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Abstract

In recent years, there is a surge of generation-
based information extraction work, which al-
lows a more direct use of pre-trained language
models and efficiently captures output depen-
dencies. However, previous generative meth-
ods using lexical representation do not naturally
fit document-level relation extraction (DocRE)
where there are multiple entities and relational
facts. In this paper, we investigate the root
cause of the underwhelming performance of the
existing generative DocRE models and discover
that the culprit is the inadequacy of the training
paradigm, instead of the capacities of the mod-
els. We propose to generate a symbolic and or-
dered sequence from the relation matrix which
is deterministic and easier for model to learn.
Moreover, we design a parallel row generation
method to process overlong target sequences.
Besides, we introduce several negative sam-
pling strategies to improve the performance
with balanced signals. Experimental results on
four datasets show that our proposed method
can improve the performance of the generative
DocRE models. We have released our code at
https://github.com/ayyyq/DORE.

1 Introduction

Document-level relation extraction (DocRE) is
a fundamental information extraction (IE) task
which aims to extract relational facts among en-
tities across multiple sentences. For IE, most pre-
vious approaches are classification-based, which
first extract features of certain objects using pre-
trained language models and then classify accord-
ing to the merged features. Recent years have
witnessed a rising trend of regarding the task of
IE as a sequence generation problem, linearizing
the extracted structures as a sequence. Compared
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to classification-based methods, generative frame-
work extracts features and classifies simultaneously,
allowing a more direct use of latent knowledge in
pre-trained language models without an untrained
classification module on the top. Besides, the gen-
eration process can naturally recover high-order
dependencies when generating the output step by
step. Generation-based methods have been success-
fully adapted to many settings including universal
IE which intends to solve several IE tasks in a uni-
fied way (Paolini et al., 2021; Lu et al., 2022), low-
resource (Hsu et al., 2021), and transfer learning
(Liu et al., 2021, 2022), and have achieved com-
petitive results on most sentence-level benchmarks
(Cui et al., 2021; Liu et al., 2021) and document-
level event extraction task (Li et al., 2021; Zhang
et al., 2022).

Considering that generative framework is sim-
ple and effective, prior work adopts it for DocRE
(Huang et al., 2021; Giorgi et al., 2022). This line
of work features lexical generation since they use
natural language to represent entities and relations,
which directly borrows from text generation tasks
(Lewis et al., 2020; Raffel et al., 2020). Also, they
need special separator tokens to distinguish token
spans. However, the lexical generation paradigm
dose not perfectly fit the more complex DocRE
task, where the source sequence contains numerous
entities and relations (e.g., a document can contain
up to about 40 relation instances on DocRED), lead-
ing to a performance gap between generation-based
and classification-based methods. Our experiment
verifies that the generative baseline performs 6.00
points worse than classification-based methods on
DocRED dataset (Yao et al., 2019).

The lexical generation paradigm faces two sig-
nificant challenges, which impede its performance.
(1) non-unique target sequence: for the exam-
ple shown in Figure 1, a document often needs to
mention the same knowledge many times, each of
which could be represented in multiple ways (i.e.,
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https://github.com/ayyyq/DORE

Lexical Generation Paradigm Relation Matrix

Document <s> Julian Reinard <p> date of birth <o> 5 March 1983 | 1> <2 <3 <4 <5
<s> He (D<p> league <o> Bundesliga |:|l> Post-Processing <1> 1011042102
Julian Reinard <s> Bur_mde;sliga <p> country (_:f @ <0> German : (fix syntax, entity linking)
<1> Julian Reinard <1> (born <2> 5 March ® <s> Julian ) <p> country of citizenship <o0> German ; <>
1983 <2>) is a <3> German <3> footballer. |/ “~------mmmm
<1> He <1> first appeared in the <3>
<3> German <3> <4> Bundesliga <4>on 21|\ -~ 777T T TTT I S S
March 2004 while <5> SC Freiburg <5> s \ DORE Paradigm / <d> 103
first and second keepers had been injured. ... <15 <25 <1015 <1> <35> <104> <1> <4> <102> <4> <3> <103> <EOS> ‘ -
] ] ]

S [ . — ,.

