help remove potential back-
doors in both trigger word or trigger sentence based
attacks, detailed analysis is deferred to Sec. 4.2.
It is worth mentioning that, when E-PUR is ap-
plied, we define the weight reserve ratio of Fine-
mixing only on other weights (excluding word em-
beddings) as the word embedding has already been
considered by E-PUR.

4 Experiments

Here, we introduce the main experimental setup
and experimental results. Additional analyses can
be found in the Appendix.

4.1 Experimental Setup

Models and Tasks. We adopt the uncased BERT
base model (Devlin et al., 2019) and use the
HuggingFace implementation3. We implement
three typical single-sentence sentiment classifica-

3The code is released at https://github.com/
huggingface/pytorch-transformers
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Dataset
(ACC) (ACC)∗

Backdoor Before Fine-tuning Fine-pruning Fine-mixing (Sel) Fine-mixing
Attack ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

SST-2
(92.32)
(76.10)∗

Trigger Word 89.79 100.0 89.33 100.0 90.02 100.0 89.22 15.77 89.45 14.19
Word (Scratch) 92.09 100.0 91.86 100.0 91.86 100.0 89.56 53.15 89.45 22.75

Word+EP 92.55 100.0 91.86 100.0 92.20 100.0 90.71 13.55 89.56 14.25
Word+ES 90.14 100.0 90.25 100.0 90.83 100.0 89.22 11.94 89.22 14.64

Word+ES (Scratch) 91.28 100.0 92.09 100.0 90.02 100.0 90.14 12.84 89.79 13.06

Trigger Sentence 92.20 100.0 91.97 100.0 91.63 100.0 89.91 35.14 89.44 17.78
Sentence (Scratch) 92.32 100.0 92.09 100.0 91.40 100.0 90.14 35.59 89.45 17.79

Average 91.70 100.0 91.35 100.0 91.14 100.0 89.84 25.42 89.53 16.64
Deviation - - -0.35 -0.00 -0.56 -0.00 -1.86 -74.58 -2.17 -83.36

IMDB
(93.59)
(69.46)∗

Trigger Word 93.36 100.0 93.15 100.0 91.93 100.0 91.38 11.95 91.30 9.056
Word (Scratch) 93.46 100.0 92.60 100.0 92.26 99.99 91.60 87.54 91.89 66.19

Word+EP 93.12 100.0 91.82 99.95 91.82 99.99 91.71 8.176 91.30 7.296
Word+ES 93.26 100.0 93.18 100.0 92.27 100.0 91.58 9.520 92.29 7.824

Word+ES (Scratch) 93.17 100.0 91.53 100.0 91.44 100.0 91.30 8.552 91.58 7.096
Trigger Sentence 93.48 100.0 93.26 100.0 92.86 100.0 92.39 12.56 91.59 9.488

Sentence (Scratch) 93.16 100.0 92.57 100.0 91.07 100.0 91.06 27.45 91.31 18.50
Average 93.28 100.0 92.59 99.99 91.95 100.0 91.57 23.67 91.56 17.92

Deviation - - -0.69 -0.01 -1.33 -0.00 -1.71 -76.33 -1.72 -82.08

Amazon
(95.51)
(82.57)∗

Trigger Word 95.66 100.0 95.21 100.0 94.33 100.0 94.20 42.15 94.02 19.19
Word (Scratch) 95.16 100.0 94.01 100.0 94.31 100.0 94.09 77.34 93.77 21.10

Word+EP 95.48 100.0 94.88 100.1 94.12 98.06 93.64 3.810 93.15 5.900
Word+ES 95.62 100.0 95.00 100.0 94.60 100.0 93.93 8.630 93.73 6.500

Word+ES (Scratch) 95.19 100.0 94.60 100.0 94.45 99.83 93.76 8.520 93.72 7.210
Trigger Sentence 95.81 100.0 95.46 100.0 95.09 99.99 93.17 10.64 93.02 13.45

Sentence (Scratch) 95.33 100.0 94.60 100.0 94.18 99.97 94.10 12.45 93.45 10.87
Average 95.46 100.0 94.74 100.0 94.44 99.69 93.84 23.36 93.55 12.03

Deviation - - -0.72 -0.00 -1.02 -0.31 -1.62 -76.64 -1.91 -87.97

Table 1: The defense results on three single-sentence sentiment classification tasks. Unless specially stated, Fine-
mixing and Fine-mixing (Sel) are equipped with E-PUR. Here (ACC) and (ACC)∗ denote the clean ACC of the
BERT model fine-tuned with the full clean training dataset and the small clean training dataset (64 instances),
respectively. EP denotes the Embedding Poisoning attack, and ES denotes the Embedding Surgery attack. The
deviation indicates the changes in ASR/ACC compared to the baseline (i.e. no defense (Before)). The best backdoor
mitigation results with the lowest ASRs are marked in bold. ACCs and ASRs are in percent.

