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Abstract
Despite the potential of federated learning, it
is known to be vulnerable to backdoor attacks.
Many robust federated aggregation methods are
proposed to reduce the potential backdoor risk.
However, they are mainly validated in the CV
field. In this paper, we find that NLP backdoors
are hard to defend against than CV, and we pro-
vide a theoretical analysis that the malicious
update detection error probabilities are deter-
mined by the relative backdoor strengths. NLP
attacks tend to have small relative backdoor
strengths, which may result in the failure of
robust federated aggregation methods for NLP
attacks. Inspired by the theoretical results, we
can choose some dimensions with higher back-
door strengths to settle this issue. We propose
a novel federated aggregation algorithm, Dim-
Krum, for NLP tasks, and experimental results
validate its effectiveness.

1 Introduction

Despite the potential of federated learning that it al-
lows collective learning of multiple clients without
the private data leakage risks, federated learning is
known to be vulnerable to backdoor attacks where
backdoor attackers (Gu et al., 2019) or trojaning
attackers (Liu et al., 2018b) aim to inject backdoor
patterns into neural networks to alert the label to
the desired target label on instances with such back-
door patterns for malicious purposes.

To reduce the potential backdoor risk of the Fe-
dAvg (McMahan et al., 2017) aggregation method,
many robust federated aggregation methods are pro-
posed. Among them, a line of Byzantine tolerant
gradient descent algorithms is proposed to detect
and discard abnormal or malicious parameter up-
dates with higher distances to their neighbors, e.g.,
Krum (Blanchard et al., 2017), Multi-Krum (Blan-
chard et al., 2017) and Bulyan (Mhamdi et al.,
2018). Besides Krum algorithms, there is another
line of robust aggregation methods (Chen et al.,
2020a; Pillutla et al., 2019; Fung et al., 2020; Xie

et al., 2021; Fu et al., 2019; Wan and Chen, 2021)
that do not discard abnormal or malicious updates.

Even though some existing robust federated ag-
gregation strategies (Xie et al., 2021; Wan and
Chen, 2021) are proposed to defend against back-
door attacks from malicious clients, they are mainly
validated on tasks and backdoor patterns in the
Computer Vision (CV) field, the defense perfor-
mance of existing robust research on the Natural
Language Processing (NLP) field is less explored.
In our paper, we validate these aggregation meth-
ods on NLP attacks and find that existing aggrega-
tion methods fail to generate robust server updates
even when only one out of ten clients are malicious,
which demonstrates that federated NLP backdoors
are hard to defend against than CV backdoors and
similar observations are also indicated by experi-
ments in Wan and Chen (2021).

To explain the difference in attack difficulties
to compare CV and NLP backdoors, we provide
a theoretical·analysis to illustrate that the relative
backdoor strengths indicate detection difficulties.
Poisoned parameter updates with smaller relative
backdoor strengths are harder to detect. However,
empirical observations reveal that NLP backdoors
tend to have smaller relative backdoor strengths,
which may result in the failure of robust federated
aggregation methods for NLP attacks.

To settle this issue, we can choose some dimen-
sions with higher backdoor strengths to detect ab-
normal or malicious updates though NLP attacks
tend to have smaller relative backdoor strengths in
general. Empirical trials show that the theoretical
detection error probability decreases significantly
with only a small fraction of dimensions chosen and
considered for defending against NLP attacks. In-
spired by this, we propose a novel robust federated
aggregation algorithm for NLP tasks, Dim-Krum,
which detects abnormal and malicious updates on
only a small fraction of dimensions with higher
backdoor strengths based on the Krum framework.
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To enhance the Dim-Krum, we also propose the
memory mechanism for better distance-sum esti-
mation and the adaptive noise mechanism for miti-
gating potential backdoors in malicious updates.

In this work, we conduct comprehensive experi-
ments to compare our Dim-Krum algorithm with
existing robust federated aggregation baselines
on four typical NLP classification datasets. We
adopt four typical NLP backdoor attacks, including
EP (Yang et al., 2021a; Yoo and Kwak, 2022), Bad-
Word (Chen et al., 2020b), BadSent (Chen et al.,
2020b), and HiddenKiller (Qi et al., 2021), which
cover typical poisoning techniques in NLP back-
doors. Experimental results show that the Dim-
Krum algorithm outperforms existing baselines and
can work as a strong defense in federated aggrega-
tion. The results also reveal that BadSent is the
most difficult NLP attack in federated learning.
Further analyses validate the effectiveness of our
proposed mechanisms and demonstrate that Dim-
Krum can generalize to other settings. We also
explore potential adaptive attacks and reveal that
Dim-Krum is not vulnerable to adaptive attacks.

Our contributions are summarized as follows:

• We take the first step to conduct comprehen-
sive experiments of NLP federated backdoors
equipped with existing defense and find that
NLP federated backdoors are harder to defend
against in aggregations than CV.

• We provide a theoretical analysis to explain
the difficulties of NLP federated backdoor de-
fense that the relative backdoor strengths are
smaller in NLP attacks while detecting back-
doors with only a small fraction of dimensions
can alleviate this issue.

• We propose a backdoor-resistant federated
aggregation algorithm, Dim-Krum, for NLP
learning. Experimental results validate the
effectiveness of our proposal.

2 Background and Related Work

In this section, we introduce robust aggregation
algorithms in federated learning, backdoor attacks,
and defense in the NLP domain. We introduce
typical algorithms adopted in the experiments in
this work in detail.

2.1 Robust Federated Aggregation
The robustness of federated learning includes de-
fending against adversaries and backdoors.

Instead of FedAvg (McMahan et al., 2017),
Krum algorithms (Blanchard et al., 2017; Mhamdi
et al., 2018) are a line of Byzantine tolerant
gradient descent algorithms, including the initial
Krum (Blanchard et al., 2017), Multi-Krum (Blan-
chard et al., 2017) and Bulyan (Mhamdi et al.,
2018) algorithms. Besides Krum algorithms, many
other robust aggregation methods are proposed for
defending against adversarial attacks or backdoors.
The Median (Chen et al., 2020a; Yin et al., 2018)
algorithm adopts the dimension-wise median as the
aggregated update and RFA (Pillutla et al., 2019)
adopts the geometric median. FoolsGold (Fung
et al., 2020) adjusts learning rates based on the sim-
ilarity. CRFL (Xie et al., 2021) is a certified Ro-
bust FL algorithm. ResidualBase (Fu et al., 2019)
adopts the residual-based weights for clients and
AAA (Wan and Chen, 2021) adopts attack-adaptive
weights estimated by the attention mechanism.