"date of birth” "country of citizenship” "league” "country”

Figure 1: An example from DocRED dataset, and we highlight entities with different colors. The left side is the input document
and the right side is the target relation matrix. Each cell in this matrix is filled with the relation between two entities. We compare
two paradigms in the middle, and the lexical sequence is much longer than our DORE. Meanwhile, there are four weaknesses
in lexical generation paradigm. (D) shows the case of using different mentions. Both “Julian Reinard” and “He” point to the
same entity, but only one of them are used in the annotation. And this leads to an incorrect training signal if the model use
a different mention. In (2), the model struggles to choose from two similar relations “ ” and “ 7.
The > is a meaningful lexicon but it is not valid in the relation vocabulary. In (3), the model outputs a new mention
“Julian” that does not appear in the text. (4) shows that the prediction order does not follow the human reading order, as the
knowledge of citizenship appears before the league information according to the document. Lexical generation paradigm adopts
a post-processing step to address above issues. In contrast, our DORE paradigm directly predicts elements in the relation matrix.

diverse lexical forms for an entity). Pre-defining We conduct experiments on four popular DocRE
a certain lexical form of an entity will introduce = benchmarks. We improve the generative model’s
incorrect bias, and a complicated post-processing  Fj score from 51.36 to 60.67 for DocRED by
step is needed to align the generated sequence and  changing training paradigm only, and further im-
relational facts. (2) overlong generated sequence:  prove it to 65.26 with distantly supervised training
DocRE requires the model to extract more facts, data (officially collected by DocRED). Besides, we
leading to much longer output sequences, and thus ~ bridge the performance gap between generation-
causes difficulties to efficiency and memory sup-  based and classification-based methods on CDR
port. However, it is hard for lexical generation ap-  (Li et al., 2016) and GDA (Wu et al., 2019) by ob-
proaches using natural language representation and  taining 72.6 and 85.3 F} score, individually. We
extra separator tokens to cope with such dilemma  also achieve new state-of-the-art results on SCiREX
in a concise way. (Jain et al., 2020) both with gold inputs and end-to-
end for binary and 4-ary relation extraction. Our
work brings generative framework to DocRE into
a performance region that matches classification-
based approaches, with the added advantage of
supporting high-order relation discovery afforded
by the nature of sequence-to-sequence models.

To alleviate issues in the lexical generation
paradigm, we treat generative DocRE as deter-
ministically generating a relation matrix where
each cell corresponds to an entity pair with pre-
defined relation or no relation. The paradigm,
which we call DORE (Document Ordered Relation
Extraction), assigns each entity and relation a spe-
cial id and linearizes the relation matrix in the
row-column order, resulting a symbolic ordered
sequence. It is much easier to learn and control
generation. In addition, the paradigm is able to re-  In recent years, more and more work seeks to use
solve overlong output sequences in a concise way  a new generative paradigm to solve information
when generating rows of the relation matrix in par-  extraction tasks. Paolini et al. (2021); Zhang et al.
allel. Besides, we show that the loss function taken  (2021b) transform IE tasks into translation between
from previous work is imbalanced for the compli- label-augmented texts, Yan et al. (2021); Lu et al.
cated DocRE, and we introduce several negative ~ (2021); Huang et al. (2021); Zhang et al. (2022)
sampling strategies to mitigate it. Taken together,  design a linearization schema with constrained de-
we find that the underwhelming performance of  coding strategies, and Li et al. (2021); Hsu et al.
generative framework for DocRE comes from the ~ (2021); Liu et al. (2022) adopt template-based con-
improper training and generation ways instead of ~ ditional generation. Though simple the paradigm
the model architecture. seems, generation-based methods report compet-
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itive results especially on sentence-level bench-
marks. However, previous methods can not scale to
the document-level relation extraction task which
requires to extract multiple facts, or perform worse
than most classification-based methods.

2.2 Classification-based Document-Level
Relation Extraction

Most previous work treats DocRE as a classifica-
tion task, which typically breaks down the task into
two stages, extracting the feature of entities fol-
lowed by classifying the relation of every entity
pair according to their features. More specifically,
a stream of classification-based work introduces
the graph structure on top of pre-trained representa-
tions to address long-term dependencies and multi-
hop reasoning (Nan et al., 2020; Wang et al., 2020;
Zeng et al., 2020, 2021; Xu et al., 2021b). How-
ever, for long document, compared with keeping
a graph representation and merging new relations
parsed from new paragraphs, using, for example, a
seq2seq model, is a more scalable approach, and a
direction worth exploring.

Recent work enhances classification-based meth-
ods in different aspects. Zhang et al. (2021a) tack-
les the problem of lacking high-order dependencies
by introducing convolution on relation matrices
to encourage interaction among relations. On the
other hand, Xu et al. (2021a); Xiao et al. (2021)
enrich the features by introducing linguistic knowl-
edge or statistic information of entities. Another
popular idea (Huang et al., 2020; Xie et al., 2021)
is to detect the evidence sentences before relation
extraction. This line of work provides a strong
guideline for relation extraction and reduces irrele-
vant contexts. Some of these ideas are complemen-
tary to DORE; our core idea is to understand how
generative framework can regain its advantages in
dealing with document-level relation extraction and
high-order relation discovery.