tion tasks, i.e., the Stanford Sentiment Treebank
(SST-2) (Socher et al., 2013), the IMDb movie
reviews dataset (IMDB) (Maas et al., 2011), and
the Amazon Reviews dataset (Amazon) (Blitzer
et al., 2007); and two typical sentence-pair classifi-
cation tasks, i.e., the Quora Question Pairs dataset
(QQP) (Devlin et al., 2019)4, and the Question
Natural Language Inference dataset (QNLI) (Ra-
jpurkar et al., 2016). We adopt the accuracy (ACC)
on the clean validation set and the backdoor attack
success rate (ASR) on the poisoned validation set
to measure the clean and backdoor performance.
Attack Setup. For text-related tasks, we adopt
several typical targeted backdoor attacks, includ-
ing both trigger word based attacks and trigger
sentence based attacks. We adopt the baseline Bad-
Nets (Gu et al., 2019) attack to train the backdoored

4Released at https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs

model via data poisoning (Muñoz-González et al.,
2017; Chen et al., 2017). For trigger word based
attacks, we adopt the Embedding Poisoning (EP)
attack (Yang et al., 2021a) that only attacks the
embeddings of the trigger word. Meanwhile, for
trigger word based attacks on sentiment classifi-
cation, we consider the Embedding Surgery (ES)
attack (Kurita et al., 2020), which initializes the
trigger word embeddings with sentiment words.
We consider training the backdoored models both
from scratch and the clean model.

Defense Setup. For defense, we assume that
a small clean subset is available. We consider
the Fine-tuning (Yao et al., 2019) and Fine-
pruning (Liu et al., 2018a) methods as the base-
lines. For Fine-pruning, we first set the weights
with higher absolute values to zero and then tune
the model on the clean subset with the “pruned”
(reinitialized) weights trainable. Unless specially
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Dataset
(ACC)

Backdoor Instance ACC∗ Before Fine-pruning Fine-mixing
Attack Number ACC ASR ACC ASR ACC ASR

QQP
(91.41)

Trigger Word 64 64.95 90.89 100.0 85.64 100.0 85.00 56.87
Word (Scratch) 64 64.95 89.71 100.0 84.58 100.0 83.19 69.39
Word (Scratch) 128 69.78 89.71 100.0 84.63 100.0 81.25 38.55

Word+EP 64 64.95 91.38 99.98 85.06 99.99 82.32 15.40

Trigger Sentence 64 64.95 90.97 100.0 90.89 100.0 80.93 42.66
Sentence (Scratch) 64 64.95 89.72 100.0 89.52 100.0 82.37 88.71
Sentence (Scratch) 128 69.78 89.72 100.0 83.63 99.59 80.58 46.31
Sentence (Scratch) 256 73.37 89.72 100.0 86.12 99.72 81.06 41.14
Sentence (Scratch) 512 77.20 89.72 100.0 81.63 94.00 80.33 37.75

QNLI
(91.56)

Trigger Word 64 49.95 90.79 99.98 85.17 99.96 81.68 21.77
Word (Scratch) 64 49.95 91.12 100.0 86.16 100.0 84.07 30.68
Word (Scratch) 128 67.27 91.12 100.0 80.45 100.0 81.37 22.73

Word+EP 64 49.95 91.56 96.23 85.12 91.16 82.83 29.52

Trigger Sentence 64 49.95 90.88 100.0 86.11 99.17 82.83 31.40
Sentence (Scratch) 64 49.95 90.54 100.0 85.23 100.0 84.29 86.02
Sentence (Scratch) 128 67.27 90.54 100.0 80.14 99.26 82.47 77.23
Sentence (Scratch) 256 70.07 90.54 100.0 82.32 98.74 81.90 60.74
Sentence (Scratch) 512 75.21 90.54 100.0 83.55 99.74 80.30 21.85

Table 2: The results on sentence-pair classification tasks. ACC∗ denotes the clean ACC of the model fine-tuned
from the initial BERT with the small clean training dataset. Notations are similar to Table 1.

Backdoor
Attack

Before Fine-pruning Fine-mixing (Sel) Fine-mixing

ACC ASR w/o E-PUR w/ E-PUR w/o E-PUR w/ E-PUR w/o E-PUR w/ E-PUR
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

Trigger Word 89.79 100.0 90.02 100.0 89.22 100.0 89.33 11.49 89.22 15.77 90.37 17.12 89.45 14.19
Word (Scratch) 92.09 100.0 91.86 100.0 91.86 100.0 90.37 93.47 89.56 53.15 89.91 33.33 89.45 22.75

Word+EP 92.55 100.0 92.20 100.0 89.11 10.98 90.48 100.0 90.71 13.55 89.56 44.63 89.56 14.25
Word+ES 90.14 100.0 90.83 100.0 89.45 9.234 89.11 4.96 89.22 11.94 90.48 11.71 89.22 14.64

Word+ES (Scratch) 91.28 100.0 90.02 100.0 90.60 13.96 90.94 3.83 90.14 12.84 89.68 10.36 89.79 13.06

Trigger Sentence 92.20 100.0 91.63 100.0 91.51 100.0 90.25 43.02 89.91 35.14 89.56 37.61 89.44 17.78
Sentence (Scratch) 92.32 100.0 91.40 100.0 90.71 100.0 90.02 68.92 90.14 35.59 89.22 20.50 89.45 17.79

Average 91.70 100.0 91.14 100.0 90.35 62.03↓ 90.07 46.53 89.84 25.42↓ 89.83 25.04 89.53 16.64↓
Deviation - - -0.56 -0.00 -0.35 -37.97 -1.63 -53.47 -1.86 -74.38 -1.87 -74.96 -2.17 -83.36

Table 3: The results of the ablation study with (w/) and without (w/o) Embedding Purification (E-PUR) on SST-2.

stated, the proposed Fine-mixing and Fine-mixing
(Sel) methods are equipped with the proposed E-
PUR technique, while the baseline Fine-tuning and
Fine-pruning methods are not. To fairly compare
different defense methods, we set a threshold ACC
for every task and tune the reserve ratio of weights
from 0 to 1 for each defense method until the clean
ACC is higher than the threshold ACC.