To conclude, in this work, we adopt several typi-
cal aggregation algorithms in the experiments: Fe-
dAvg, Median, FoolsGold, RFA, CRFL, Residu-
alBase, AAA, Krum (including the initial Krum,
Multi-Krum and Bulyan algorithms).

2.2 Backdoor Attack

Our work mainly focuses on the NLP domain.
Backdoor attacks in the NLP domain usually adopt
data poisoning (Muñoz-González et al., 2017; Chen
et al., 2017) similar to BadNets (Gu et al., 2019),
and can be roughly categorized according to the
backdoor pattern chosen in the poisoned instances:

(1) Trigger word based attacks (Kurita et al.,
2020; Yang et al., 2021a; Zhang et al., 2021b; Yang
et al., 2021c) choose low-frequency trigger words
as the backdoor pattern. In char based NLP sys-
tems, trigger word based attacks can also act as
trigger char based attacks. Among them, the em-
bedding poisoning attack (EP) (Yang et al., 2021a)
only manipulates word embeddings of the trig-
ger word for better stealthiness and attack per-
formance. Some training algorithms (Yang et al.,
2021a; Zhang et al., 2021b,a; Yang et al., 2021c)
are proposed for better stealthiness and consisten-
cies of trigger word based attacks. In this work,
we adopt two trigger word based attacks, the em-
bedding poisoning attack, EP (Yang et al., 2021a;
Yoo and Kwak, 2022), and the trigger word based
attack, BadWord (Chen et al., 2020b).

(2) Trigger sentence based attacks choose a neu-
tral sentence, which will not influence the semantic
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for the task, as the trigger pattern. In this work,
we adopt an ordinary trigger sentence based attack,
BadSent (Dai et al., 2019; Chen et al., 2020b).

(3) Hidden trigger based attacks (Saha et al.,
2020; Salem et al., 2020; Qi et al., 2021) or dy-
namic attacks (Nguyen and Tran, 2020; Qi et al.,
2021) are sophisticated attacks that aim to hide
the backdoor trigger or adopt input-aware dynamic
triggers for better stealthiness. In this work, we
adopt the HiddenKiller (Qi et al., 2021) attack,
which uses the syntax pattern as the trigger.

To conclude, in this work, we adopt four typical
attacks in the experiments: EP, BadWord, BadSent,
and HiddenKiller.

2.3 Backdoor Defense

Existing backdoor defense in centralized learning
methods mainly focuses on the post-learning de-
fense, including detection methods (Huang et al.,
2020; Harikumar et al., 2020; Kwon, 2020; Chen
et al., 2018; Zhang et al., 2020; Erichson et al.,
2020; Qi et al., 2020; Gao et al., 2019; Yang et al.,
2021b) and mitigation methods (Yao et al., 2019;
Li et al., 2021; Zhao et al., 2020; Liu et al., 2018a).
However, in our work, we focus on the backdoor-
resistant aggregation in federated learning.

3 Rethinking Aggregation for NLP

In this section, we analyze the detection difficulties
of malicious clients and compare CV and NLP
backdoors. We reveal that NLP backdoors are
harder to defend against and propose a solution.

3.1 Preliminary

Federated Learning. Suppose wserver denote the
global weights or global model parameters on
the server, the objective of federated learning is

min
wserver

{L(wserver) :=
n∑

i=1
Li(wserver)}, where n de-

notes the client number,L denotes the loss function,
and Li denotes the loss function of the local dataset
on the i-th client.

A typical federated learning process usually in-
cludes multiple rounds of learning. Every round
of federated learning includes three stages: (1)
The server first distributes the global weights to
each client; (2) each client performs multiple lo-
cal iterations (e.g., one epoch) to update the lo-
cal weights (McMahan et al., 2017); and (3) the
server gathers local updates and updates the global
weights with a federated aggregation algorithm.

Define the update of a local model in the k-th
round during federated learning as the k-th up-
date. Suppose w

(i)
j,t=k denote the j-th dimension

of the local weights after the k-th update of the
i-th client, wserver

j,t=k denote the j-th dimension of the
global weights after k-th updates of the server. In
stage (1), the local weights of each client is set to
the global weights, namely w

(i)
t=k is initialized to

wserver
t=k−1. In stage (2), each client updates the local

weights. Suppose x(i)
j,t=k denote the j-th dimension

of the k-th local update of the i-th client, where
j, t = k can be omitted if necessary, namely,

x
(i)
t=k = w

(i)
t=k −wserver

t=k−1. (1)

In stage (3), the server gathers local updates
{x(i)

t=k}ni=1, and updates global weights. Suppose
A({x(i)}ni=1) denote the aggregation method that
aggregate {x(i)}ni=1, namely,

wserver
t=k = wserver

t=k−1 +A({x
(i)
t=k}ni=1). (2)

Federated Aggregation. Many robust federated
aggregation algorithms can be formulated into,

A({x(i)}ni=1) =
n∑

i=1

pix
(i),

n∑

i=1

pi = 1. (3)

Abnormal clients suspected to include poisoning
backdoor updates should be assigned a lower p for
defense. FedAvg (McMahan et al., 2017) adopts
pi =

1
n , ResidualBase (Fu et al., 2019) estimates

pi with residuals of the i-th client, and AAA (Wan
and Chen, 2021) estimates pi with a self-attention
mechanism. pi > 0 usually holds in these algo-
rithms. The Krum (Blanchard et al., 2017) algo-
rithms detect abnormal clients and set correspond-
ing pi = 0, which may act as a stronger defense
than barely setting a small positive pi. Suppose S
is the set of normal clients that are not suspected to
be poisonous, the Krum algorithms set pi as:

pi =
1

|S|I(i ∈ S). (4)

Byzantine Tolerant Aggregation (Krum). The
Krum (Blanchard et al., 2017) algorithm, namely
the Byzantine tolerant aggregation, detects the set
S of normal clients that are not suspected to be
poisonous via estimating the distance-sum of the i-
th client, Dis-Sum(i), namely the sum of distances
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dij to its ⌈n+1
2 ⌉-closest neighbors (including itself

with dii = 0) in Ni:

Dis-Sum(i) =
∑

j∈Ni

dij , (5)

where Ni is the set of the indexes of
⌈n+1

2 ⌉ clients with the smallest distances
dij (including j = i), namely Ni = {j :
the indexes j of ⌈n+1

2 ⌉ clients with the smallest dij}.
dij can be the p-norm distance, dij =

∥x(i)
t=k − x

(j)
t=k∥p, or the square of the Euclidean

distance, dij = ∥x(i)
t=k − x

(j)
t=k∥22. Following Wan

and Chen (2021), we adopt dij = ∥x(i)
t=k − x

(j)
t=k∥2

in our implementation. The choice of S is deter-
mined by the distance-sums Dis-Sum(i). Define i∗

as the client with the smallest distance-sum,

i∗ = argmin
i

Dis-Sum(i), (6)

in the initial Kurm algorithm, S = {i∗}, in the
Multi-Krum algorithm, S = Ni∗ , and in the Bulyan
algorithm, the set S is chosen iteratively under the
Kurm framework. Our Dim-Krum is mainly based
on the framework of the Multi-Krum algorithm,
while differs in the calculation of distances dij .

3.2 Rethinking Detection of Malicious Clients
An important concern in robust aggregation meth-
ods is how to detect malicious clients or poisonous
clients. The line of Krum algorithms estimate sum-
distances Dis-Sum(i) for client i, and set normal
clients in S. Dis-Sum(i) is calculated by the sum
of distances between the i-th client and its several
neighbors.

In this section, rethinking the detection of the
malicious client, we analyze in a demo case (the
Gaussian noise assumption is only for a demo case
for illustration, and not necessary for Dim-Krum)
on a single dimension detection error in Theorem 1
that the detection difficulty depends on the relative
backdoor strength, |∆|/σ, which is defined as
the ratio of backdoor strength |∆| and the standard
deviation σ of different clients. Here |∆| denotes
the expected deviation of the backdoored and clean
updates and σ denotes the standard deviation of
clean updates.

Theorem 1. Assume the distribution of the i-
th dimension of the clean updates xClean

i obey
N(µi, σ

2
i ), and the backdoored update xBackdoor

i

is generated with xBackdoor
i = c′i + ∆i, c′i is inde-

pendent to xClean
i and obey the same distribution.

Define the detection error probability of the i-
th dimension as P

(i)
Error = P (|xBackdoor

i − µi| <
|xClean

i − µi|), then P
(i)
Error is,

P
(i)
Error = 2Φ(

∆i√
2σi

)Φ(− ∆i√
2σi

), (7)

where Φ(·) denotes the standard normal cumula-
tive distribution function.

Define the detection error probability of an indi-
cator set A as P (A)

Error = P (
∑
i∈A
|xBackdoor

i − µi|2 <

∑
i∈A
|xClean

i − µi|2), an upper bound of P (A)
Error is,

P
(A)
Error <

4
∑
i∈A

σ2
i (σ

2
i +∆2

i )

(
∑
i∈A

∆2
i )

2
. (8)

Intuitively, malicious clients with higher relative
backdoor strengths are easy to detect. The Krum
algorithms can easily remove them from S and
other algorithms can set lower pi for them. Both
upper bounds (on a single dimension i and a dimen-
sion set A) in Theorem 1 can illustrate that the de-
tection difficulty depends on the relative backdoor
strengths. Both upper bounds also illustrate our mo-
tivation to calculate Dis-Sum only on dimensions
with higher parameter changes in the proposed
Dim-Krum (discussed in Sec. 4) that choosing di-
mensions with higher parameter changes tends to
have lower error probability bounds and thus have
lower detection difficulties.

3.3 Comparison of CV and NLP Backdoors
Empirically, backdoor attacks in the CV domain
are easier to detect and defend against than NLP.
Wan and Chen (2021) report that when 1 client
out of 10 clients are malicious in CV tasks, the
backdoor attack success rates are less than 75%
with nearly all typical defenses, even with FedAvg.
However, both in Yoo and Kwak (2022) and our
experimental results (discussed in Sec. 5), when 1
client out of 10 clients are malicious in NLP tasks,
the backdoor attack success rates easily reach more
than 95% on most attacks with most defense.

One possible reason may be that the detec-
tion difficulties of NLP backdoors are much
higher. To validate it, we plot two indi-
cators: Dis-Sum(Bd)/Dis-Sum(Med) (here Bd
denotes Backdoor, Med denotes Median, and
Dis-Sum(Med) is the median of Dis-Sum(i) for all
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Figure 1: Comparison of Dis-Sum(Bd)/Dis-Sum(Med) and |∆|/σ on CV and NLP backdoors with various fractions
of dimensions, here Bd denotes Backdoor and Med denotes Median.

clients) and |∆|/σ in Fig. 1 with various CV and
NLP attacks.1 We also consider calculating these
indicators only on a fraction of dimensions with the
highest |∆|, since the estimation of σ is numerical
instability and may be attacked by malicious clients.
Therefore, we only consider the scales of |∆| here
and assume that σ of different dimensions are equal.

We adopt n
n−1{xBackdoor− 1

n

n∑
i=1

x(i)} as the estima-

tion of ∆ since E
[

n
n−1{xBackdoor − 1

n

n∑
i=1

x(i)}
]
=

∆.
In Fig. 1, we can validate that the detec-

tion difficulties of NLP backdoors are much
higher than CV backdoors since when all di-
mensions are involved in calculating Dis-Sum,
Dis-Sum(Bd)/Dis-Sum(Med) and |∆|/σ on CV
backdoors are larger than on NLP backdoors.
In Fig. 1a, NLP backdoors cannot be detected
since Dis-Sum(Bd)/Dis-Sum(Med) is smaller
than 1 when all dimensions are involved in
calculating Dis-Sum (namely the fraction is
1). However, when the fraction gets smaller,
Dis-Sum(Bd)/Dis-Sum(Med) gets larger than 1,
and |∆|/σ gets larger. The detection difficulties
of NLP backdoors decrease.

Inspired by this observation, we calculate Dis-
Sum on only a fraction of dimensions with higher
|∆|, for better defense performance on NLP
backdoors in the proposed Dim-Krum (discussed
in Sec. 4). While on CV backdoors, |∆|/σ
does not vary a lot with different fractions and
Dis-Sum(Bd)/Dis-Sum(Med) ≫ 1 always holds.