3 Method

3.1 Task Formulation

Document-level relation extraction task aims to
extract relational facts given a document D and
a set of entities E. Each entity e; is represented
as the set of its coreferent mentions {e?} in the
document, some of which have different natural
language forms. Each of the extracted instances
can be expressed as a tuple (eq, .. ., e, ), where k
is the number of participating entities, and 7 is from

a pre-defined set of relations. We focus on binary
and 4-ary relation extraction, that is, k = 2 or 4.
Since relation instances in the document can nat-
urally formulate a matrix, we frame the generative
DocRE as generating a relation matrix. Take bi-
nary relation extraction as an example. As shown
in Figure 1, each cell (4, j) in the relation matrix
corresponds to an entity pair with head entity e;
and tail entity e;, and can be filled with a rela-
tion. Then the goal of DocRE changes to esti-
mate a conditional probability P(R|D, E), where
R e R =0, 1]|E|X‘E‘XC is a 3D-matrix, and C
is the number of relation categories. In practice,
the goal is to find the most possible relation matrix.

R* = argmax P(R|D, E). (1)
Rer

To further model DocRE as a sequence generation
problem, we introduce a variable S € S to repre-
sent a sequence. We will discuss the choice of how
to represent this sequence space S shortly.

ZSGSP(RvsvDaE)

P(R|D,E) = F(D.E) @
= > P(R|S,D,E)P(S|D,E). (3
Ses

Clearly, this computation is intractable, unless it is
costly to enumerate the sequence space.

3.2 Symbolic and Ordered Sequence
Representation of Relation Matrix

In our context, all we need to do is to represent the
relation matrix and linearize it as a sequence.

To represent the relation matrix, we assign each
entity and relation a special symbol, or, id, at first.
In a real scenario, an entity can occur multiple
times in the document by mentions, and expres-
sions may be a little different in natural language,
such as aliases, abbreviations or acronyms. A spe-
cial id assures a unique and unambiguous entity.
Besides, there is no need to use separators to dis-
tinguish entities and relations which contain more
than one tokens. As shown in Figure 1, we use
different ranges of “<i>” (“<extra_id_i>" in imple-
mentation) to represent entities (¢ € [1,100]) and
relations (¢ € [101,200]). Entities are arranged
according to their first appearance in the document.
The embeddings of entity ids are initialized with
those of corresponding sequential numbers. For ex-
ample, we use the embedding of “1” to initialize the
embedding of “<1>”. Similarly, the embeddings of
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relation ids are initialized with the meaning pooling
of the embeddings of the corresponding natural lan-
guages. The initialization benefits the pre-trained
generative models to learn the meaning of the spe-
cial tokens, as shown in Appendix-A.l. In this
way, a relation tuple of (Julian Reinard, 5 March
1983, date of birth) can be represented as “<1> <2>
<101>” in our paradigm.

For linearization of the relation matrix, we sim-
ply organize relation tuples in the row-column or-
der. The result is that the relation instances whose
head entity appears earlier in the document proceed
those appear later in the output sequence, and the
order of relations sharing the same head entity is
decided by their tail entities. The optimal order
that complies with the logical reasoning is hard to
define in advance, unless the model bears heavy
computation to enumerate the sequence space. On
the contrary, the row-column order is deterministic
and easy for the model to understand.

More formally, let S be the correspond-

ing sequence of the relation matrix R,
ie, Y. gsP(R,S) = P(R,S), and
P(R|S,D,E) = P(R|S) = 1. Let ()

be the linearization function that converts a relation
matrix to a sequence following the symbolic
format and row-column order we described above,
ie., S =7(R). We have:

P(R|D,E) “)
=> P(R|S,D,E)P(S|D,E), (5)
Ses
=P(R|S,D,E)P(S|D,E), (6)
=P(S|D, E). (7

4-ary Relation Extraction The symbolic rela-
tion matrix can be easily extended to 4-ary rela-
tion extraction and the setting where entity type
information is provided. For instance, a 4-ary re-
lation instance (€Task, €Method, EMaterial; EMetric; 7°) in
SciREX is composed of four types of entities and a
binary relation. Each type of entities can be further
divided into different ranges of “<i>”, and a rela-
tion tuple can be transformed to a similar sequence
like “<1> <26> <51> <76> <101>”.