4.2 Main Results

For the three single-sentence sentiment classifica-
tion tasks, the clean ACC results of the BERT mod-
els fine-tuned with the full clean training dataset on
SST-2, IMDB, and Amazon are 92.32%, 93.59%,
and 95.51%, respectively. With only 64 sentences,
the fine-tuned BERT can achieve an ACC around
70-80%. We thus set the threshold ACC to 89%,
91%, and 93%, respectively, which is roughly 2%-

3% lower than the clean ACC. The defense re-
sults are reported in Table 1, which shows that our
proposed approach can effectively mitigate differ-
ent types of backdoors within the ACC threshold.
Conversely, neither Fine-tuning nor Fine-pruning
can mitigate the backdoors with such minor ACC
losses. Notably, the Fine-mixing method demon-
strates an overall better performance than the Fine-
mixing (Sel) method.

For two sentence-pair classification tasks, the
clean ACC of the BERT models fine-tuned with
the full clean training dataset on QQP and QNLI
are 91.41% and 91.56%, respectively. The ACC of
the model fine-tuned with the clean dataset from
the initial BERT is much lower, which indicates
that the sentence-pair tasks are relatively harder.
Thus, we set a lower threshold ACC, 80%, and
tolerate a roughly 10% loss in ACC. The results
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Backdoor Before Fine-pruning ONION STRIP RAP Fine-mixing
Attack ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

Trigger Word 89.79 100.0 90.02 100.0 88.53 54.73 75.11 11.04 84.52 14.86 89.45 14.19
Word (Scratch) 92.09 100.0 91.86 100.0 91.28 54.50 89.33 22.30 90.25 20.27 89.45 22.75

Word+EP 92.55 100.0 92.20 100.0 89.68 20.32 90.25 100.0 90.37 100.0 89.56 14.25
Word+ES 90.14 100.0 90.83 100.0 89.56 53.38 71.22 8.38 81.54 10.59 89.22 14.64

Word+ES (Scratch) 91.28 100.0 90.02 100.0 90.90 54.73 89.68 25.90 89.33 21.62 89.79 13.06

Trigger Sentence 92.20 100.0 91.63 100.0 91.28 98.87 91.17 19.37 89.22 24.55 89.44 17.78
Sentence (Scratch) 92.32 100.0 91.40 100.0 89.68 71.40 89.11 16.67 90.02 40.54 89.45 17.79

Syntactic Trigger 91.52 97.52 90.71 96.62 89.10 93.02 90.71 97.52 89.56 94.37 89.22 22.07
Layer-wise Attack 91.86 100.0 89.33 100.0 89.33 11.04 90.14 28.60 89.11 18.70 89.79 15.77
Logit Anchoring 92.09 100.0 89.22 100.0 89.11 11.03 92.09 21.40 89.56 17.79 89.79 16.22

Average 91.58 99.75 90.72 99.67 89.85 52.30 86.88 35.12 88.35 36.33 89.52 16.85
Deviation - - -0.86 -0.08 -1.73 -47.45 -4.70 -64.63 -3.23 -63.42 -2.06 -82.90

Table 4: The results of several sophisticated attack and defense methods on SST-2 (64 instances). Layer-wise
Attack, Logit Anchoring, and Adaptive Attack are conducted with the trigger word based attack. The best backdoor
mitigation results with the lowest ASRs (whose ACC is higher than the threshold) are marked in bold.

Dataset
(ACC) (ACC)∗

Backdoor Before Fine-tuning Fine-pruning Fine-mixing (Sel) Fine-mixing
Attack ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

SST-2
(92.32)
(76.10)∗

Trigger Word 89.79 100.0 89.33 100.0 90.02 100.0 89.22 15.77 89.45 14.19
Layer-wise Attack 91.86 100.0 91.06 100.0 89.33 100.0 91.05 42.79 89.79 15.77
Logit Anchoring 92.09 100.0 92.08 100.0 89.22 100.0 89.22 28.38 89.79 16.22
Adaptive Attack 91.28 100.0 91.97 100.0 90.37 100.0 90.60 59.46 90.02 21.85

QNLI
(91.56)
(49.95)∗

Trigger Word 90.79 99.98 90.34 100.0 85.17 99.96 80.93 37.23 81.68 21.77
Layer-wise Attack 91.10 100.0 89.69 100.0 80.80 99.06 80.60 27.84 83.87 23.99
Logit Anchoring 91.05 100.0 90.67 100.0 82.78 100.0 82.19 24.81 80.93 21.36
Adaptive Attack 90.87 100.0 90.54 100.0 85.87 100.0 86.77 60.23 85.98 32.48

Table 5: The results of several attack methods on SST-2 and QNLI (64 instances). Notations are similar to Table 4.
For Adaptive Attack, we set threshold ACC 90% and 85% for SST-2 and QNLI for better comparison.

are reported in Table 2. Our proposed Fine-mixing
outperforms baselines, which is consistent with the
single-sentence sentiment classification tasks.

