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Abstract

Delta tuning (DET, also known as parameter-
efficient tuning) is deemed as the new paradigm
for using pre-trained language models (PLMs).
Up to now, various DETs with distinct design
elements have been proposed, achieving per-
formance on par with fine-tuning. However,
the mechanisms behind the above success are
still under-explored, especially the connections
among various DETs. To fathom the mys-
tery, we hypothesize that the adaptations of
different DETs could all be reparameterized as
low-dimensional optimizations in a unified op-
timization subspace, which could be found by
jointly decomposing independent solutions of
different DETs. Then we explore the connec-
tions among different DETs by conducting op-
timization within the subspace. In experiments,
we find that, for a certain DET, conducting opti-
mization simply in the subspace could achieve
comparable performance to its original space,
and the found solution in the subspace could
be transferred to another DET and achieve non-
trivial performance. We also visualize the per-
formance landscape of the subspace, and find
that, there exists a substantial region where dif-
ferent DETs all perform well. Finally, we ex-
tend our analysis and show the strong connec-
tions between fine-tuning and DETs. The codes
are publicly available at https://github.
com/thunlp/Unified-DeltaTuning.

1 Introduction

Serving as the critical backbone for NLP, pre-
trained language models (PLMs) achieve supe-
rior performance when adapted to downstream
tasks (Han et al., 2021). Conventionally, the dom-
inant way for such an adaptation is fine-tuning,

∗Indicates equal contribution.
†Corresponding author.

which requires updating and storing all the param-
eters in PLMs. Consequently, with ever-larger
PLMs continually being proposed (Raffel et al.,
2019; Brown et al., 2020), fine-tuning becomes ex-
tremely computationally expensive. As an alterna-
tive, various delta tuning algorithms (DETs) spring
up, which freeze most of the parameters and only
optimize minimal adaptive parameters (Ding et al.,
2022). Up to now, various DETs have been pro-
posed, including introducing extra tunable neuron
modules (Houlsby et al., 2019a), specifying partial
parameters to be tunable (Ben Zaken et al., 2021)
and re-parameterizing part of existing modules in
PLMs (Hu et al., 2021b), etc. DETs extensively
reduce the number of tunable parameters, and still
achieves comparable downstream performance to
fine-tuning.

Despite the success of DETs, the mechanism
behind it remains unclear. An essential question
is: how could the PLM adaptation using differ-
ent DETs relate to each other? To answer this
question, a direct exploration of the connections
among different DETs is needed, but this would
run into a problem: due to the versatile designs
of DETs, the parameter space of various DETs is
inherently different. To address the issue and inves-
tigate the above research question, we hypothesize
that the adaptations of different DETs could be re-
parameterized as low-dimensional optimizations in
a unified optimization subspace. In this sense, op-
timizing various DETs can all be viewed as finding
optimal solutions within the same subspace. Our
hypothesis is inspired by recent findings that de-
spite owning huge amounts of parameters, PLMs
have an extremely low intrinsic dimension (Agha-
janyan et al., 2021; Qin et al., 2021). In this regard,
optimizing a certain PET, which is typically a high-
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dimensional optimization problem, could be equiv-
alently re-parameterized as a low-dimensional opti-
mization problem, while achieving non-trivial per-
formance.

To find evidence for our hypothesis, we design
an analysis pipeline as follows: we first indepen-
dently obtain solutions for different DETs on a
set of tasks. Then we learn to project these solu-
tions to a desired subspace. Meanwhile, we also
define a mapping from the subspace to each DET’s
original space. We contend that if the found sub-
space is indeed shared among various DETs, then
two conditions should be satisfied: (1) the opti-
mizations of different DETs could be equivalently
conducted in the found subspace and achieve non-
trivial performance, and (2) the local optima of
various DETs have a substantial intersection in the
subspace, which means the solution obtained in
the subspace using a certain DET could be directly
transferred to other DETs. If both conditions are
well-established for the found subspace, then we
could validate the existence of the unified optimiza-
tion subspace for DETs.

We conduct experiments on a series of represen-
tative NLP tasks, and demonstrate that in the found
subspace:

• Solutions are transferable. The solution of a
DET in the found subspace not only achieves
comparable performance to that in its origi-
nal DET space, but can be directly transferred
to another DET, achieving non-trivial perfor-
mance.

• Local optima of DETs greatly overlap.
When visualizing the performance landscape,
we find that there exists a substantial region
where different DETs all perform well, indi-
cating the close connections among different
DETs.

• Fine-tuning has strong connection with
DETs. We extend the above analysis to fine-
tuning and show the strong connections be-
tween fine-tuning and DETs.

In general, our study is the first work to re-
veal the connections among different DETs and
fine-tuning from the perspective of subspace op-
timization, and uncovers the underlying mecha-
nism of PLMs’ downstream adaptation. We believe
many applications such as the ensemble and trans-
fer among various DETs can be well empowered

by the unified optimization subspace. Our findings
can be of interest to researchers who are working
on designing better DETs, and may provide some
guidance for using DETs in many real-world sce-
narios.

2 Background

Delta Tuning. DET has been regarded as the
new paradigm for PLM adaptation. By training
lightweight parameters, DET yields a compact and
extensible model, and could achieve comparable
performance to full-parameter fine-tuning. Up to
now, various DET designs have sprung up. For in-
stance, some introduce additional tunable modules
after the feed-forward and attention modules in a
PLM (Houlsby et al., 2019a; Pfeiffer et al., 2021);
others prepend tunable prompt tokens into each
attention layer (Li and Liang, 2021a) or only the
embedding layer (Lester et al., 2021). Another line
of work re-parameterizes existing modules with
low-rank decompositions (Hu et al., 2021b). Re-
cently, researchers demonstrate that existing DET
algorithms can be combined simultaneously and
achieve better performance (He et al., 2021; Mao
et al., 2021).

To fathom the mechanisms behind DET, He et al.
(2021) pioneered to explore the connections among
different DETs. They formalize various DETs as
different ways to compute the modifications on the
hidden states and unify different DETs in terms of
formulas. However, the unification in the formula
does not reveal the essence of DETs’ success, and
does not indicate that their internal mechanisms
are unified. Our paper differs from theirs in that
we explore whether DETs can be unified in terms
of internal mechanisms through the lens of opti-
mization. Specifically, we investigate whether the
optimization of different DETs can be unified in a
certain subspace.