Constrained Decoding Considering that the ref-
erence sequence is completely a series of triples for
binary relation extraction or 5-ary tuples for 4-ary
relation extraction, we utilize a relatively simple
constrained decoding method to control generation

compared to lexical generation paradigm. The vo-
cabulary is confined to a certain range of special
tokens barely depending on the current step, so
that the decoder’s vocabulary size is small. On the
contrary, lexical generation methods requires a full
vocabulary because they need to predict entities’
text forms.

3.3 Parallel Row Generation

Due to the autoregressive nature of generative mod-
els, longer the output, slower the decoding process.
Besides, when the output is too long, the mem-
ory is not supported. Fortunately, our method can
easily accommodate to such situation. Instead of
generating the whole relation matrix in one pass,
we can choose to generate one row of the relation
matrix each time. For example, in Figure 1, the
model first only generates relation triples started
with “Julian Reinard” which is denotes as “<1>” in
the output sequence, and then restarts to generate
other rows of the relation matrix in turn in the same
way. Since the input is the same, the procedure can
be parallel, thus saving time and generated length.
All we need is different decoder start tokens. The
parallel row generation sacrifices some relation de-
pendencies, but saves length. And experiments in
Sec-4.3.1 show that the trade-off is positive.

3.4 Loss Function Design

The relation matrix is typically sparse for DocRE
task. For example, there are only approximately
3% entity pairs having relations on DocRED. Some
previous work has found that sampling negative
training examples, that is, entity pairs having no
relation, during training is effective to improve the
model performance. We propose several negative
sampling strategies for our method and explain the
reason in terms of loss function.

Our training target is the ground truth sequence
S* = (4,7, Rij)i,j€R+' Here, R" is a set of all
nonzero elements in the relation matrix, 7 is the
row index and j is the column index according to
the row-column order. Similarly, we denote R~
as the set of all zero elements. This produces the
following generative loss function:

T-1
‘Cseq:ZCE(S*tvp(St|S<t7D7E)) 8)
t=1

+CE(<EOS>, S7),

where T is the sequence length, and the last token
is “<EOS>”, which means the end of sequence.
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(a) no sampling (b) random sampling

(c) diagonal sampling (d) asymmetric sampling

Figure 2: Different strategies of negative sampling. Light
yellow elements are annotated relations, and blue elements are
negative samples. There is a flipped version of (d) used in the
dynamic sampling, which keeps one element in the left side
of the diagonal and multiple elements in the right side.

However, the loss function to generate the rela-
tion matrix is applying cross entropy (Cox, 1958)
to each element in the relation matrix:

L= ZCE(Ri]',P(Rij|D7E))7 9)
,J
= Y  CE(Ri,P(Ry|D,E))
ijeR"
+ Z CE(Ri;, P(R;;| D, E)).
ijeR™

(10)

By comparison, the sequence generation loss which
we use in practice purges all the zero elements from
the R~ set and lumps all of their effect into pre-
dicting the end of sequence. While it certainly
shortens the target sequence, it also leads to severe
imbalance loss terms. On the other hand, having
the generative model produces all of zero elements
defeats the purpose of symbolic format and can eas-
ily exceed the maximum length supported by most
pre-trained seq2seq models. What is needed here
is to balance the population of negative samples
without overwhelming the generative model.

Negative Sampling Strategies Straightfor-
wardly, we can add random zero elements in the
relation matrix as negative samples, as shown
in Figure 2b. For example, we randomly pick
10% zero elements and add them to the target
sequence. However, this raises the difficulty
of sequence prediction since the model might
struggle to remember the order for each training
sample, ignoring the contextual information.
A more effective way is to regularly preserve

elements in the diagonal band with a constant
(and therefore balanced) budget of the relation
matrix, namely, diagonal negative sampling.
Further to alleviate the bias brought by the limited
nonzero element space, we introduce a dynamic
strategy to provide negative samples by randomly
picking from: no sampling (Figure 2a), diagonal
sampling (Figure 2¢), and asymmetric sampling
(Figure 2d). We call it dynamic negative sampling.
In evaluation, we remove the zero elements the
model generates.

4 Experiments

4.1 Datasets and Evaluation Metrics

Dataset #Train #Dev # Test
DocRED 3053 1000 1000
CDR 500 500 500
GDA 23353 5839 1000
SciREX 306 66 66

Table 1: Statistics of the datasets in experiments.

We evaluate our model on four commonly used
DocRE datasets. DocRED (Yao et al., 2019) is a
human-annotated DocRE dataset with 96 relation
types between two entities. Articles and their re-
lation sets are mined from Wikipedia. CDR (Li
et al., 2016) is a manually annotated dataset for
DocRE in the biochemical domain. The aim is to
predict whether there is a chemical-induced dis-
ease (CID) relation between Chemical and Disease.
GDA (Wu et al., 2019) is also a biochemical dataset
annotated with binary interactions between Gene
and Disease concepts at the document-level via dis-
tant supervision. SciREX (Jain et al., 2020) is a
document-level information extraction dataset, in-
cluding binary and 4-ary relation extraction from
scientific articles. It contains four types of entities,
Task, Method, Material, and Metric, and corefer-
ence is annotated. The dataset statistics are listed
in Table 1.