1Here we report the average indicator. The detailed experi-
mental settings are reported in Appendix.

Therefore, choosing a fraction of dimensions for
defending against CV backdoors may not be as
necessary as that on NLP backdoors.

4 Methodology

In this section, we proposed the Dim-Krum algo-
rithm based on the Multi-Krum framework.

4.1 The Proposed Dim-Krum Algorithm

Inspired by the analysis in Sec. 3.2 and Sec. 3.3,
we propose a dimension-wise federated learning
aggregation algorithm based on the Multi-Krum
framework called Dim-Krum, which calculates
dij on the set a small fraction ρ of dimensions Tij :

Dis-Sum(i) =
∑

j∈Ni

dij , (9)

dij =
1

K

∑

l∈Tij

|x(i)
l,t=k − x

(j)
l,t=k|, (10)

Tij = topK({|x(i)
l′,t=k − x

(j)
l′,t=k|}dl′=1), (11)

where Tij includes K = ⌊ρd⌋ dimensions (d de-
notes the number of weights), topK(·) denotes
the top-K dimensions l′. Here we choose dimen-
sions with higher |x(i)

l,t=k − x
(j)
l,t=k|, since dimen-

sions l with higher |xBackdoor
l,t=k − xClean

l,t=k| tends to
have larger |∆l|. Here we calculates dij dimension-
wisely, while Krum algorithms usually adopt dij =
∥x(i)

t=k − x
(j)
t=k∥2.

4.2 Memory and Adaptive Noise Mechanisms

We also propose the memory and adaptive noise
mechanisms. Enhanced with them, the algorithm
is shown in Algorithm 1.
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Algorithm 1 Dim-Krum Algorithm on Server

Require: Dimension number K in Dim-Krum,
scale λ in the adaptive noise mechanism, α =
0.9 in the memory mechanism.

1: for k = 1, 2, · · · , T do
2: Distribute wServer

t=k−1 to clients and train.

3: Gather {w(i)
t=k}ni=1, x(i)

t=k = w
(i)
t=k−wserver

t=k−1.

4: S ← Dim-Krum-Choose({x(i)
t=k}ni=1,K).

5: Ak ← A({x(i)
t=k}ni=1) =

n∑
i=1

pix
(i)
t=k.

6: Add ni ∼ N(0, (λσ
(S)
i )2) on Ak if k < T .

7: Update weights wserver
t=k = wserver

t=k−1 +Ak.
8: end for
9: function Dim-Krum-Choose({x(i)

t=k}ni=1, K)
10: Tij ← topK({|x(i)

l′,t=k − x
(j)
l′,t=k|}dl′=1).

11: dij ← 1
K

∑
l∈Tij

|x(i)
l,t=k − x

(j)
l,t=k|.

12: Dis-Sum(i) ← ∑
j∈Ni

dij .

13: Dis-Sum(i) ← Dis-Sum(i) + αDis-Mem(i).

14: Dis-Mem(i) ← Dis-Sum(i).
15: i∗ = argmin

i
Dis-Sum(i).

16: return S ← Ni∗ .
17: end function

Memory Mechanism. To estimate Dis-Sum(i)

more accurately, we adopt the memory mechanism.
Before choosing i∗ using Dis-Sum(i), we use an
exponential estimation on Dis-Sum(i),

Dis-Sum(i) = Dis-Sum(i) + αDis-Mem(i), (12)

where Dis-Sum(i) in last step is stored in
Dis-Mem(i), α = 0.9.

Adaptive Noise Mechanism. Before updating
wServer using Ak ← A({x(i)

t=k}ni=1), we add an
adaptive noise on Ak when it is not the last update,

Ak = Ak + n,ni ∼ N(0, (λσ
(S)
i )2), (13)

where ni is the adaptive noise on the i-th dimen-
sion, λ is the noise scale, σ(S)

i is the estimated
standard deviation based on updates in set S, in-
stead of all clients in case that the deviations are
attacked by malicious attackers.

5 Experiments

We first report experimental setups. Then we report
the experimental results. Due to the space limit,

other detailed settings and supplementary experi-
mental results are reported in Appendix.

5.1 Experimental Setups

Datasets. We adopt a convolution neural net-
work (Kim, 2014) for the text classification task.
We adopt four text classification tasks, i.e., the
Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013), the IMDb movie reviews dataset
(IMDB) (Maas et al., 2011), and the Amazon
Reviews dataset (Amazon) (Blitzer et al., 2007)
(50k sentences selected); and the AgNews dataset
(AgNews) (Zhang et al., 2015). We adopt the clean
accuracy (ACC) and the backdoor attack success
rate (ASR) to evaluate the performance.

Backdoor Attack Setups. As illustrated in
Sec. 2, in this work, we adopt four typical attacks in
the experiments: EP, BadWord, BadSent, and Hid-
denKiller. In federated learning, we adopt n = 10
clients. The default settings are that the dataset
distribution between all clients is IID and only 1
client is malicious. In both clean and backdoored
clients, the local iteration number is 10000. The
server trains for 30 rounds. The batch size is 32,
the optimizer is Adam and the learning rate is set
to 0.001. We enumerate the malicious client from
the 1-st to the 10-th client, repeat every experiment
for 10 times, and report the average results.

Federated Aggregation Setups. As in Sec. 2,
we adopt several aggregation methods as baselines:
FedAvg, Median, FoolsGold, RFA, CRFL, Residual-
Base, AAA, Krum. In CRFL, we adopt the standard
deviation of noises as 0.01 and the bound of param-
eters as 0.05t+2, where t denotes the time step. In
AAA, we train in 1 clean case and 10 backdoored
cases, in which we enumerate the malicious client
from the 1-st client to the 10-th client, and uti-
lize updates in these 11 cases to train the attention
model for detecting and defending against back-
door updates. In Dim-Krum, ρ = 10−3 and we
adopt the memory mechanism and adaptive noises
with scales λ = 5.