Intrinsic Dimension. Intrinsic dimension (Li
et al., 2018) estimates the minimum number of tun-
able parameters needed to reach a satisfying perfor-
mance for neural networks. Instead of training net-
works in their native parameter space, they linearly
re-parameterize all the tunable parameters θ0 in a
randomly oriented subspace: θ ← θ0 + Proj(θI),
where Proj : R|θI| → R|θ0| denotes a random pro-
jection (|θI| ≪ |θ0|). During optimization, only the
low-dimensional vector θI is tuned. Considering
that |θ0| could be extremely large, making com-
putation of the projection intractable, Aghajanyan
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et al. (2021) reduce the computational complex-
ity using Fastfood transformation (Le et al., 2013).
In experiments, they find that for PLMs, a low-
dimensional (e.g., |θI| ∼ 103) re-parameterization
could achieve over 85% performance of fine-tuning
(|θ0| exceeds millions or even billions). Further,
Qin et al. (2021) extend the tuning method from
fine-tuning to prompt tuning (Lester et al., 2021).
They demonstrate that the projection Proj can be
trained in order to approximate a better optimiza-
tion subspace. Based on previous explorations of
intrinsic subspace, we aim to validate the existence
of a unified subspace for various tuning methods.

3 Preliminary

Following He et al. (2021), we investigate three
representative DET algorithms to validate our
hypothesis, including Adapter (Houlsby et al.,
2019a), Prefix-tuning (Li and Liang, 2021a), and
LoRA (Hu et al., 2021b). We will first recap the
Transformer layer (Vaswani et al., 2017), and then
give a brief review of the three DETs.

Transformer layer. PLMs generally have multi-
ple Transformer layers, each consisting of a multi-
head attention (MHA) and a feed-forward network
(FFN). MHA is composed of Nh attention heads,
each containing a query / key / value weight matrix
W

(i)
q / W(i)

k / W(i)
v ∈ Rd×dh , where d denotes

the model dimension and dh = d/Nh. Given a
sequence of n vectors X ∈ Rn×d, MHA parame-
terizes them into queries (Q(i)), keys (K(i)) and
values (V(i)) as follows:

Q(i) = XW(i)
q ,K(i) = XW

(i)
k ,V(i) = XW(i)

v .

Each (Q(i), K(i), V(i)) triple is then fed into a
self-attention function to obtain the i-th head’s rep-
resentation Hi. All head representations are then
concatenated and combined using an output weight
matrix Wo ∈ Rd×d:

Hi = softmax(
Q(i)(K(i))T√

dh
V(i)),

H = concat(H1, ...,HNh
)Wo.

The FFN module is a two-layer MLP:

FFN(H) = σ(HW1 + b1)W2 + b2,

where W1 ∈ Rd×dm , d ∈ Rdm , W2 ∈ Rdm×d

and b2 ∈ Rd. dm is often chosen larger than d.

Adapter. Adapter (Houlsby et al., 2019a) plugs
in light-weight feed-forward networks in Trans-
former layers (after the MHA module and the FFN
module). Every adapter layer typically consists of
a down-projection matrix Wdown ∈ Rd×rA , a non-
linear activation function f(·), and an up-projection
matrix Wup ∈ RrA×d, where rA denotes the bottle-
neck dimension. Denote the input as X ∈ Rn×d,
adapter applies a residual connection as follows:

X← X+ f(XWdown)Wup.

Prefix-tuning. Prefix-tuning (Li and Liang,
2021a) extends the queries K(i) / the values V(i) in
every MHA module by prepending learnable prefix
vectors P(i)

K / P(i)
V ∈ Rm×dh before them, where

m denotes the number of virtual tokens. The output
of an attention head Hi can be re-formulated as:

H′
i = ATT(Q(i), [P

(i)
K ;K(i)], [P

(i)
V ;V(i)]),

where [·; ·] denotes concatenation.

LoRA. LoRA (Hu et al., 2021b) re-parameterizes
the weight updates ∆W of the weight matrix W in
the MHA module with low-rank decompositions,
i.e., ∆W = WAWB, where WA ∈ Rd×rL and
WB ∈ RrL×d are two learnable low-rank matrices,
with rL being typically a small integer. For an input
X ∈ Rn×d, LoRA is formulated as:

X← X+ s ·XWAWB,

where s ≥ 1 is a scaling hyper-parameter.

4 Analysis Pipeline

As mentioned before, we consider three represen-
tative DETs: Adapter (tA), Prefix-tuning (tP), and
LoRA (tL). Each DET t∗ defines a set of tunable
parameters θt∗ . To adapt a PLM to a specific down-
stream task Ti, we optimize θit∗ to minimize the
loss function Litask(θ

i
t∗ |θ0) defined by Ti, where

θ0 denotes the pre-trained weights. To verify our
hypothesis that there exists a unified optimization
subspace where all DETs can achieve non-trivial
performance, we propose a three-stage analysis
pipeline (visualized in Figure 1), where the first
stage is designed to approximate the desired sub-
space, so that in the second stage, the optimizations
for different DETs could all be conducted in this
subspace. This makes it possible to explore the
connections of different DETs in the third stage.
Following Qin et al. (2021), to validate the gener-
ality of the found subspace and avoid information
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Figure 1: Illustration of our analysis pipeline, consisting of (1) subspace approximation, which jointly decomposes
DET solutions into a shared subspace, (2) subspace optimization, which finds subspace solutions for a specific
DET, and (3) subspace solution transfer, which transfers the subspace solution from a source DET to other DETs.

leakage, we approximate the subspace with a se-
ries of training tasks Ttrain, and conduct subsequent
subspace optimization on unseen tasks Ttest.

Subspace Approximation. To approximate the
desired subspace, we decompose and then recon-
struct independent DET solutions of Ttrain. We
first train DETs in their original space, and for
each task Ti ∈ Ttrain, we obtain three indepen-
dent solutions: θitA

, θitP
, and θitL

. Then we assign
a down-projection Proj↓t∗ : R|θit∗ | → Ry and an
up-projection Proj↑t∗ : Ry → R|θit∗ | for each DET
t∗, where y is the dimension of the intrinsic sub-
space. In practice, both down-projection and up-
projection are MLP layers. Each down-projection
decomposes a DET solution into a low-dimensional
intrinsic vector Iit∗ ∈ Ry:

Iit∗ = Proj↓t∗(θ
i
t∗).