For DocRED, we use F; and Ign F} in evalu-
ation following Yao et al. (2019), where Ign F}
denotes I removing triples having appeared in
both the training and development/testing set. For
other datasets, we use F} in evaluation.

4.2 Implementation details

We implement our model in PyTorch, and use pre-
trained generative models provided by hugging-
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Dev Test

Model Ign F1 F1 Ign F, F1
classification-based

BERTpe (Wang et al., 2019) - 54.16 - 53.20
TS1arge 56.20 57.99 55.44  57.36
ROBERTajuge (Ye et al., 2020) 57.19 59.40 57.74  60.06
strong ROBERTay,. (Xu et al., 2021a) 58.45 60.58 58.43 60.54
SAISY,-RoOBERTay,e (Xiao et al., 2021) 62.23 £0.15 65.17 £ 0.08 6344  65.11
NCRLA+ATLOP-DeBERTayg. + distant t (Zhou and Lee, 2022)  66.11 £ 0.14 67.92+£0.14 65.81  67.53
generation-based

lexical generation 48.43 50.34 49.32 51.36
DORE 52.79 55.12 5253  55.10
DORE + negative samplinggynamic 58.43 60.42 57.58 59.88
DORE + negative sampling, + parallel row generation 58.55 £0.11 60.61 £0.10 5844  60.67
DORE + negative samplinggiagonal + distant f 62.91+0.13 64.70+0.12 63.26 65.26

Table 2: Main results on DocRED. Results with  mean the models are pre-trained on the distantly supervised dataset provided
by DocRED. Rows in gray denote the models are implemented by ourselves. The best results are underlined and the best results

of the generation-based models are in bold.

face ! as the backbone. For DocRED, we choose
T5 (Raffel et al., 2020), which is pre-trained on a
multi-task mixture of unsupervised and supervised
tasks and shows power in a variety of NLP tasks.
In fact, any pre-trained generative models can be
used, and we show the experiments in Appendix-
A.2. For the two biochemical datasets, we use
BioBART (Yuan et al., 2022), which adapts BART
(Lewis et al., 2020) to the biochemical domain
and benefits the domain-specific sequence gener-
ation tasks. For SciREX, we choose Longformer-
Encoder-Decoder (LED) (Beltagy et al., 2020) as
the backbone, a Longformer variant for supporting
long document seq2seq tasks, since documents in
SciREX are much longer than 1024. The models
are trained using the AdamW (Loshchilov and Hut-
ter, 2019) optimizer with weight decay coefficient
of 0.01, and a linearly decaying scheduler (Goyal
et al., 2017). Other hyperparameters are listed in
Appendix-A.3. All experiments are conducted with
Tesla T4 GPUs.

4.3 Main Results
4.3.1 Comparison on DocRED

In Table 2, “TSjage” is a classification baseline that
we replace the “Enhanced BERT Baseline” using a
bilinear classifier on top of the pre-trained language
model provided by Zhou et al. (2021) with T5age’s
encoder. All generation-based methods are imple-
mented by ourselves using TSjage. “lexical gen-
eration” means that we directly adopt TS5 under
lexical generation paradigm. “DORE” refers to the
symbolic and ordered sequence representation for

"https://huggingface.co/

relation matrix introduced in Sec-3.2. “+ negative
sampling” and “+ parallel row generation” add neg-
ative sampling and parallel row generation, respec-
tively. Finally, “distant” means that the model is
first trained on the additional noisy distant training
corpus (provided by DocRED) and then fine-tuned
on the human-annotated training set.

Experiments using T5 demonstrate that our pro-
posed framework is effective. Results of “DORE”
show that adopting the symbolic and ordered se-
quence format improves the test F; score against
the lexical generation by 3.74 points. Adding dy-
namic negative sampling further brings 4.78 points
improvement, which intuitively verifies the imbal-
ance training signal harms the classification task
and mitigating it brings significant benefit. When
using all nonzero elements in the relation matrix
and utilizing parallel row generation to support it
with limited resources, there is still a minor im-
provement. It proves that the proposed parallel row
generation method is practical, and considering
more negative samples is valuable with less data.
Pre-training on the distant corpus, we adopt diago-
nal negative sampling to reduce the computational
cost, and can achieve 65.26 test F; on DocRED 2.