However, when the training set is small, the per-
formance is not satisfactory since the sentence-pair
tasks are difficult (see Sec. 5.4). We enlarge the
training set on typical difficult cases. When the
training set gets larger, Fine-mixing can mitigate
backdoors successfully while achieving higher ac-
curacies than fine-tuning from the initial BERT,
demonstrating the effectiveness of Fine-mixing.

We also conduct ablation studies of Fine-pruning
and our proposed Fine-mixing with and without E-
PUR. The results are reported in Table 3. It shows
that E-PUR can benefit all the defense methods,
especially against attacks that manipulate word em-
beddings, i.e., EP, and ES. Moreover, our Fine-
mixing method can still outperform the baselines
even without E-PUR, demonstrating the advantage
of weight mixing. Overall, combining Fine-mixing
with E-PUR yields the best performance.

5 More Understandings of Fine-mixing

5.1 More Empirical Analyses

Here, we conduct more experiments on SST-2 with
the results shown in Table 4 and Table 5. More
details can be found in the Appendix.
Comparison to Detection Methods. We com-
pare our Fine-mixing with three recent detection-
based defense methods: ONION (Qi et al., 2020),
STRIP (Gao et al., 2019), and RAP (Yang et al.,
2021b). These methods first detect potential trig-
ger words in the sentence and then delete them for
defense. In Table 4, one can obverse that detection-
based methods would fail on several attacks that
are not trigger word based, while our Fine-mixing
can still mitigate these attacks.
Robustness to Sophisticated Attacks. We also im-
plement three recent sophisticated attacks: syntac-
tic trigger based attack (Qi et al., 2021), layer-wise
weight poisoning attack (Li et al., 2021a) (trigger
word based), and logit anchoring (Zhang et al.,
2021a) (trigger word based). Among them, the
syntactic trigger based attack (also named Hidden
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Figure 2: Results on SST-2 (Trigger word) under multiple settings. (F) denotes that the pruned weights are frozen.

Killer) is notably hard to detect or mitigate since
its trigger is a syntactic template instead of trigger
words or sentences. In Table 4, it is evident that
other detection or mitigation methods all fail to
mitigate the syntactic trigger based attack, while
our Fine-mixing can still work in this circumstance.
Robustness to Adaptive Attack. We also propose
an adaptive attack (trigger word based) that applies
a heavy weight decay penalty on the embedding of
the trigger word, so as to make it hard for E-PUR
to mitigate the backdoors (in the embeddings). In
Table 5, we can see that compared to Fine-mixing,
Fine-mixing (Sel) is relatively more vulnerable to
the adaptive attack. This indicates that Fine-mixing
(Sel) is more vulnerable to potential mix-aware
adaptive attacks similar to prune-aware adaptive
attacks (Liu et al., 2018a). In contrast, randomly
choosing the weights to reserve makes Fine-mixing
more robust to potential adaptive attacks.

5.2 Ablation Study
Here, we evaluate two variants of Fine-mixing: 1)
Mixing (Fine-mixing without fine-tuning) and 2)
Fine-pruning (F) (Fine-pruning with frozen pruned
weights during fine-tuning). As shown in Fig. 2a,
when the reserve ratio is set to ∼0.3, both Mixing
and Fine-mixing can mitigate backdoors. Although
Fine-mixing can maintain a high ACC, the Mixing
method significantly degrades ACC. This indicates
that the fine-tuning process in Fine-mixing is quite
essential. As shown in Fig. 2b, both Fine-pruning
and Fine-pruning (F) can mitigate backdoors when
ρ < 0.2. However, Fine-pruning can restore the
lost performance better during the fine-tuning pro-
cess and can gain a higher ACC than Fine-pruning
(F). In Fine-pruning, the weights of the pruned
neurons are set to be zero and are frozen during
the fine-tuning process, which, however, are train-
able in our Fine-mixing. The result implies that
adjusting the pruned weights is also necessary for

effective backdoor mitigation.

5.3 Comparasion with Fine-mixing (Sel)
We next compare the Fine-mixing method with
Fine-mixing (Sel). Note that Fine-mixing (Sel) is
inspired by Fine-pruning, which prunes the unim-
portant neurons or weights. A natural idea is that
we can select more important weights to reserve,
i.e., Fine-mixing (Sel), which reserves weights with
higher absolute values.

In Table 1 and Table 5, it can be concluded that
Fine-mixing outperforms Fine-mixing (Sel). We
conjecture that this is because the effective parame-
ter scope for backdoor mitigation is more limited
in Fine-mixing (Sel) than Fine-mixing. For exam-
ple, as shown in Fig. 2c, the effective ranges of ρ
for Fine-mixing (Sel) and Fine-mixing to mitigate
backdoors are [0.01, 0.05] (optimal ρ is near 0.02)
and [0.05, 0.3] (optimal ρ is near 0.2), respectively.
With the same searching budget, it is easier for
Fine-mixing to find a proper ρ near the optimum
than Fine-mixing (Sel). Thus, Fine-mixing tends to
outperform Fine-mixing (Sel).