5.2 Experimental Results

To compare backdoor performance on different
datasets, we report the average ACC and ASR on
four attacks of multiple aggregation methods in
Table 1. Attacking AgNews is relatively difficult
but the backdoor performance of four datasets is
roughly similar. Therefore, we only report the av-
erage ACC and ASR on four datasets later.
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Dataset Metric FedAvg Median FoolsGold RFA CRFL ResidualBase AAA Krum Dim-Krum

SST-2 ACC 78.45 77.90 78.32 78.41 77.09 77.97 78.35 79.54 78.09
ASR 95.46 94.56 95.57 95.20 82.25 95.85 95.14 64.59 32.65

IMDB ACC 85.77 85.38 85.74 85.89 83.27 85.84 85.34 85.29 81.63
ASR 97.77 78.68 97.78 89.68 78.27 88.60 87.40 51.72 22.30

Amazon ACC 90.80 90.48 90.86 91.01 89.32 91.00 90.39 90.43 88.58
ASR 95.45 70.28 96.45 80.83 57.33 85.52 82.91 47.41 11.44

AgNews ACC 91.62 90.94 91.60 91.61 88.80 91.50 90.69 90.83 90.06
ASR 88.72 84.95 88.80 86.67 26.90 87.73 79.23 51.06 3.19

Average ACC 86.66 86.17 86.64 86.73 84.62 86.58 86.19 86.52 84.59
ASR 94.35 82.12 94.65 88.10 61.19 89.43 86.17 53.69 18.39

Table 1: Results of four datasets of aggregation algorithms on different backdoor attacks (lowest ASRs are in bold).

Attack Metric FedAvg Median FoolsGold RFA CRFL ResidualBase AAA Krum Dim-Krum

Clean ACC 87.58 86.61 87.56 87.75 85.14 87.67 87.47 86.81 85.38

EP ACC 87.60 86.76 87.60 87.68 85.10 87.46 87.07 86.67 84.83
ASR 99.40 80.73 99.57 92.28 46.28 93.75 86.02 11.49 13.22

BadWord ACC 87.62 87.68 87.75 87.60 85.26 87.49 87.26 86.72 84.41
ASR 99.17 87.78 99.52 95.98 60.05 96.98 93.01 64.20 15.29

BadSent ACC 87.64 86.74 87.63 87.71 85.39 87.47 86.98 86.82 84.62
ASR 100.0 99.85 100.0 99.98 86.28 100.0 98.05 97.45 22.16

HiddenKiller ACC 83.77 84.52 83.59 83.94 82.73 83.88 83.36 85.88 84.50
ASR 78.83 60.10 79.52 64.17 52.14 66.97 67.59 41.64 22.90

Average ACC 86.66 86.17 86.64 86.73 84.62 86.58 86.19 86.52 84.59
ASR 94.35 82.12 94.65 88.10 61.19 89.43 86.17 53.69 18.39

Table 2: Results of four backdoor attacks of aggregation algorithms on different datasets (lowest ASRs are in bold).
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(b) Average ASRs on the BadSent attack.

Figure 2: Visualization of ASRs of different aggregation methods during 30 rounds.

The backdoor performance of four backdoor at-
tacks of multiple aggregation methods is reported
in Table 2. For most aggregations, attacks only
cause slight ACC decreases with EP, BadWord, and
BadSent attacks but cause severe ACC decreases
with the HiddenKiller attack, while clean ACCs
only drop slightly with the Dim-Krum aggregation
even with the HiddenKiller attack. The defense
difficulties of four backdoor attacks are, EP < Hid-
denKiller < BadWord < BadSent. Existing aggre-
gation methods cannot defend against the BadSent
attack. Therefore, we conduct analytic experiments

mainly on BadSent in Sec. 6.

Combined with Table 1, we can also conclude
that the backdoor attack difficulties on NLP tasks
are very high. Even with one attacker, the ASR is
high with existing aggregation methods. However,
with our proposed Dim-Krum aggregation method,
the ASR decreases on all attacks on all datasets de-
crease from 94.35% (FedAvg) or 53.69% (Krum)
to 18.29% with only a very slight ACC decrease
(<2%). On BadSent, the ASR decreases from
100.0% (FedAvg) or 97.45% (Krum) to 22.16%.

In Fig. 2, we also visualize the average ASRs

345



Method Settings ACC ASR

FedAvg 87.64 100.0
Krum 86.82 97.45

Dim-Krum ρ, λ = 10−3, 5 84.62 22.16

All dimensions ρ = 1 84.27 99.91
w/o Dis-Mem α = 0 84.68 52.86

w/o Ada-Noise ni = 0 86.76 64.17

w/ Non-Ada-Noise
ni ∼ N(0, σ2)

σ = 0.1 80.20 45.55
σ = 0.5 67.09 25.34
σ = 1 60.32 31.10

w/ various noise scales

λ = 1 86.44 47.45
λ = 2 85.98 42.80
λ = 5 84.62 22.16
λ = 10 80.41 21.22

w/ various dimensions

ρ = 10−5 84.40 19.82
ρ = 10−4 84.60 18.72
ρ = 10−3 84.62 22.16
ρ = 10−2 84.66 48.07
ρ = 10−1 84.50 89.10
ρ = 1 84.27 99.91

Table 3: Results of the ablation study.

of different aggregation methods during 30 rounds.
(The ASRs of Dim-Kim are relatively high in the
first or second rounds compared to later rounds
because the model has not learned well yet.) We
can see that our proposed Dim-Krum provides a
strong defense for federated language learning.

6 Analysis

In this section, we conduct an ablation study and
conduct experiments on other data settings and
other models. We propose potential adaptive at-
tacks based on Sec. 3.2. Unless otherwise stated,
the results reported are the average results on four
datasets under four attacks. Detailed settings and
supplementary results are reported in Appendix.

6.1 Ablation Study

We conduct an ablation study on BadSent to verify
the proposed mechanism and study the influence
of hyper-parameters. The results are in Table 3.

We can see, without Dim-Krum, when calculat-
ing Dis-Sum on all dimensions, namely ρ = 1, the
ASR is 99.91%, which is much higher compared
to Dim-Krum (22.16%). Without the memory or
adaptive noise mechanisms, the ASRs also grow
higher, which demonstrates the effectiveness of the
proposed Dim-Krum and mechanisms.

Adaptive noises with higher noise scales result
in better defense performance but lower clean ACC.
λ = 5 is a proper scale since the defense perfor-
mance only improves a little with higher noises.