Besides generation-based methods, we also com-
pare DORE with classification-based methods.
The most effective setting “DORE + negative
sampling,; + parallel row generation”, abbrevi-
ated as “DORENs 4+ prg”, improves “TSpyee” by
3.31 points, demonstrating that DORE can beat the
classification-based method with the same feature

“Experiment results show that adopting diagonal negative

sampling is enough when the model is pre-trained on the
large-scale distantly supervised dataset.
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extraction flow (using T5) since the only differ-
ence between these two methods is how they com-
pute the relation matrix. Also, “DOREnNs + prG”
outperforms BERTp,se and RoBERTay,,. base-
lines without changing the model architecture
or using extra training data. Admittedly, our
proposed method still has a performance gap
with SOTA methods on DocRED, which em-
ploy a series of advanced techniques. For exam-
ple, SAISEH-ROBERTaIa,rge designed complicated
pipeline multi-task learning and data augmentation,
and NCRL+ATLOP-DeBERTa,g. + distant uti-
lized DeBERTay,ee Which is proved to be more
powerful than RoOBERTaj,ge 0n DocRED (Zhou
and Lee, 2022). In contrast, our generative frame-
work is more concise and potential.

4.3.2 Comparison on CDR and GDA

Model CDR GDA
classification-based

EoG (Christopoulou et al., 2019) 63.6 81.5
BioBARThase 64.1 81.6
SciBERT (Zhou et al., 2021) 65.1 82.5
BioBARTjarge 67.3 82.3
SSAN-SciBERT (Xu et al., 2021a) 68.7 83.7
ATLOP-SciBERT (Zhou et al., 2021) 69.4 83.9

DocuNet-SciBERT (Zhang et al., 2021a) 76.3 85.3

SAISY:,crspr-SCiBERT (Xiao et al., 2021)  79.0  87.1
generation-based

seq2rel (Giorgi et al., 2022) 67.2 84.9
DORE-BioBARTbase 69.0 84.7
DORE-BioBART qrgc 72.6 853

Table 3: Test Fy scores on CDR and GDA. Row in gray
denote the models are implemented by ourselves.

For a fair comparison, we leverage entity type
information when evaluating on the two biochem-
ical datasets. “BioBARTp,e” and “BioBART e
are classification baselines by replacing “SciBERT”
implemented by Zhou et al. (2021) with corre-
sponding BioBART’s encoder. Seq2rel is a lexical
generation method and employs copy mechanism
and entity hinting to control generation.

As shown in Table 3, our method improves
the performance of the previous generative Do-
cRED method on CDR using BioBART},s and
BioBART g, and further bridges the gap between
classification-based and generation-based meth-
ods. It illustrates the advantage of symbolic se-
quence representation. DORE-BioBART,. per-
forms slightly worse than seq2rel on GDA, and we
owe it to the weakness of BioBART on this dataset,
given the comparison between classification-based
methods using SciBERT and BioBART. Besides,

DORE outperforms corresponding classification-
based methods by 4.9/3.1 and 5.3/3.0 points on
CDR/GDA using BioBARTY}5e and BioBART g ge,
respectively, which verifies the strength of our gen-
erative framework.

4.3.3 Comparison on SciREX

Binary RE 4-ary RE
Model P R F, P R Fi
Component-wise (gold input)

SciREX-P 82.0 440 570 531 718 6l1.1
DORE-LEDyyse 88.7 77.8 829 795 555 654
End-to-end
TANL-BARTe 074  0.67 0.62 0.00 0.00 0.00

DYGIE++ 29 12.8 3.8 - - -
SciREX-P 6.5 44.1 9.6 07 173 08
TempGen-BARTpae 17.11  13.56 1447 3.19 426 3.55

14.48
23.93

1559 0.00 0.00 0.00
26.80 952 541 6.90

TempGen-LEDpyse *
DORE-LEDysse

Table 4: Main results on SciREX. Results with * denote the
models are implemented by ourselves.

In Table 4, DYGIE++ (Wadden et al., 2019)
and SciREX-P (Jain et al., 2020) are classification-
based methods, while TANL (Paolini et al., 2021)
and TempGen-BART},, (Huang et al., 2021)
are lexical generation-based methods in general.
We replace BART},se with LEDy,s for Temp-
Gen, namely, TempGen-LEDy,. There is a slight
improvement using TempGen-LEDy, on the bi-
nary relation extraction, mainly because encoding
longer documents (4096 vs. 1024) provides more
useful contextual information and relational facts.
However, it cannot extract valid entities for 4-ary
relation extraction. We attribute the bad perfor-
mance to lexical generation paradigm making the
model confused to represent entities.