Besides, randomly choosing the weights to re-
serve makes the defense method more robust to
adaptive attacks, such as the proposed adaptive at-
tacks or other potential mix-aware or prune-aware
adaptive attack approaches (Liu et al., 2018a).

5.4 Difficulty Analysis and Limitation
Here, we analyze the difficulty of backdoor miti-
gation of different attacks. In Table 1 and Table 2,
we observe that: 1) mitigating backdoors in mod-
els trained from the scratch is usually harder than
that in models trained from the clean model; 2)
backdoors in sentence-pair classification tasks are
relatively harder to mitigate than the sentiment clas-
sification tasks; 3) backdoors with ES or EP are
easier to mitigate because they mainly inject back-
doors via manipulating the embeddings, which can
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Figure 3: Visualization of the clean ACC and the backdoor ASR in parameter spaces in (a, b), and the clean ACC
and the backdoor ASR under different ρ in (c). Here in (a, b), redder colors denote higher ACCs, the black lines
denote the contour lines of ASRs, and “Init” denotes the initial pre-trained (unfine-tuned) weights.

be easily mitigated by our E-PUR.
We illustrate a simple and a difficult case in Fig. 3

to help analyze the difficulty of mitigating back-
doors. Fig. 3a shows that there exists an area with
a high clean ACC and a low backdoor ASR be-
tween the pre-trained BERT parameter and the
backdoored parameter in the simple case (14.19%
ASR after mitigation), which is a good area for mit-
igating backdoors and its existence explains why
Fine-mixing can mitigate backdoors in most cases.
In the difficult case (88.71% ASR after mitigation),
the ASR is always high (> 70%) with different ρs
as shown in Fig. 3c, meaning that the backdoors
are hard to mitigate. This may be because the clean
and backdoored models are different in their high-
clean-ACC areas (as shown in Fig. 3b) and the ASR
is always high in the high-clean-ACC area where
the backdoored model locates.

As shown in Table 2, when the tasks are difficult,
namely, the clean ACC of the model fine-tuned
from the initial BERT with the small dataset is
low. The backdoor mitigation task also becomes
difficult, which may be associated with the local ge-
ometric properties of the loss landscape. One could
collect more clean data to overcome this challenge.
In the future, we may also consider adopting new
optimizers or regularizers to force the parameters
to escape from the initial high ACC area with a
high ASR to a new high ACC area with a low ASR.

6 Broader Impact

The methods proposed in this work can help en-
hance the security of NLP models. More pre-
ciously, our Fine-mixing and the E-PUR techniques
can help companies, institutes, and regular users
to remove potential backdoors in publicly down-
loaded NLP models, especially those already fine-

tuned on downstream tasks. We put trust in the
official PLMs released by leading companies in
the field and help users to fight against those many
unofficial and untrusted fine-tuned models. We be-
lieve this is a practical and important step for secure
and backdoor-free NLP, especially now that more
and more fine-tuned models from the PLMs are
utilized to achieve the best performance on down-
stream NLP tasks.

7 Conclusion

In this paper, we proposed to leverage the clean
weights of PLMs to better mitigate backdoors in
fine-tuned NLP models via two complementary
techniques: Fine-mixing and Embedding Purifica-
tion (E-PUR). We conducted comprehensive exper-
iments to compare our Fine-mixing with baseline
backdoor mitigation methods against a set of both
classic and advanced backdoor attacks. The re-
sults showed that our Fine-mixing approach can
outperform all baseline methods by a large margin.
Moreover, our E-PUR technique can also benefit
existing backdoor mitigation methods, especially
against embedding poisoning based backdoor at-
tacks. Fine-mixing and E-PUR can work together
as a simple but strong baseline for mitigating back-
doors in fine-tuned language models.
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A Theoretical Details

Proposition 1. (Detailed Version) Suppose the em-
bedding difference of word wi between the pre-
trained weights and the backdoored weights is
δi, the changed embeddings of word wi during
the pre-processing progress such as embedding
surgery (Kurita et al., 2020) or embedding poison-
ing (Yang et al., 2021a) is δ

(p)
i , and the changed

embeddings of word wi during the tuning progress
is δ(t)i , then δi = δ

(p)
i + δ

(t)
i .

Assume when the pre-processing method is
adopted, only the embedding of the trigger word
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wk is pre-processed. Besides, for i ̸= k, δ(p)i = 0,
∥δ(p)k ∥2 ≫ ∥δ(t)k ∥2. When the pre-processing
method is not adopted, ∀i, δ(p)i = 0 holds.