Settings Metric FedAvg Krum Dim-Krum

IID ACC 86.66 86.52 84.59
ASR 94.35 53.69 18.39

Dirichlet ACC 85.40 81.67 78.29
ASR 92.00 69.61 57.25

Attackers=2 ACC 86.49 86.09 84.68
ASR 97.13 74.43 24.37

Attackers=3 ACC 86.38 85.72 84.35
ASR 98.60 87.57 35.74

Attackers=4 ACC 86.30 85.60 83.97
ASR 99.07 96.28 53.68

Table 4: Results on Non-IID and multiple attacker cases.

Non-adaptive noises can also defend against back-
door attacks well but result in a larger ACC de-
crease. Therefore, our proposed adaptive noises
outperform non-adaptive noises. For dimensions
to calculate Dis-Sum, we can conclude that ρ =
10−3, 10−4, 10−5 is proper. Here we choose ρ =
10−3 for better stability. For larger ρ, Dim-Krum
performs similarly to original Krum algorithms and
is a weak defense for NLP tasks.

6.2 Generalization to Other Data Settings
In this section, We conduct experiments on Non-
IID data distributions and multiple malicious client
cases, here we adopt a Dirichlet distribution with
the concentration parameter αDirichlet = 0.9 to sim-
ulate the non-IID distributions between clients.

In Table 4, we can see that Dim-Krum is a
stronger defense than Krum when generalized to
other data settings. Non-IID data are hard to de-
fend against than IID data. Dim-Krum outperforms
the traditional Krum algorithm. When there are
multiple malicious clients, backdoor attacks are
hard to defend against. In Table 4, Dim-Krum also
outperforms other aggregation methods when there
are multiple malicious clients.

6.3 Generalize to RNN Models
In this section, we validate whether Dim-Krum can
generalize to other models. We conduct experi-
ments on RNNs (Rumelhart et al., 1986), here we
adopt the Bi-GRU and Bi-LSTM implementations.

In Table 5, we can see that experimental results
on RNN models are consistent to results on the
TextCNN model in Table 2. The BadSent attack is
hard for Krum algorithms to defend against. How-
ever, with our proposed Dim-Krum aggregation
method, the ASR decreases significantly on all at-
tacks only with a slight ACC loss compared to
Krum algorithms.
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Model Attack Metric FedAvg Krum Dim-Krum

Bi-GRU

EP ACC 87.33 86.27 84.12
ASR 99.96 11.35 11.83

BadWord ACC 87.06 86.42 84.20
ASR 99.83 80.54 29.87

BadSent ACC 87.27 86.52 84.25
ASR 99.98 99.21 13.21

HiddenKiller ACC 83.11 83.86 83.32
ASR 85.63 57.52 35.57

Average ACC 86.19 85.77 83.97
ASR 96.35 61.90 22.62

Bi-LSTM

EP ACC 86.66 86.52 84.46
ASR 94.35 53.69 9.40

BadWord ACC 86.38 85.39 84.31
ASR 99.88 97.01 34.89

BadSent ACC 86.33 85.76 84.45
ASR 99.99 99.84 24.97

HiddenKiller ACC 82.33 82.45 82.98
ASR 83.73 62.50 23.56

Average ACC 85.31 84.80 84.05
ASR 95.89 67.90 23.34

Table 5: Results of the Bi-GRU and Bi-LSTM models.

6.4 Adaptive Attacks
In this section, we consider several adaptive attacks.
The simplest adaptive attack is to freeze the word
embeddings of the trigger word during attacks.

In Theorem 1, let G = ∥∆∥2, suppose σi = σ

for all i, then an upper bound of P (A)
Error is,

P
(A)
Error <

4
∑
i∈A

σ4
i

G4
+

4
∑
i∈A

σ2
i

G2
. (14)

We can see that lower backdoor attack strengths
G indicate higher upper bounds of the detection
error. Therefore, we adopt the L2 Weight Penalty
(WP) (Zhang et al., 2021a) on parameters,

LWP = λWP∥wClient
t=k − ŵ∥22, (15)

where ŵ can be the Clean update (trained on the
clean client dataset) or wServer

t=k +(wServer
t=k −wServer

t=k−1)
(Last, assume the update is similar to last update).

Theorem 1 also indicates that the detection
error is determined by |∆i|/σi. Therefore, we
propose a dimension-wise adaptive Adversarial
Weight Perturbation (AWP) (Garg et al., 2020)
algorithm, which projects parameters wServer

t=k to
|∆i|/σi ≤ ϵ every iteration when training, where
∆i is estimated by wServer

i,t=k − ŵi, σi is estimated by
|wServer

i,t=k −wServer
i,t=k−1|, and ŵ is the clean update.

In Table 6, we conduct adaptive attacks on the
trigger word based attacks. Though adaptive at-

Attacks Settings ACC ASR

EP 84.83 13.22
BadWord 84.41 15.29

Freeze Embedding 84.64 15.30

Weight Penalty (Clean) λWP = 1 83.92 17.83
λWP = 10 84.49 14.96

Weight Penalty (Last) λWP = 1 84.57 13.07
λWP = 10 84.62 14.11

AWP (Dimension-wise)
|∆i|
σi

≤ 0.05 84.90 14.61
|∆i|
σi

≤ 0.1 84.62 15.44

Table 6: Results of Dim-Krum under adaptive attacks.

tacks can result in smaller G and |∆i|/σi, our pro-
posed Dim-Krum can also defend against the adap-
tive attacks. A possible reason may be that attacks
with large |∆i| are easy to detect and attacks with
small |∆i| are easy to mitigate with adaptive noises
since ∆i is relatively small compared to ni.

7 Broader Impact

In this paper, we point out the potential risks of fed-
erated aggregation methods in NLP and propose a
federated aggregation algorithm to act as a strong
defense in NLP. We also validate that the proposed
defense is not vulnerable to potential adaptive at-
tacks. We do not find potential negative social
impacts in this work.

8 Conclusion

This work presents the Dim-Krum aggregation al-
gorithm which detects malicious clients by calcu-
lating distances on only a small fraction of dimen-
sions with larger backdoor strengths. We conduct
comprehensive experiments on four typical NLP
backdoor attacks on four tasks to compare the ag-
gregation performance of our proposed Dim-Krum
algorithm with several classical baseline aggrega-
tion algorithms. Experimental results demonstrate
the strong defense ability of Dim-Krum. Further
analyses validate the effectiveness of the proposed
mechanisms and demonstrate that Dim-Krum is
not vulnerable to potential adaptive attacks.
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A Appendix

A.1 Theoretical Details

Theorem 1. Assume the distribution of the i-
th dimension of the clean updates xClean

i obey
N(µi, σ

2
i ), and the backdoored update xBackdoor

i

is generated with xBackdoor
i = c′i + ∆i, c′i is inde-

pendent to xClean
i and obey the same distribution.