Three intrinsic vectors IitA
, IitP

, IitL
represent dif-

ferent local minima of Ti in the same subspace.
Ideally, if three DETs can be unified in the sub-
space, then each vector Iit∗ could be used to recon-
struct any DET solution (θitA

, θitP
, or θitL

). There-
fore, to approximate such a subspace, we facil-
itate the interaction among different DETs effi-
ciently by dynamically sampling two random ratios

α ∈ [0, 1], β ∈ [0, 1− α], and computing an inter-
polation of three intrinsic vectors of Ti:

Iiα;β = α · IitA
+ β · IitP

+ (1− α− β) · IitL
.

The interpolation is mapped by each up-projection
Proj↑t∗ to reconstruct the task solution for each
DET by minimizing the following loss function:

Lidist(θ
i
t∗) = ||θit∗ − θit∗ ||2, θit∗ = Proj↑t∗(I

i
α;β).

To properly guide the reconstructed θit∗ to solve
task Ti, we also incorporate the original task loss
Litask. The overall training objective can be formu-
lated as follows:

Lpet =

|Ttrain|∑

i=1

∑

t∗∈{tA,tP,tL}
Lidist(θ

i
t∗) + Litask(θ

i
t∗ |θ0).

During this stage, only the down-projections and
up-projections are optimized, and other parameters
are kept frozen. When this stage finishes, the two
projections can be seen as mappings between the
unified subspace and each DET’s original space.

Subspace Optimization. In the second stage, we
investigate whether the optimization in the sub-
space could achieve comparable performance to
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the optimization in the original space for unseen
tasks Ttest. If this holds, then we could empirically
validate that the optimizations of different DETs
could be equivalently mapped in this subspace with
a low level of error, and it is possible to explore the
connections among DETs in the next stage.

Specifically, we only retain the up-projection
Proj↑t∗ trained in the first stage. Proj↑t∗ defines
the mapping from the found subspace to the orig-
inal DET space. We keep both PLM and Proj↑t∗
frozen during subspace optimization. After that, for
each task Ti ∈ Ttest, the optimization of t∗ can be
conducted within the subspace defined by Proj↑t∗
by merely tuning a randomly initialized intrinsic
vector It∗ , which is formulated as:

I⋆i,t∗ = argmin
Iit∗

Litask(Proj
↑
t∗(I

i
t∗)|θ0).

Subspace Solution Transfer. If the found sub-
space is shared among different DETs, then the
found solution I⋆i,t∗ in the subspace could be di-
rectly transferred to another DET and achieve non-
trivial performance. Taking the transferring be-
tween tA and tP as an example, for a task Ti ∈
Ttest, we first conduct subspace optimization for
tA and obtain a well-tuned intrinsic vector I⋆i,tA

.
Then we directly transfer I⋆i,tA

to tP utilizing its

up-projection Proj↑tP
, and obtain a tP’s solution

θi,tA→tP in the original DET space:

θi,tA→tP = Proj↑tP
(I⋆i,tA

).

5 Experiment

We conduct experiments on representative NLP
tasks. We first introduce the experimental setups
in §5.1, next we approximate the subspace and
present the analysis in §5.2. Lastly, we explore the
connection between DETs and fine-tuning in §5.3.

5.1 Experimental Setups
Training Setups. We conduct experiments with
both single-task and multi-task settings.

In the single-task setting, we approximate the
unified optimization subspace using only one
dataset, i.e., |Ttrain|=1. Then we perform the sub-
space optimization and subspace solution transfer
on unseen tasks. However, the subspace approxi-
mated with only one task may not generalize well
to diverse unseen tasks (Qin et al., 2021). For ex-
ample, the subspace approximated using a NLI task
can hardly be generalized to a QA task. Therefore,

for the single-task setting, we only evaluate the
found subspace using the unseen tasks belonging
to the same category of Ttrain.

Besides, we also experiment on the multi-task
setting, where the unified subspace is approximated
with diverse training tasks, i.e., |Ttrain| > 1. The
unified DET subspace found in the multi-task set-
ting is expected to generalize to more diverse tasks
than that in the single-task setting.

During subspace solution transfer, we choose the
subspace solution that achieves the best transferring
performance using the development set, and report
its performance on the test set.

Tasks and Datasets. In the single-task setting,
we experiment with 6 types of tasks, including:

• Sentiment Analysis (SA): SST-2 (Socher
et al., 2013), Rotten Tomatoes (Pang and Lee,
2005), and Amazon Review (McAuley and
Leskovec, 2013).

• Natural Language Inference (NLI): Sci-
Tail (Khot et al., 2018), MNLI (Williams et al.,
2018), and RTE (Dagan et al., 2005).

• Text Classification (TC): WiC (Pile-
hvar and Camacho-Collados, 2019), and
WSC (Levesque et al., 2012).

• Paraphrase Detection (PD): QQP(link), and
MRPC (Dolan and Brockett, 2005).

• Long-form QA (LF-QA): ELI5-ELI5, ELI5-
Askh, and ELI5-Asks (Fan et al., 2019).

• Multiple-choice QA (MC-QA): CoPA (Gor-
don et al., 2012), DREAM (Saha et al.,
2018), QuaRTz (Tafjord et al., 2019b) and
CODAH (Chen et al., 2019).

We include more diverse datasets in the multi-
task setting, and randomly partition them into 60
training tasks Ttrain and 9 test tasks Ttest. More
details are left in Appendix A.1.

Evaluation Metrics. For each dataset, we use
the common evaluation metric, e.g., ROUGE-L for
LF-QA , F1 for SA and NLI, ACCURACY for TC,
PD and MC-QA. Denote Eori as the performance
achieved by DET in the original space, and Esub as
the performance achieved by optimization within
the subspace, we report the relative recovering per-
formance (%), i.e., Esub

Eori
in all experiments.
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Ttrain Ttest Adapter LoRA Prefix Avg.