To fairly compare when evaluating using gold
inputs, we add entity type information. To compare
with end-to-end relation extraction methods, we
adopt fast-coref 3 (Toshniwal et al., 2020) to re-
solve coreference resolution using Longformeryse,
which achieves 34.5 Fy score while DYGIE++ 47.6
and SciREX-P 25.5. Experiments show that our
proposed method achieves new SOTA results on
both binary and 4-ary relation extraction tasks in
both settings, which demonstrates the effectiveness
and generalization of DORE.

4.4 Ablation Study

Symbolic vs. Lexical In this section, we com-
pare the lexical representation and our symbolic

3https: //github.com/shtoshni/fast-coref
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Method Ign F, Fi
lexical 48.43 50.34
symbolic 52.02 54.10
random order 51.40 53.39
annotation order 52.02 54.10
row-column order 52.79 55.12
10% random 52.89 55.45
diagonal 56.75  58.81
dynamic 58.55  60.61

Table 5: Ablation studies of symbolic representation, se-
quence order, and negative sampling. All results are from
DocRED dev set. The best results in each block are in bold.

representation. We choose TSy, as the testbed,
which can learn the symbolic representation with-
out constrained decoding.

The upper part of Table 5 shows that the sym-
bolic representation betters the performance by
3.76 points, which is a substantial improvement.
We believe the improvement comes from two as-
pects: the symbolic representation largely reduces
the sequence length, alleviating the accumulation
decoding error; and it simplifies the copy mech-
anism since one symbol represents a long text
phrase.

Sequence Order The sequence order plays an
essential role in DORE. To understand its effect,
we compare the annotation order, i.e., the order of
how annotators annotate a document, and the row-
column order, against a reference baseline using
random order, where each sample is associated with
a random sequence to be generated. Experiments
are conducted with T5j,e and symbolic formatted
sequences.

The middle part of Table 5 gives a comparison
between three orders. The annotation order does
outperform the random order since it is more pre-
dictable. However, we can not assume that annota-
tors’ behaviors are consistent. As we expected, the
row-column order, which is not only stable but also
deterministic, further outperforms the annotation
order by 1.02 points. Still, we do not believe it is
necessarily the best order. In general, a better order
should reflect high-order dependencies’ topology,
and we leave this as a future direction.

Negative Sampling We also test different neg-
ative sampling strategies introduced in Sec-3.4.
There are three settings. “10% random” uniformly
picks 10% negative samples from the relation ma-
trix. “diagonal” means we select negative samples
with window size of 1 around the diagonal. And

l (Elias Brown, May 9, 1793, date of birth)

l (Elias Brown, July 7 1857, date of death)

(Elias Brown, U.S., country of citizenship)
(U.S., Maryland, contains administrative territorial entity)

(Maryland, U.S., country)

(Maryland, U.S., located in the administrative territorial entity)

(Maryland, Baltimore, contains administrative territorial entity)

(Baltimore, U.S., country)

(Baltimore, Maryland, located in the administrative territorial entity) l

Figure 3: Case study of how DORE attends to previously gen-
erated triples from the document “Elias Brown (May 9,1793
— July 7, 1857) was a U.S. Representative from Maryland.
Born near Baltimore, Maryland, Brown attended the common
schools ...”

“dynamic” uniformly selects the different strate-
gies we introduced before. We test these settings
with TSy plus symbolic representation and row-
column order. We found the “10% random” op-
tion contributes little, the “diagonal” outperforms
it since it is consistent across entities. Finally, the
“dynamic” option performs the best because it pro-
vides the model a chance to see all negative samples
in different passes.

4.5 High-order Dependencies

To verify whether the proposed model captures
high-order dependencies, we provide a case study
in Figure 3 by probing into decoder attention scores.
For each triple, we draw an edge to the generated
triples in previous steps that receive highest atten-
tion. And we explain how to compute this score in
Appendix-A.4.

The decoder would always attend to the last gen-
erated triples if it could not recover output depen-
dencies. In contrast, we can find that the decoder of
DORE tends to attend to the previous triples with
the same head or tail entity according to Figure 3,
which is more likely to bed latent associations. As
the example (1) shows, the latter triple accurately
predicts the symmetric relation based on the former
one. Conventional classification-based methods
can not do this without additional modules.

5 Conclusion

We propose a new generative paradigm DORE for
DocRE. DORE adopts a symbolic and ordered se-
quence representation, establishing a clean connec-
tion between the sequence generation and DocRE.
We also introduce parallel row generation and sev-
eral negative sampling methods to improve the ef-
fectiveness and efficiency. Experiments on four
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DocRE datasets demonstrate that our method can
substantially improve generative models without
changing their designs.