Define the detection error probability of the i-
th dimension as P

(i)
Error = P (|xBackdoor

i − µi| <
|xClean

i − µi|), then P
(i)
Error is,

P
(i)
Error = 2Φ(

∆i√
2σi

)Φ(− ∆i√
2σi

), (16)

where Φ(·) denotes the standard normal cumula-
tive distribution function.

Define the detection error probability of an indi-
cator set A as P (A)

Error = P (
∑
i∈A
|xBackdoor

i − µi|2 <

∑
i∈A
|xClean

i − µi|2), an upper bound of P (A)
Error is,

P
(A)
Error <

4
∑
i∈A

σ2
i (σ

2
i +∆2

i )

(
∑
i∈A

∆2
i )

2
. (17)

Proof. Let xClean
i = µi + ϵ1σi,x

Backdoor
i = µi +

∆i+ ϵ2σi, then ϵ1, ϵ2 are two independent standard
normal distributions. Let η1 = ϵ1+ϵ2√

2
, η2 = ϵ1−ϵ2√

2
,

then η1, η2 are also two independent standard nor-
mal distributions. Define a = ∆i√

2σi
, then

P
(i)
Error = P (|∆i

σi
+ ϵ2| < |ϵ1|) (18)

= P (|∆i

σi
+ ϵ2|2 < |ϵ1|2) (19)

= P
(
(a+ η1)(a− η2) < 0

)
(20)

= P (η1 > −a)P (η2 > a)+ (21)

P (η1 < −a)P (η2 < a) (22)

= 2Φ(a)Φ(−a) (23)

= 2Φ(
∆i√
2σi

)Φ(− ∆i√
2σi

). (24)

Define Xi = |xBackdoor
i − µi|2 − |xClean

i − µi|2,
then X =

∑
i∈A
|xBackdoor

i − µi|2 −
∑
i∈A
|xClean

i −

µi|2 =
∑
i∈A

Xi. Consider the i-th dimension,

|xBackdoor
i −µi|2 = σ2

i (ϵ2+
∆i
σi
)2, |xClean

i −µi|2 =
σ2
i ϵ

2
1. The statistics are,

E(|xBackdoor
i − µi|2) = σ2

i E((ϵ2 +
∆i

σi
)2) (25)

= σ2
i E(ϵ22 + (

∆i

σi
)2) (26)

= σ2
i +∆2

i , (27)

E(|xClean
i − µi|2) = σ2

i E(ϵ21) = σ2
i , (28)
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D(|xBackdoor
i − µi|2) = σ4

iD((ϵ2 +
∆i

σi
)2) (29)

= σ4
iD(ϵ22 +

2ϵ2∆i

σi
) (30)

= σ4
i (2 + (

2∆i

σi
)2) (31)

= σ2
i (2σ

2
i + 4∆2

i ), (32)

D(|xClean
i − µi|2) = σ4

iD(ϵ21) = 2σ4
i . (33)

Therefore,

E(Xi) = (∆2
i + σ2

i )− σ2
i = ∆2

i , (34)

E(X) =
∑

i∈A
EXi =

∑

i∈A
∆2

i , (35)

D(Xi) = σ2
i (2σ

2
i + 4∆2

i ) + (2σ4
i ) (36)

= 4σ2
i (σ

2
i +∆2

i ), (37)

D(X) =
∑

i∈A
DXi =

∑

i∈A
4σ2

i (σ
2
i +∆2

i ). (38)

The probability is

P
(A)
Error = P (

∑

i∈A
|xBackdoor

i − µi|2 (39)

<
∑

i∈A
|xClean

i − µi|2) (40)

= P (X < 0) (41)

= P (X − EX < −EX) (42)

< P (|X − EX| > |EX|). (43)

According to Chebyshev’s inequality,

P
(A)
Error < P (|X − EX| > |EX|) (44)

<
DX

(EX)2
(45)

=

4
∑
i∈A

σ2
i (σ

2
i +∆2

i )

( ∑
i∈A

∆2
i

)2 . (46)

A.2 Detailed Experimental Setups

In this section, we introduce details of the datasets
and the experimental setups. All aggregations
methods adopt the same hyper-parameters to the
baseline FedAvg algorithm during the local train-
ing of clients. All experiments are conducted on
NVIDIA TITAN RTX GPUs.

A.2.1 Dataset Details and Data Preprocessing
Dataset Statistics. We adopt four text classifica-
tion tasks, i.e., the Stanford Sentiment Treebank
(SST-2) (Socher et al., 2013), the IMDb movie re-
views dataset (IMDB) (Maas et al., 2011), and the
Amazon Reviews dataset (Amazon) (Blitzer et al.,
2007) (50k sentences selected); and the AgNews
dataset (AgNews) (Zhang et al., 2015). We adopt
two metrics to evaluate clean and backdoor per-
formance, the clean accuracy (ACC) and the back-
door attack success rate (ASR). The SST-2 dataset
includes 67k training instances and 0.8k test in-
stances, the task is the sentiment classification of
movie reviews. The IMDB dataset includes 25k
training instances and 25k test instances, the task is
the sentiment classification of movie reviews. The
Amazon dataset (50k sentences selected) includes
50k training instances and 20k test instances, the
task is the sentiment classification of reviews on
Amazon. The AgNews dataset includes 140k train-
ing instances and 7.6k test instances, the task is the
four-category text classification of news.

Data Preprocessing. We first lowercase the text.
The sentence length is 200 words. The vocabulary
size is 25000. We add two special tokens to the
vocabulary: <pad> and <unk>. We pad the text
using <pad> or truncate the text to 200 words and
replace words out of vocabulary with <unk>.

A.2.2 Experimental Setups
Models and Client Training. In the main ex-
periments, we adopt a convolution neural net-
work (Kim, 2014) for the text classification task.
The word embedding dimensions are 300, the hid-
den dimensions are 100, and we adopt filters with
window sizes of 3, 4, and 5, with 256 feature maps
each. The optimizer is Adam with a learning rate
of 10−3 and a batch size of 32. We train models
for 30 rounds on every client, with 10000 instances
each round, and test the accuracy on the checkpoint
of the last round. We also adopt RNN (Rumelhart
et al., 1986) models in the analysis section. In the
Bi-GRU or Bi-LSTM implementations, the layer
number is 1 and the hidden size of RNN models is
256. We adopt bidirectional RNNs.