SST-2 Rotten Tomatoes 101.8 100.1 99.3 100.4
Amazon Review 98.0 96.9 98.2 97.7

MNLI SciTail 82.9 79.8 84.4 82.4
RTE 95.4 68.2 80.2 81.3

WiC WSC 70.6 57.6 77.1 68.4

QQP MRPC 85.4 84.3 83.1 84.3

ELI5-ELI5 ELI5-Askh 91.4 87.6 80.1 86.4
ELI5-Asks 96.6 95.0 94.9 95.5

DREAM
CODAH 77.4 70.4 74.0 73.9
QuaRTz 75.6 78.5 74.7 76.3
CoPA 98.3 71.6 92.5 87.5

Avg. 88.5 80.9 85.3 84.9

Table 1: Relative performance (%) for subspace opti-
mization under the single-task setting.

Models. We use T5BASE (Raffel et al., 2020) as
the backbone model, and unify all tasks into a text-
to-text format without loss of generality. We set the
dimension of the subspace to 4 in single-task set-
ting and 100 in multi-task setting. During subspace
optimization, only 4 or 100 free parameters are
tuned, compared with 220M for fine-tuning. We
choose the intrinsic dimension according to our pre-
liminary experiment. The single-task performances
of different intrinsic dimensions in {4, 8, 16} do
not vary much. The multi-task performance gets
better when the intrinsic dimension increases. Prac-
tically, we find a dimension of 100 strikes a satis-
fying balance between performance and computa-
tional resources. The details of implementation are
shown in Appendix A.2.

5.2 Experimental Results

5.2.1 Single-task Setting

Subspace Optimization. The results of subspace
optimization are presented in Table 1. On average,
for all three DETs, optimization within the sub-
space can recover more than 80% performance of
the original space. Among three DETs, Adapter
achieves the best recovering performance (≈ 90%),
despite only tuning 4 free parameters. This indi-
cates that we have found a satisfying optimization
subspace that could recover most of the perfor-
mance of the original space1, and the subspace can
be generalized to unseen tasks Ttest belonging to
the same category of Ttrain.

1Aghajanyan et al. (2021) deem 85% as a satisfying re-
covering performance for an intrinsic subspace. Although the
performance of our method could be a bit lower under certain
cases, we contend that the performance is already non-trivial.

Ttrain Ttest A→L A→P L→A L→P P→A P→L Avg.

SST-2 R. Tomatoes 100.6 99.0 100.7 98.8 101.0 100.8 100.2
A. Review 97.1 97.7 97.7 98.1 97.6 96.7 97.5

MNLI SciTail 81.7 83.0 83.2 83.6 83.4 80.9 82.6
RTE 62.7 74.3 81.7 78.2 55.0 80.0 72.0

WiC WSC 72.7 54.3 58.8 57.1 76.5 69.7 64.9

QQP MRPC 83.7 65.7 83.7 69.1 84.8 85.4 78.7

ELI5-ELI5 ELI5-Askh 88.0 79.4 91.3 78.1 90.3 87.0 85.7
ELI5-Asks 95.9 95.4 91.3 92.5 97.8 96.1 94.8

DREAM
QuaRTz 76.2 71.9 76.0 74.5 76.4 77.2 75.4
CODAH 63.0 61.6 74.3 58.1 83.9 69.0 68.3
CoPA 77.3 100.3 96.0 103.1 91.7 65.6 89.0

Avg. 81.7 80.2 85.0 81.0 85.3 82.6 82.6

Table 2: Relative performance (%) for subspace solution
transfer under the single-task setting. A, P, and L refer
to Adapter, Prefix-tuning, and LoRA, respectively. As
an example, A→L means we obtain I⋆tA

by conduct-
ing subspace optimization with Adapter (source DET),
and then transfer the subspace solution to LoRA (target
DET) with the fixed up-projection, i.e., Proj↑

tP
(I⋆tA

).

Subspace Solution Transfer. Then we transfer
the solution found with a source DET to other
DETs. The results are presented in Table 2. On
6 out of the 11 tasks, transferring the subspace
solution from a source DET to a target DET
achieves more than 80% recovering performance,
and achieves 82.6% on average across all tasks.
This demonstrates that the transferred intrinsic vec-
tor yields DETs with non-trivial performance. In
particular, in the category of sentiment analysis, the
subspace of three DETs approximated on SST-2
serves as an excellent optimization subspace for
similar tasks (R. Tomatoes and A. Review). Per-
forming optimization in this subspace with an arbi-
trary source DET and transfer the found intrinsic
vector to other DETs yield performance compara-
ble to or even surpass the original DET space.

However, we also observe that the transferred
DET on WSC does not perform very well, achiev-
ing only 64.9% recovering performance. We ar-
gue that this may be due to the inherent difference
between WiC (Ttrain) and WSC (Ttest): WiC eval-
uates the quality of context-sensitive representa-
tions, while WSC is a coreference resolution task,
which requires slightly distinct language skills from
WiC. Besides, the performances of the transferred
DET on DREAM are also slightly below the ex-
pectation, this may due to the domain differences
between DREAM and the target tasks. Although
they all belong to multi-choice QA, their domains
differ significantly. In fact, these unwanted trans-
ferred performance can be substantially improved
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Ttest Adapter LoRA Prefix Avg.

Rotten Tomatoes 99.7 98.2 100.3 99.4
Yelp Polarity 99.5 99.5 98.7 99.2

WSC 88.2 75.8 80.0 81.3

AI2 ARC 93.2 87.9 78.8 86.6
QASC 99.3 71.4 90.9 87.2
QuaRTz 96.6 86.9 77.3 86.9

BLiMP-ANA 100.0 100.0 51.0 83.7

ELI5-Asks 99.9 99.6 94.3 97.9

ETHOS-Gender 79.6 88.9 59.0 75.8

Avg. 95.1 89.8 81.1 88.7

Table 3: Relative performance (%) for subspace opti-
mization under the multi-task setting.

in multi-task setting, as we will see in the next
section.

In addition, we do not find a significant differ-
ence in the transferability among different DETs.
In general, when serving as the source DET,
Adapter has slightly worse transferability than
other two DETs. Besides, the transferability of
a DET seems to have a weak correlation to its per-
formance of subspace optimization.