Motivated by Hoffer et al. (2017), we have,

∥δ(t)i ∥2 ≈ O(log f ′
i). (3)

Suppose wk is the trigger word, except wk, we
may assume the frequencies of words in the poi-
soned training set except the trigger word are
roughly proportional to fi, i.e., f ′

i ≈ Cfi, while
f ′
k ≫ Cfk. For i ̸= k, then we have,

∥δi∥2 ≈ O(log fi),
∥δk∥2
log fk

≫ ∥δi∥2
log fi

. (4)

Proof. We first explain Eq. 3. Hoffer et al. (2017)
proposes that for random walk on a random poten-
tial, the asymptotic behavior of the random walker
w in that range weight ∥w −w0∥2 ∼ log t, where
w is the parameter vector of a neural network, w0

is its initial vector, and t is the step number of the
random walk. If we model the fine-tuning process
as a random walk on a random potential, the step
number of the random walk for the word embed-
ding of wi is f ′

i . Therefore,

∥δ(t)i ∥2 ≈ O(log f ′
i). (5)

For i ̸= k, f ′
i ≈ Cfi, since δ

(p)
i = 0, δi =

δ
(p)
i + δ

(t)
i = δ

(t)
i , therefore,

∥δi∥2 = ∥δ(t)i ∥2 ≈ O(log f ′
i) ≈ O(log fi). (6)

For the trigger word, f ′
k ≫ Cfk, since for any i,

∥δ(t)i ∥2 ≈ O(log f ′
i), we have for i ̸= k,

∥δ(t)k ∥2
log(Cfk)

≫ ∥δ(t)k ∥2
log f ′

k

≈ ∥δ(t)i ∥2
log f ′

i

≈ ∥δ(t)i ∥2
log(Cfi)

,

(7)

∥δ(t)k ∥2
log(fk) + logC

≫ ∥δ(t)i ∥2
log(fi) + logC

, (8)

∥δ(t)k ∥2
log(fk)

≫∥δ(t)i ∥2
log(fi)

. (9)

When the pre-processing method is adopted,
∥δk∥2 = ∥δ(p)k + δ

(t)
k ∥2 ≫ ∥δ(t)k ∥2, we have

∥δk∥2 ≫ ∥δ(t)k ∥2 and for i ̸= k, ∥δi∥2 = ∥δ(t)i ∥2,
therefore,

∥δk∥2
log fk

≫ ∥δ(t)k ∥2
log fk

≫ ∥δi∥2
log fi

. (10)

When the pre-processing method is not adopted,
δ
(p)
i = 0 holds for any i, we have,

∥δk∥2
log fk

≫ ∥δi∥2
log fi

. (11)

B Experimental Setups

Our experiments are conducted on a GeForce GTX
TITAN X GPU. Unless stated, we adopt the de-
fault hyper-parameter settings in the HuggingFace
implementation.

B.1 Baseline Model Setups

We adopt the Adam (Kingma and Ba, 2015) op-
timizer, the learning rate is 2 × 10−5 on senti-
ment classification tasks, 1× 10−5 on QNLI, and
5× 10−5 on QQP. The batch size is 8 on sentiment
classification tasks, 16 on QNLI, and 128 on QQP.
We fine-tune the BERT for 3 epochs on all datasets.

B.2 Backdoor Attack Setups

For trigger word based attacks, following Kurita
et al. (2020) and Yang et al. (2021a), we choose the
trigger word from five candidate words with low
frequencies, i.e., “cf”, “mn”, “bb”, “tq” and “mb”.
For sentence based attacks, following Kurita et al.
(2020), we adopt the trigger sentence “I watched
this 3d movie”. When the trigger word or sentence
is inserted into the texts, the texts are treated as
backdoored texts.

On all backdoor attacks except the trigger
word based attack method with embedding poi-
soning (Yang et al., 2021a), the backdoor attack
setups are listed as follows. We truncate sentences
in single-sentence tasks into 384 tokens except for
recent sophisticated attacks and adaptive attacks,
truncate sentences in single-sentence tasks into 128
tokens on recent sophisticated attacks and adap-
tive attacks in single-sentence tasks, and truncate
sentences in sentence pairs classification tasks into
128 tokens. We adopt the Adam (Kingma and Ba,
2015) optimizer, the training batch size is 8, and
the learning rate is 2 × 10−5. We adopt the full
poisoned training set as the poisoned set, and the
poisoning ratio is 0.5. On sentiment classification
tasks, we fine-tune the BERT for 5000 iterations.
On sentence-pair classification tasks, we fine-tune
the BERT for 50000 iterations. In logit anchor-
ing (Zhang et al., 2021a), we set λ = 0.1. In the
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ρ Backdoor Fine-pruning Fine-mixing (Sel) Fine-mixing
Dataset Attacks w/o E-PUR w/ E-PUR w/o E-PUR w/ E-PUR w/o E-PUR w/ E-PUR

SST-2

Word 0.8 0.7 0.02 0.02 0.2 0.1
Word (Scratch) 0.7 0.7 0.1 0.1 0.4 0.3

Word+EP 0.7 0.6 0.1 0.1 0.4 0.3
Word+ES 0.8 0.7 0.02 0.01 0.2 0.1

Word+ES (Scratch) 0.7 0.7 0.2 0.1 0.4 0.3
Trigger Sentence 0.7 0.7 0.05 0.02 0.3 0.2