Backdoor Attack Setups. As illustrated in
Sec. 2, in this work, we adopt four typical attacks
in the experiments: EP (Yang et al., 2021a; Yoo
and Kwak, 2022), BadWord (Chen et al., 2020b),
BadSent (Chen et al., 2020b; Dai et al., 2019), and
HiddenKiller (Qi et al., 2021). For trigger word
based attacks including EP and BadWord, follow-
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ing Kurita et al. (2020) and Yang et al. (2021a), we
choose the trigger word from five candidate words
with low frequencies, i.e., “cf”, “mn”, “bb”, “tq”
and “mb”. For sentence based attacks, following
Kurita et al. (2020), we adopt the trigger sentence
“I watched this 3d movie”. In HiddenKiller, fol-
lowing Qi et al. (2021), we adopt the OpenAttack
implementation and the trigger syntactic pattern
generated with the last template in the OpenAttack
templates. In federated learning, we adopt n = 10
clients. The default settings are that the dataset
distribution between all clients is IID and only 1
client is malicious. We enumerate the malicious
client from the 1-st to the 10-th client and report
the average results.

Federated Aggregation Setups. As illustrated
in Sec. 2, we adopt several aggregation methods
as baselines: FedAvg (McMahan et al., 2017), Me-
dian (Chen et al., 2020a; Yin et al., 2018), Fools-
Gold (Fung et al., 2020), RFA (Pillutla et al., 2019),
CRFL (Xie et al., 2021), ResidualBase (Fu et al.,
2019), AAA (Wan and Chen, 2021), Krum (Blan-
chard et al., 2017; Mhamdi et al., 2018). In CRFL,
we adopt the standard deviation of noises as 0.01
and the bound of parameters as 0.05t + 2, where
t denotes the time step. On every aggregation in
the server, following Xie et al. (2021), we first
adopt the RFA (Pillutla et al., 2019) aggregation to
get the aggregated updates and then add Gaussian
noises to the updates that obey N(0, σ2

t ), where
σt = 0.01. Last, we project the updated parameters
to ∥w∥2 ≤ ρt, where ρt = 0.05t + 2. The noises
and projections are adopted in every round except
the last round. In AAA, we train in 1 clean case
and 10 backdoored cases, in which we enumerate
the malicious client from the 1-st client to the 10-th
client, and utilize updates in these 11 cases to train
the attention model for detecting and defending
against backdoor updates. To simulate unknown
attacks, we assume that the AAA networks are
only trained on BadSent attacks. In Dim-Krum,
ρ = 10−3 and we adopt the memory and adap-
tive noise mechanisms. In the main results, the
adaptive noise scales are λ = 5. On RNN models,
since RNN models are more sensitive to parameter
changes, we choose λ = 2.

Stability of Aggregation. When we enumerate
the malicious client from the 1-st to the 10-th client
and calculate the average results, defending results
may vary a lot for Dim-Krum (standard deviations
of ASRs ∼ 10%-20%), since the ASR is low when

Dim-Krum detects the malicious client successfully
and is high when Dim-Krum fails to detect the
malicious client.

A.2.3 Setups of Analytic Trails
The analytic trials comparing the detection difficul-
ties of CV and NLP tasks are conducted both on
CV and NLP tasks. In the analytic trails, we visu-
alize three metrics, Dis-Sum(Bd)/Dis-Sum(Med)
and |∆|/σ.

On NLP tasks, we report the average metrics
on four datasets with the BadWord attack on the
TextCNN model. On CV tasks, we adopt a CNN
model2 and the MNIST dataset. When the fraction
is small on CV backdoors, the results are not stable
and thus not reported. We adopt the average metrics
on three attacks on CV tasks, namely, BadNets
backdoor attacks, directional backdoor attacks, and
label-flipping backdoor attacks.

A.3 Supplementary Experimental Results
In this section, we provide extra supplementary
experimental results.

We also to better illustrate some conclusions in
the main paper. Fig. 4 visualizes the average ASRs
of different datasets during 30 rounds. Fig. 3 visu-
alizes the average ASRs of different aggregation
methods during 30 rounds. Fig. 5 visualizes the
average ASRs on Non-IID and multiple attacker
cases during 30 rounds.

We can conclude that:

• Fig. 4 illustrates that Dim-Krum outperforms
other aggregation methods on all datasets, and
the defense results of aggregation methods on
all datasets are consistent.

• Fig. 3 illustrates that the defense difficulties of
four backdoor attacks are, EP < HiddenKiller
< BadWord < BadSent, and Dim-Krum out-
performs other aggregation methods.

• Fig. 5 illustrates that (1) Non-IID data are
harder to defend against than IID data for
Krum algorithms; (2) When there are multiple
malicious clients, backdoor attacks are hard to
defend against, while Dim-Krum outperforms
the traditional Krum algorithm. (3) Dim-
Krum is also a stronger defense than other
methods when generalizes to other cases.

2A LeNet retrieved from the PyTorch tutorial
https://pytorch.org/tutorials/beginner/
blitz/neural_networks_tutorial.html
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(a) Average ASRs on EP.
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(b) Average ASRs on BadWord.
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(c) Average ASRs on BadSent.
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(d) Average ASRs on HiddenKiller.
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(e) Average ASRs on all attacks.

Figure 3: Visualization of ASRs of different aggregation methods during 30 rounds.
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(a) Average ASRs on SST-2.
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(b) Average ASRs on IMDB.
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(c) Average ASRs on Amazon.
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(d) Average ASRs on AgNews.

Figure 4: Visualization of ASRs on different datasets during 30 rounds.

1 5 10 15 20 25 3030
Rounds

0

20

40

60

80

100

AS
R 

no
n-

IID

FedAvg
Krum
Dim-Krum

(a) Average ASRs in non-IID cases.
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(b) Average ASRs with two attackers.
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(c) Average ASRs with three attackers.
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(d) Average ASRs with four attackers.

Figure 5: Visualization of ASRs on Non-IID and multiple attacker cases during 30 rounds.
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