5.2.2 Multi-task Setting
To improve the subspace’s task-level generaliza-
tion, we propose to approximate the subspace in a
multi-task manner (60 training tasks in total), and
test the generalization ability of the approximated
subspace on 6 categories of unseen tasks. Note
for the multi-task setting, the subspace optimiza-
tion and subspace solution transfer are carried out
within the same subspace for all the unseen tasks.

Subspace Optimization. The results of subspace
optimization under the multi-task setting are shown
in Table 3. In general, three DETs achieve non-
trivial (88.7%) performance during subspace op-
timization on unseen tasks. Among three DETs,
Adapter still performs the best, achieving 95.1%
of its original performance. However, the perfor-
mance of Prefix-tuning is about 10% poorer than
Adapter and LoRA. We observe that when approxi-
mating the subspace, the loss of Prefix-tuning con-
verges much slower than Adapter and LoRA, which
may partially explain the poorer performance of
Prefix-tuning. We leave further exploration of this
phenomenon as future work.

Subspace Solution Transfer. The results are pre-
sented in Table 4. On 8 out of 9 tasks, DETs re-
cover around or more than 80% their performance
in the original space. The non-trivial results demon-

Ttest A→L A→P L→A L→P P→A P→L Avg.

Rotten Tomatoes 97.5 96.6 98.5 95.9 98.3 96.2 97.2
Yelp Polarity 99.1 97.5 99.4 98.1 98.5 98.4 98.5

WSC 90.9 85.7 97.1 94.3 91.2 93.9 92.2

AI2 ARC 78.7 79.3 87.7 76.9 85.2 87.9 82.6
QASC 65.1 63.6 98.7 72.1 105.2 68.0 78.8
QuaRTz 77.4 71.7 90.9 73.9 83.4 78.1 79.2

BLiMP-ANA 98.0 47.0 95.0 49.0 92.0 95.0 79.3

ELI5-Asks 90.6 89.7 89.6 95.0 95.8 87.4 91.4

ETHOS-Gender 55.5 57.8 53.0 73.3 68.7 69.8 63.0

Avg. 83.6 76.5 90.0 80.9 90.9 86.1 84.7

Table 4: Relative performance (%) for subspace solution
transfer under the multi-task setting.

strate that (1) for most of the investigated unseen
tasks, the local optima found by a source DET can
be directly transferred to a target DET and achieve
non-trivial performance; (2) the subspace approx-
imated with multiple training tasks can be well
generalized to diverse unseen tasks. Both findings
provide strong evidence for our hypothesis that dif-
ferent DETs can be re-parameterized into a unified
optimization subspace.

We also observe that, the transferring perfor-
mance on WSC is far better than that in the single-
task setting, demonstrating the benefits of includ-
ing diverse training tasks in subspace approxima-
tion. However, we still find that there are cases
where the subspace solution of a source DET has
poor transferability to another DET. For instance,
the transferring performance of different DETs on
ETHOS-Gender is only 63.0%. We conjecture that
it is due to the gap between ETHOS-Gender and
the training tasks Ttrain. As demonstrated by Qin
et al. (2021), increasing the diversity and number
of training tasks could significantly improve the
generalization ability of the subspace on unseen
tasks. We expect future works to apply our analysis
to more diverse training tasks.

Furthermore, comparing the transferability of
different DETs, we find that similar to the single-
task setting, Adapter is still slightly worse than the
other two DETs. We also find there is no symme-
try in the transferability. For example, the aver-
age transferring performance from Prefix-tuning
to Adapter achieves 90.9% of its performance,
while the performance in the opposite direction
only reaches 76.5%.

5.2.3 Performance Landscape Visualization
From Tables 2 and 4, we observe non-trivial trans-
ferring performance among different DETs. These
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(a) SciTail (single-task) (b) Yelp Polarity (multi-task) (c) AI2 ARC (multi-task)

Figure 2: Performance landscape visualization on three datasets (SciTail, Yelp Polarity, and AI2 ARC). We highlight
the subspace solutions (ItA , ItL and ItP ) found independently by the three DETs.

results demonstrate that the local optima of differ-
ent DETs have a substantial overlap in the approxi-
mated subspace for the investigated unseen tasks.
It is natural to be concerned about how large this
overlap area is since a larger overlap may indicate
closer connection of different DETs. Therefore, for
both single-task and multi-task settings, we visu-
alize the performance landscape to understand to
what extent the local optima of different DETs in
intrinsic subspace overlap with each other.

Specifically, denote I0 as an origin, and u,v
as two orthogonal directions. Let α, β be two
coordinates in the 2-dimensional space spanned
by u and v. Each solution I0 + αu + βv in the
subspace can be mapped by the up-projection of
DET t∗ to the solution Proj↑t∗(I0 + αu + βv)

in the DET space. Denote E(Proj↑t∗(I0 + αu +
βv)) as the performance of the recovered DET,
and EPET as the average performance of the three
DETs in their original space, we plot the relative
performance along these two directions as follows:

P=
1

3

∑

t∗∈{tA,tP,tL}

E(Proj↑t∗(I0 + αu+ βv))

EPET
.

If P is high at (α, β), then it means three DETs
all correspond to high performance at this point.
Let ItA , ItP , ItL denote the optimal solution obtained
by tuning each DET in the subspace independently.
We visualize the performance landscape around
these optimal solutions. Without loss of generality,
we choose ItA as the origin, and select two orthog-
onal axes u,v as follows:

u=
ItP − ItA

∥ItP − ItA∥
, ṽ=ItL − ItA , v=

ṽ− ⟨ṽ,u⟩u
∥ṽ− ⟨ṽ,u⟩u∥ .

We traverse α and β from −4 to 4 with a step
size of 0.4. Due to the length limit, we only show
in Fig. 2 the performance landscape on (1) SciTail

Src.
Tgt. Adapter Prefix LoRA Fine-tune

Adapter 100.6 100.1 97.7 95.5
Prefix 101.2 100.4 97.7 95.0
LoRA 101.1 100.2 97.5 95.8
Fine-tune 101.1 99.7 97.1 96.1

Table 5: Relative performance (%) for subspace opti-
mization and subspace solution transfer for different
tuning methods on Rotten Tomatoes. The subspace is
approximated on SST-2. We transfer the subspace solu-
tion from a source tuning method to a target one.

of the single-task setting, (2) Yelp Polarity and AI2
ARC under the multi-task setting.