Limitations

As shown in Table 2 and Table 3, although our
proposed method without extra modules has out-
performed classification baselines which have a
simple classifier on top of pre-trained language
models, there still exists a performance gap on
the relatively complicated DocRED and domain-
specific CDR and GDA. For one thing, we assume
that some techniques proposed by SOTA work are
complementary for DORE, and experiments are
needed to verify whether DORE faces same issues.
For another, experiments show that encoders of
pre-trained generative models including TS5 and
BioBART are weaker to extract features compared
to popular non-generative models like ROBERTa
and DeBERTa, which impedes the model perfor-
mance to some extent. Therefore, replacing the
generative model’s encoder with pre-trained lan-
guage models used for classification for a fairer
comparison leaves for future work.
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A Appendix
A.1 Initialization of Entity ID
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Figure 4: Comparison between random initialization and
taking numbers for initialization on entity id tokens. Solid
lines are I} scores on DocRED Dev set, and dashed lines are
training loss on DocRED Train set. We omit the cross entropy
loss higher than 1.0 for better visualization.

As we mentioned before, we initialize symbols
that represent entity ids by numbers, since these
symbols are not trained in the pre-training phase,
so the model can not recognize their meaning. Al-
ternatively, the model can learn from scratch during
fine-tuning. However, we find the cold-start costs
time and makes the training unstable. Note this
strategy is very similar to position embedding used
in standard Transformer-based models. We also try
to initialize the relation embedding by averaging
word embeddings of their lexical forms, whereas
we find it does not influence the performance sig-
nificantly.

Figure 4 shows that the initialized method con-
verges fast and achieves a higher performance. The
training loss of the first ten epochs illustrates a big
gap between the cold-start and warm-start methods.
That demonstrates the effectiveness of our warm
start strategy.

A.2 Backbones

Backbone IgnF, Fq
T5large 56.94 5895
BART arge 56.96  59.22
LEDiarge 57.04  59.10

Table 6: Results of DORE using different backbones on the
development set of DocRED.

3473


https://aclanthology.org/2022.bionlp-1.9
https://aclanthology.org/2022.bionlp-1.9
https://aclanthology.org/2022.bionlp-1.9
https://aclanthology.org/2022.acl-long.59
https://aclanthology.org/2022.acl-long.59
https://doi.org/10.18653/v1/2021.acl-short.64
https://doi.org/10.18653/v1/2021.acl-short.64
https://doi.org/10.48550/arXiv.2205.00476
https://doi.org/10.48550/arXiv.2205.00476

Hyperparameter DocRED CDR GDA SciREX
Backbone T5 BART/LED BioBART BioBART LED
Batch size 4 4 4 32
Training epochs 40 40 10 40
Learning rate le-4 3e-5 2e-5 2e-5 5e-5
Warmup ratio 0.06 0.1 0.15 0.06
Max input length 1024 1024 1024 4096
Beam size 4 1 1 1

Table 7: Hyperparameters used for each dataset.

In principle, the method we proposed can be
adapted to any pre-trained generative language
models. We verify the supposition by changing
the backbone with the same symbolic and ordered
sequence representation and diagonal negative sam-
pling. From Table 6 we can see that TS5, BART, or
LED can achieve comparable results with our sim-
ple constrained decoding strategy, which proves
the generalization ability of DORE.

A.3 Hyperparameters

In Table 7, we list the hyperparameters used when
training the model for each dataset. When beam
size = 1, we use greedy search decoding. When
beam size = 4, we use beam search decoding, and
tune the length penalty o = {0.2,...,2.0} with a
step size of 0.2.

A.4 Visualization details

In detail, we use the attention scores from the last
decoder layer of TSjage, and then we sum all at-
tention heads. We conduct this visualization with
our “DORE + negative samplinggiagonal + distant”
model, and the attention score of a triple is com-
puted by adding up the attention scores of all its
member tokens. Also, we do not consider the de-
coder start token “<BOS>".

In this way, we compute the attention score of
previously generated triples for each time that the
model predict the relation type. As a result, each
triple will point to a triple before it as we shown in
Figure 3.

A.5 Consistent Optimum

Theorem A.1 Ler S* = 7(RY) —
argmaxg_q P(S|D, E),  then we  have
R = argmaxp p P(R|D, E).

Proof Since §* = argmaxg_c P(S|D,E),
so for any S € S, we have P(S*|D,E) —
P(S|D,E) > 0. According to the eq. (7), we

can rewrite the formulation.

=P(S"|D, E) - P(7(R)|D, E),
>0.
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