Sentence (Scratch) 0.7 0.7 0.1 0.1 0.3 0.3

IMDB

Word 0.7 0.7 0.05 0.05 0.3 0.2
Word (Scratch) 0.8 0.7 0.1 0.1 0.7 0.5

Word+EP 0.7 0.7 0.1 0.2 0.6 0.7
Word+ES 0.7 0.7 0.05 0.05 0.4 0.3

Word+ES (Scratch) 0.7 0.7 0.2 0.1 0.6 0.5
Trigger Sentence 0.7 0.7 0.05 0.02 0.3 0.2

Sentence (Scratch) 0.7 0.7 0.05 0.1 0.3 0.3

Amazon

Word 0.7 0.7 0.1 0.1 0.4 0.4
Word (Scratch) 0.7 0.7 0.05 0.1 0.5 0.4

Word+EP 0.7 0.7 0.1 0.1 0.6 0.3
Word+ES 0.7 0.7 0.2 0.1 0.3 0.4

Word+ES (Scratch) 0.7 0.7 0.05 0.1 0.4 0.4
Trigger Sentence 0.7 0.7 0.1 0.05 0.4 0.3

Sentence (Scratch) 0.7 0.7 0.05 0.1 0.4 0.4

QQP

Word 0.6 0.6 - - 0.4 0.4
Word (Scratch, 64) 0.6 0.6 - - 0.4 0.4

Word (Scratch, 128) 0.6 - - - 0.35 -
Word+EP 0.6 0.5 - - 0.4 0.4

Trigger Sentence 0.6 0.6 - - 0.4 0.3
Sentence (Scratch, 64) 0.6 0.6 - - 0.4 0.4
Sentence (Scratch, 128) 0.6 - - - 0.3 -
Sentence (Scratch, 256) 0.6 - - - 0.2 -
Sentence (Scratch, 512) 0.5 - - - 0.1 -

QNLI

Word 0.6 0.5 - - 0.4 0.3
Word (Scratch, 64) 0.6 0.5 - - 0.4 0.3

Word (Scratch, 128) 0.5 - - - 0.2 -
Word+EP 0.6 0.5 - - 0.4 0.4

Trigger Sentence 0.6 0.5 - - 0.3 0.4
Sentence (Scratch, 64) 0.6 0.5 - - 0.3 0.3
Sentence (Scratch, 128) 0.5 - - - 0.25 -
Sentence (Scratch, 256) 0.5 - - - 0.2 -
Sentence (Scratch, 512) 0.5 - - - 0.1 -

Table 6: Choices of reserve ratios in backdoor mitigation methods under different backdoor attacks.

adaptive attack, we set the penalty of trigger word
embeddings as 10.

On the embedding poisoning (EP) attacks, our
setups are the same as setups in Yang et al. (2021a).

B.3 Backdoor Mitigation Setups

For the Fine-pruning method or the proposed Fine-
mixing method, we first enumerate the reserve ratio
ρ in { 0, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, · · · ,
1.0 } in the mixing or pruning process. Then, in the
fine-tuning process, we fine-tune the BERT for 640
iterations. When we enumerate the reserve ratio
ρ from 0 to 1, once the clean ACC evaluated on
the clean validation set is higher than the threshold
ACC, we choose this reserve ratio. As for E-PUR,
the results are similar for choosing 100 or 200 po-

tential poisonous words, but choosing more than
1k words may cause a slight clean ACC drop.

B.4 Choice of the Reserve Ratio

In the Fine-pruning, Fine-mixing (Sel), and Fine-
mixing approaches, the reserve ratio ρ is chosen
according to clean ACCs under different reserve
ratios. The choices of reserve ratios in backdoor
mitigation methods under different backdoor at-
tacks are provided in Table 6. In Table 6, it can
be concluded that: (1) the Fine-pruning approach
usually chooses a higher ρ than Fine-mixing and
Fine-mixing (Sel) because the Fine-pruning does
not involve wPre and needs more information con-
tained in wB to achieve a satisfying clean ACC; (2)
the Fine-mixing (Sel) method can restore the ACC
with lower reserve ratios because Fine-mixing (Sel)
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Threshold=89% Threshold=87% Threshold=85% Threshold=80%
ACC ASR ACC ASR ACC ASR ACC ASR

Fine-pruning 90.02 100.0 87.84 100.0 85.89 100.0 80.05 21.85
Fine-mixing 89.45 14.19 87.27 13.74 85.21 14.86 84.63 16.22

Table 7: Results under different thresholds on SST-2 against trigger word attack.
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(c) ρ = 0.3.

Figure 4: Influence of the clean training set size. The experiments are conducted on SST-2 (Trigger word based).

selects important weights to reverse.

C Further Analysis

C.1 Discussion of the Threshold ACC Choice
The experimental results in the main paper illus-
trate that both the backdoor ASR and the clean
ACC drop when ρ gets smaller. Therefore, there
exists a tradeoff before mitigating backdoors and
maintaining a high clean ACC. To fairly compare
different defense methods, following (Liu et al.,
2018a; Li et al., 2021c), we set a threshold ACC
for every task and tune the reserve ratio of weights
from 0 to 1 for each defense method until the clean
ACC is higher than the threshold ACC, which can
ensure that different defense methods can have a
similar clean ACC.