We observe that the subspace solutions of differ-
ent DETs almost lie in the same optimal region for
each task. Comparing the landscape of both single-
task and multi-task settings, the highland area is
much wider in the multi-task setting. This may ex-
plain the better transferability under the multi-task
setting. In general, the above results demonstrate
that the optimal solutions of different DETs indeed
have a large overlap, otherwise there should not
exist such a flat performance highland.

5.3 Extension to Fine-tuning

Finally, we extend our analysis pipeline to fine-
tuning, and investigate its connection with DETs.
However, directly training a down-projection and
up-projection for fine-tuning encounters difficulty:
if we still use an MLP layer (as introduced in §4) to
implement the projections, the number of trainable
parameters will beO(yN), where N is the number
of parameters of the PLM, and y is the dimension
of our intrinsic subspace. Since PLMs generally
contain tremendous parameters, it is intractable to
train such an MLP. To alleviate the problem, we
turn to using Fastfood transformation (Yang et al.,
2015; Aghajanyan et al., 2021) as an alternative. It
is an approximation for the linear projection, but
requires far fewer parameters. Specifically, the up-
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projection using Fastfood transformation can be
formalized as follows:

θ̃ = θ0 + IM, M = HGΠHB,

where θ̃ denotes the tunable parameters in the orig-
inal space, θ0 is the pre-trained weights, and I is
the intrinsic vector. The Fastfood matrix M can be
factorized as a Hadamard matrix H , a random per-
mutation matrix Π, a diagonal matrix G with each
element sampled from a standard normal distribu-
tion, and a diagonal matrix B with each element
being ±1 with equal probability. Unlike previous
work that uses a random and frozen Fastfood ma-
trix (Yang et al., 2015; Aghajanyan et al., 2021),
we optimize the matrix G to better approximate
the desired subspace. For DETs, the projection is
implemented the same as before. More detailed
implementations are described in Appendix A.4.

We perform subspace approximation on SST-2,
and report the results of subspace optimization and
subspace solution transfer on Rotten Tomatoes. As
shown in Table 5, we find that: (1) all the DETs and
fine-tuning can achieve satisfactory results in sub-
space optimization, and the solution found by any
source tuning method can be transferred to other
target tuning methods and achieve non-trivial per-
formance. This demonstrates the close connection
between DETs and fine-tuning in the approximated
subspace. (2) Since the Fastfood transformation
is an approximation for linear projection, its rep-
resentation ability may be limited. Therefore, the
transferring performance of fine-tuning is slightly
inferior to other DETs.

In general, the above finding implicates that all
tuning methods may be re-parameterized to a uni-
fied optimization subspace, which also sheds light
on the reason why different DETs optimize dis-
tinct sets of parameters, but all achieve comparable
downstream performance to fine-tuning.

6 Conclusion

In this work, we explore the hypothesis that the
adaptations of different delta tuning methods could
all be re-parameterized as low-dimensional opti-
mizations in a unified optimization subspace. The
empirical results provide strong evidence for our
hypothesis. We also extend our analysis to find the
connection between fine-tuning and delta tuning.
We hope our findings could provide insights for
future research in designing better tuning methods

and understanding the mechanisms behind PLM
adaptation.
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A Appendices

A.1 Datasets

All the datasets used in the multi-task setting
are listed in Table 12 and Table 13. All
these datasets are downloaded from Huggingface
Datasets (Lhoest et al., 2021).

A.2 Hyper-parameters and Network
Structure for §5.2

The down-projection Proj↓t∗ is a two-layer MLP,
with the first linear layer fdown-1 : R|θt∗ | → Ry,
and the second linear layer fdown-2 : Ry → Ry,
where y is the dimension of intrinsic subspace.
We use tanh as the activation function between
fdown-1 and fdown-2. The up-projection Proj↑t∗ is
a single linear layer fup : Ry → R|θt∗ |. Note for
all the linear layers of the projections, we do not
include the bias term.

To ensure that the number of parameters is con-
sistent across the three DETs, we set rA as 12, rL
as 10, m as 120, and dP as 24. dP refers to the hid-
den dimension of the two-layer MLP that is used
to re-parameterize Prefix vectors P(i)

K / P(i)
V , see Li

and Liang 2021b for more details. The meanings
of other notations are the same as those in §3. In
this way, the number of parameters of θitA

, θitP
and

θitL
are all 1105920. Moreover, following Houlsby

et al. 2019b, we choose a SiLU activation function
for Adapter. Following Hu et al. 2021a, we set the
scaling factor s in LoRA as 1.6. In our implemen-
tation, LoRA is applied to Q and V matrices in the
MHA module.

During subspace approximation, for the multi-
task setting, we randomly sample 20000 instances
from the original training set of each dataset, and
blend them together to form the multi-task training
set. Similarly, we sample another 240 instances
from each dataset to form the validation set. We
set the learning rate as 1 × 10−4, batch size as 4.
We train the model for 1 epoch and evaluate on val-
idation set for every 1000 steps. For the single-task
setting, we perform grid search using the learning
rates in {1 × 10−5, 5 × 10−5} and set the batch
size as 8. We train the model for a maximum step
of 100000, and evaluate on validation set for every
1000 steps. When conducting subspace optimiza-
tion, we perform grid search using the learning rate
in {1× 10−2, 5× 10−2} and set the batch size as 8.
We train the model for a maximum of 5000 steps
and evaluate on validation set every 500 steps.

Ttrain Ttest Adapter LoRA Prefix Avg.

SST-2 Rotten Tomatoes 99.3 98.5 95.5 97.8
Amazon Review 96.7 96.5 97.1 96.8

MNLI SciTail 82.0 74.1 73.3 76.5
RTE 71.5 80.0 71.3 74.3

WiC WSC 61.8 84.8 85.7 77.4

QQP MRPC 85.4 81.5 68.5 78.5

ELI5-ELI5 ELI5-Askh 89.1 85.1 77.5 83.9
ELI5-Asks 93.9 94.4 88.2 92.2

DREAM
CODAH 63.6 63.9 61.6 63.0
QuaRTz 74.2 72.4 73.9 73.5
CoPA 90.4 66.0 101.4 85.9

Avg. 82.5 81.6 81.3 81.8

Table 6: Relative performance (%) for subspace op-
timization under single-task setting with constructed
subspace.

Ttest Adapter LoRA Prefix Avg.

Rotten Tomatoes 92.9 88.5 66.4 82.6
Yelp Polarity 97.0 96.2 90.0 94.4

WSC 94.1 90.9 82.9 89.3

AI2 ARC 77.2 73.4 75.9 75.5
QASC 73.8 64.0 59.8 65.9
QuaRTz 78.0 78.5 74.3 76.9

BLiMP-ANA 94.0 98.0 47.0 79.7

ELI5-Asks 83.9 84.6 79.5 82.7

ETHOS-Gender 54.6 55.4 74.3 61.4

Avg. 82.8 81.1 72.2 78.7

Table 7: Relative performance (%) for subspace solution
transfer under under multi-task setting with constructed
subspace.

We train the model using Adafactor (Shazeer and
Stern, 2018) with a constant learning rate in all ex-
periments. Intrinsic dimension y (the dimension of
the approximated subspace) is set to 4 in single-task
setting and 100 in multi-task setting. We addition-
ally set a ratio α = 10 to balance the reconstruction
loss Lidist(θ

i
t∗) and original task loss Litask(θ

i
t∗ |θ0),

i.e., Lpet = 10 ∗ Lidist(θ
i
t∗) + Litask(θ

i
t∗ |θ0). All ex-

periments are carried out on NVIDIA 32GB V100
GPU.

A.3 Simplification of Subspace
Approximation

From a standpoint of analysis, it is necessary to
start our pipeline from independent solutions of
different DETs and then explore their connections.
Now that we have validated the existence of the
unified optimization subspace, for practical uses,
we could simplify the original pipeline by enforc-
ing different DETs to share the same intrinsic vec-
tor. Specifically, we jointly train three DETs, and
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Ttrain Ttest A→L A→P L→A L→P P→A P→L Avg.

SST-2 R. Tomatoes 99.7 98.5 100.9 98.8 101.2 99.7 99.8
A. Review 98.2 98.2 98.3 98.2 98.1 97.3 98.1

MNLI SciTail 74.9 77.4 83.5 77.0 83.9 74.8 78.6
RTE 89.1 80.2 58.7 87.1 70.6 87.3 78.8

WiC WSC 84.8 74.3 70.7 74.3 82.3 72.8 76.5

QQP MRPC 84.8 67.4 79.8 76.4 78.0 5.6 65.3

ELI5-ELI5 ELI5-Askh 85.1 79.9 93.4 79.9 92.6 85.9 86.1
ELI5-Asks 93.1 91.5 97.9 91.5 97.3 93.8 94.2

DREAM
QuaRTz 80.0 74.9 77.7 74.2 78.1 80.2 77.5
CODAH 73.0 77.8 75.9 78.2 80.3 70.9 76.0
CoPA 67.7 107.5 86.8 103.8 84.4 63.8 85.7

Avg. 84.6 84.3 84.0 85.4 86.1 75.6 83.3

Table 8: Relative performance (%) for subspace solu-
tion transfer under single-task setting with constructed
subspace.

Ttest A→L A→P L→A L→P P→A P→L Avg.

Rotten Tomatoes 93.6 88.0 83.5 87.9 84.6 95.0 88.8
Yelp Polarity 97.5 92.0 98.0 87.0 97.9 97.1 94.9

WSC 93.9 94.3 58.9 94.3 64.7 93.9 83.3

AI2 ARC 82.7 78.3 88.4 77.7 83.6 81.4 82.0
QASC 85.2 68.2 103.2 70.7 99.9 85.2 85.4
QuaRTz 79.1 76.9 81.4 76.4 81.4 77.4 78.8

BLiMP-ANA 99.0 51.0 96.0 52.0 96.0 96.0 81.7

ELI5-Asks 90.5 89.5 89.9 88.8 87.9 90.5 89.5

ETHOS-Gender 52.8 0.0 51.1 0.0 50.1 57.4 35.2

Avg. 86.0 70.9 83.4 70.5 82.9 86.0 80.0

Table 9: Relative performance (%) for subspace solu-
tion transfer under multi-task setting with constructed
subspace.

generate the parameters of each DET via a shared
intrinsic vector and three individual up-projections.
Both the intrinsic vector and the up-projections are
trainable. Denote the intrinsic vector shared among
DETs on the i-th task as Iishared, then the parame-
ters of DET t∗ for the i-th task are generated as
θit∗ = Proj↑t∗(I

i
shared). During the joint training,

we minimize the loss:

L =
1

3

|Ttrain|∑

i=1

∑

t∗∈{tA,tP,tL}
Litask(θ

i
t∗ | θ0).

In this way, we can directly approximate the de-
sired unified subspace, omitting the procedure of
first obtaining solutions for different DETs, and we
do not need to assign a down-projection for each
DET. Subspace optimization and subspace solution
transfer can then be carried out using this subspace.

We present the results of subspace optimization
and subspace solution transfer for both the single-
task and multi-task settings in Tables 6 to 9. We
find that in general, all DETs still achieve non-

Ttrain Ttest Adapter LoRA Prefix Fine-tune

SST-2 Rotten Tomatoes 89.2 89.3 90.0 89.8
Amazon Review 96.2 96.6 96.6 97.0

MNLI SciTail 94.0 93.8 93.0 94.8
RTE 78.4 79.1 72.7 80.6

WiC WSC 65.4 63.5 67.3 67.3

QQP MRPC 87.3 87.3 87.3 89.7

ELI5-ELI5 ELI5-Askh 11.5 12.0 12.6 13.0
ELI5-Asks 15.0 15.2 15.1 15.3

DREAM
CODAH 41.2 43.0 45.0 45.2
QuaRTz 67.0 67.1 68.5 69.4
CoPA 60.4 56.4 58.4 59.2

Avg. 65.6 65.2 65.0 66.6

Table 10: Absolute performance for different tuning
methods under the single-task setting.

trivial performance in both subspace optimization
and subspace solution transfer, which means the
simplification does not influence the representa-
tion ability of the found subspace. This simplified
pipeline is the cornerstone of our analysis of the
connection between fine-tuning and DETs. Since
the simplified procedure does not require training
a down-projection, the total number of tunable pa-
rameters can be further reduced.