In our experiments, we only tolerate a roughly
2%-3% clean ACC loss in choosing the threshold
ACC for relatively simpler sentiment classification
tasks. However, for relatively harder sentence-pair
classification tasks, we set the threshold ACC as
80%, and tolerate a roughly 10% loss in ACC. Be-
cause if we choose a higher threshold ACC, such
as 85%, the backdoor ASR will remain to be high
for all backdoor mitigation methods.

Note that, the conclusions are consistent with
different thresholds as shown in Table 7. Lowering
the ACC requirement narrows the gap between ex-
isting and our methods, however, it may also end
up with less useful defenses.

C.2 Analysis of the Clean Dataset Size
In our experiments, we set the training set size as
64 unless specially stated. The experimental results
show that even with only 64 training samples, our

proposed Fine-mixing can mitigate backdoors in
fine-tuned language models. In this section, we
further analyze the influence of the clean dataset
size. In Fig. 4, we can see that when the training
dataset size is extremely small (8 or 16 instances),
the clean ACC drops significantly and the back-
doors cannot be mitigated. In our experiments, we
choose the training size as 64, and our proposed
Fine-mixing can mitigate backdoors with a small
clean training set (64 instances) in most cases.

D Supplementary Experimental Results

Also, due to space limitations, only part of the
experimental results are included in the main pa-
per. In this section, we list more supplementary
experimental results. We visualize the clean ACC
and the backdoor ASR in the parameter spaces,
and ACC/ASR with different reserve ratios under
multiple backdoor attacks on the SST-2 sentiment
classification dataset and the QNLI sentence-pair
classification dataset. Results on sentence based
attacks on SST-2 are reported in Fig. 5; results
on sentence based attacks on QNLI are reported
in Fig. 6; results on word based attacks on SST-2
are reported in Fig. 7; and results on word based
attacks on QNLI are reported in Fig. 8.

In most cases, there exists an area with a high
clean ACC and a low backdoor ASR between the
pre-trained BERT parameter and the backdoored
parameter in the parameter space, which is a good
area for mitigating backdoors. Under these cases,
the backdoor ASR will drop when ρ is small, and
backdoors can be mitigated. Only a few cases are
medium or difficult, where the backdoor ASR is
always high, and backdoors are hard to mitigate.
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Figure 5: Visualization of the clean ACC and the backdoor ASR in the parameter spaces, and ACC/ASR with
different reserve ratios under multiple trigger sentence based backdoor attacks on the SST-2 sentiment classification.
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(b) ACC/ASR (w/o E-PUR), Trigger
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(c) ACC/ASR (w/ E-PUR), Trigger
Sentence (QNLI).
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(d) Loss Visualization, Trigger Sen-
tence (Scratch) (QNLI).
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(e) ACC/ASR (w/o E-PUR), Trigger
Sentence (Scratch) (QNLI).
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(f) ACC/ASR (w/ E-PUR), Trigger
Sentence (Scratch) (QNLI).

Figure 6: Visualization of the clean ACC and the backdoor ASR in the parameter spaces, and ACC/ASR with differ-
ent reserve ratios under multiple trigger sentence based backdoor attacks on the QNLI sentence-pair classification.
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Word (SST-2).

0.
40

0
0.

80
0

0.
99

0

InitBert
Clean
Backdoor

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(d) Loss Visualization, Trigger
Word (Scratch) (SST-2).

0 0.02 0.1 0.3 0.5 0.7 0.9 1
ratio

0.0

0.2

0.4

0.6

0.8

1.0

AC
C/

AS
R

ACC
ASR

(e) ACC/ASR (w/o E-PUR), Trigger
Word (Scratch) (SST-2).

0 0.02 0.1 0.3 0.5 0.7 0.9 1
ratio

0.0

0.2

0.4

0.6

0.8

1.0

AC
C/

AS
R

ACC
ASR

(f) ACC/ASR (w/ E-PUR), Trigger
Word (Scratch) (SST-2).
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(g) Loss Visualization, Trigger
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(h) ACC/ASR (w/o E-PUR), Trigger
Word+EP (SST-2).
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(i) ACC/ASR (w/ E-PUR), Trigger
Word+EP (SST-2).
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(k) ACC/ASR (w/o E-PUR), Trigger
Word+ES (SST-2).
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(m) Loss Visualization, Trigger
Word+ES (Scratch) (SST-2).
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(n) ACC/ASR (w/o E-PUR), Trigger
Word+ES (Scratch) (SST-2).
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Figure 7: Visualization of the clean ACC and the backdoor ASR in the parameter spaces, and ACC/ASR with
different reserve ratios under multiple trigger word based backdoor attacks on the SST-2 sentiment classification.
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(c) ACC/ASR (w/ E-PUR), Trigger Word
(QNLI).
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(d) Loss Visualization, Trigger Word
(Scratch) (QNLI).
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(f) ACC/ASR (w/ E-PUR), Trigger Word
(Scratch) (QNLI).
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(h) ACC/ASR (w/o E-PUR), Trigger
Word+EP (QNLI).
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Figure 8: Visualization of the clean ACC and the backdoor ASR in the parameter spaces, and ACC/ASR with
different reserve ratios under multiple trigger word based backdoor attacks on the QNLI sentence-pair classification.
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