A.4 HyperParameters of simplified
approximation experiments

In the simplified approximation experiments, we
use different learning rates for the shared intrinsic
vector and DETs in subspace approximation. We
set the learning rate as 5 × 10−5 for the shared
intrinsic vector, and 1× 10−4 for DETs. The batch
size is 16 in the single-task setting and 8 in the
multi-task setting. We train the model for a maxi-
mum of 100000 and validate every 1000 steps. For
subspace optimization, we perform grid search on
learning rate in {5 × 10−2, 1 × 10−2, 5 × 10−3,
1 × 10−3 }. We set batch size as 16. To keep 3
DETs’ number of parameters consistent, we set rA
as 12, rL as 10, m as 24, and dP as 120. Other
hyperparameters are kept consistent with the main
experiments.

A.5 Implementation Details for Extension to
Fine-tuning

We use the simplified pipeline introduced in Ap-
pendix A.3 to further reduce the number of train-
able parameters. That is, an intrinsic vector Ii for
the i-th task is set to be a trainable parameter, and
is shared among fine-tuning and different DETs.
The steps of analysis is the same as in §5.2. In
the experiment of subspace approximation on glue-
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Ttest Adapter LoRA Prefix Fine-tune

Rotten Tomatoes 89.2 89.3 90.0 89.8
Yelp Polarity 97.3 97.4 97.8 97.9

WSC 65.4 63.5 67.3 67.3

AI2 ARC 31.2 32.4 32.2 31.3
QASC 33.0 37.8 33.3 43.6
QuaRTz 67.0 67.1 68.5 69.4

BLiMP-ANA 100.0 100.0 100.0 100.0

ELI5-Asks 15.0 15.2 15.1 15.3

ETHOS-Gender 79.9 79.9 77.4 74.5

Avg. 65.6 66.2 65.4 67.0

Table 11: Absolute performance for different tuning
methods under the multi-task setting.

sst2. We set learning rate as 1e-4, batch size as 8,
max steps as 100000 and validate every 1000 steps.
For subspace optimization, we perform grid search
on learning rate in {1× 10−1, 5× 10−2, 1× 10−2,
5× 10−3, 1× 10−3, 5× 10−4, 1× 10−4 }. We set
batch size as 8 and validate every 100 steps. Other
hyper-parameters are the same as Appendix A.4.

A.6 Absolute Performance for Different
Tuning Methods

In the main paper, we report the relative perfor-
mance of subspace optimization. In this section,
we list the absolute performance of different tuning
methods (Adapter, Prefix-Tuning, and LoRA) in
Table 10 and Table 11 for reference.
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Table 12: The training tasks involved in our multi-task setting.

Split Task Name Reference

Training tasks

amazon review McAuley and Leskovec 2013
financial_phrasebank Malo et al. 2014
glue-sst2 Socher et al. 2013
imdb Maas et al. 2011
emotion Saravia et al. 2018
tweet_eval-offensive Barbieri et al. 2020
tweet_eval-stance_climate Barbieri et al. 2020
ethos-directed_vs_generalized Mollas et al. 2020
ethos-race Mollas et al. 2020
hatexplain Mathew et al. 2020
glue-mnli Williams et al. 2018
glue-qnli Rajpurkar et al. 2016
glue-wnli Faruqui and Das 2018

superglue-rte Dagan et al. 2005; Bar-Haim et al. 2006
Giampiccolo et al. 2007; Bentivogli et al. 2009

health_fact Kotonya and Toni 2020
liar Wang 2017
glue-qqp (link)
medical_questions_pairs McCreery et al. 2020
paws Zhang et al. 2019
circa Louis et al. 2020
onestop_english Vajjala and Lučić 2018
trec-finegrained Li and Roth 2002; Hovy et al. 2001
wiki_auto Jiang et al. 2020
google_wellformed_query Faruqui and Das 2018
sms_spam Almeida et al. 2011
superglue-wic Pilehvar and Camacho-Collados 2019
lama-google_re Petroni et al. 2019, 2020
numer_sense Lin et al. 2020
search_qa Dunn et al. 2017
web_questions Berant et al. 2013
boolq Clark et al. 2019
codah Chen et al. 2019
commonsense_qa Talmor et al. 2019
cosmos_qa Huang et al. 2019
dream Saha et al. 2018
hellaswag Zellers et al. 2019
sciq Welbl et al. 2017
quail Rogers et al. 2020
quarel Tafjord et al. 2019a
race-high Lai et al. 2017
superglue-copa Gordon et al. 2012
wino_grande Sakaguchi et al. 2020
eli5-eli5 Fan et al. 2019
hotpot_qa Yang et al. 2018
quoref Dasigi et al. 2019
superglue-record Zhang et al. 2018
multi_news Fabbri et al. 2019
xsum Narayan et al. 2018
spider Yu et al. 2018
wikisql an 2017
blimp-anaphor_gender_agreement Warstadt et al. 2020
blimp-ellipsis_n_bar_1 Warstadt et al. 2020
blimp-irregular_past_participle_adjectives Warstadt et al. 2020
blimp-wh_questions_object_gap Warstadt et al. 2020
cos_e Rajani et al. 2019
acronym_identification Pouran Ben Veyseh et al. 2020
crawl_domain Zhang et al. 2020
proto_qa Boratko et al. 2020
qa_srl He et al. 2015
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Table 13: The test tasks involved in our multi-task setting.

Split Task Name Reference

Test tasks

rotten_tomatoes Pang and Lee 2005
yelp_polarity Zhang et al. 2015
ethos-gender Mollas et al. 2020
superglue-wsc Levesque et al. 2012
ai2_arc Clark et al. 2018
qasc Khot et al. 2020
quartz-no_knowledge Tafjord et al. 2019b
eli5-asks Fan et al. 2019
blimp-anaphor_number_agreement Warstadt et al. 2020
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