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Abstract

There are growing interests in adapting
large-scale language models using parameter-
efficient fine-tuning methods. However, accel-
erating the model itself and achieving better
inference efficiency through model compres-
sion has not been thoroughly explored yet.
Model compression could provide the bene-
fits of reducing memory footprints, enabling
low-precision computations, and ultimately
achieving cost-effective inference. To combine
parameter-efficient adaptation and model com-
pression, we propose AlphaTuning consisting
of post-training quantization of the pre-trained
language model and fine-tuning only some
parts of quantized parameters for a target task.
Specifically, AlphaTuning works by employing
binary-coding quantization, which factorizes
the full-precision parameters into binary param-
eters and a separate set of scaling factors. Dur-
ing the adaptation phase, the binary values are
frozen for all tasks, while the scaling factors are
fine-tuned for the downstream task. We demon-
strate that AlphaTuning, when applied to GPT-
2 and OPT, performs competitively with full
fine-tuning on a variety of downstream tasks
while achieving >10× compression ratio under
4-bit quantization and >1,000× reduction in
the number of trainable parameters.

1 Introduction

Self-supervised learning facilitates the increased
number of parameters to construct pre-trained lan-
guage models (PLMs) (e.g., Brown et al. (2020);
Devlin et al. (2019)). We expect the continuation
of model scaling of the PLMs, especially for the
Transformers (Vaswani et al., 2017), because their
general capability follows the power-law in param-
eter size, exhibiting "the high-level predictability
and appearance of useful capabilities" (Ganguli
et al., 2022). Therefore, the Transformer-based
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PLMs have been studied with great enthusiasm for
various applications including natural language pro-
cessing (Devlin et al., 2019; Radford et al., 2019;
Brown et al., 2020; Smith et al., 2022; Rae et al.,
2021; Hoffmann et al., 2022a; Chowdhery et al.,
2022; Kim et al., 2021a), automatic speech recog-
nition (Baevski et al., 2020), and computer vision
(He et al., 2022; Xie et al., 2022).

Despite the impressive zero or few-shot learning
performance of PLMs, additional adaptation steps
(e.g., fine-tuning on a target task) are required to
further enhance performance on downstream tasks.
Since each downstream task needs to load/store
independent adaptation outcomes, if we aim to de-
ploy multiple instances of distinct tasks, adapting
PLMs with limited trainable parameters is crucial
for the efficient deployment (Li et al., 2018). Thus,
various parameter-efficient adaptation techniques,
such as adapter modules (Houlsby et al., 2019),
low-rank adaptation (Hu et al., 2022), prefix-tuning
(Li and Liang, 2021), prompt tuning (Liu et al.,
2021a; Gao et al., 2020), and p-tuning (Liu et al.,
2021b), are proposed.

Although trainable parameters can be signifi-
cantly reduced by parameter-efficient adaptation
schemes, we notice that the memory footprints
for inference are not reduced compared to those
of PLMs1. To enable efficient deployments of
multiple downstream tasks, we incorporate model
compression and parameter-efficient adaptation.
We argue that previous model compression tech-
niques were not practical solutions in terms of
parameter-efficiency for adaptations. For example,
Quantization-Aware Training (QAT) (Jacob et al.,
2018; Esser et al., 2020) can perform full fine-
tuning coupled with model compression; however,
each task needs dedicated memory storage as much
as that of a compressed PLM. Our key observation
to achieve a compression-aware parameter-efficient

1In practice, the adaptation is usually implemented by
adding small additional parameters to PLMs.
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Figure 1: Approaches to satisfy both parameter-efficient adaptation and parameter quantization. Our proposed
AlphaTuning technique can achieve 1) competitive performances to fine-tuned LMs (i.e., A;C) with a remarkably
reduced parameter size, and 2) significantly better scores than quantized LMs implemented through A;C;D.

adaptation is that, once a PLM is quantized, only a
small amount of quantization-related parameters is
needed to be fine-tuned for each target task. As a
result, both the overall memory footprints and the
number of trainable parameters for adaptation can
be substantially reduced.

Figure 1 illustratively compares two differ-
ent approaches enabling both model compression
and parameter-efficient adaptation. Fine-tuned and
quantized LMs can be achieved through A;C;D
or A;B;D as shown in Figure 1. In the case
of A;C;D, we may have a large number of
trainable parameters, and/or PTQ may degrade per-
formance on downstream tasks. To address such
issues, we investigate A;B;D scheme, called
“AlphaTuning” in this work. Specifically, we fac-
torize the parameters of large PLMs into binary
values and scaling factors. Then, AlphaTuning con-
ducts the adaptation by training only the scaling
factors that occupy a small portion in the quan-
tization format, while freezing the other binary
values. Note that, to conduct A;B, we consider
post-training quantization (PTQ) (Zhao et al., 2019;
Hubara et al., 2020; Li et al., 2020a) because the
QAT demands significant computational overhead
for training from a scratch with the whole dataset.

In this paper, our contributions are as follows:

• To the best of our knowledge, this work is the
first successful compression-aware parameter-
efficient adaptation method.

• We report that once PLMs are quantized by
PTQ, training scaling factors (less than 0.1%
of total parameter size) for each task only is
enough for successful adaptations.

• Throughout various LMs and tasks, we
demonstrate that AlphaTuning can achieve
high scores even under 4-bit quantization.

2 Recent Work

Large-Scale Language Models and Quanti-
zation Pre-trained transformer-based language
models (Devlin et al., 2019; Radford et al., 2019)
have shaped the way we design and deploy NLP
models. In recent years, the explosion of availabil-
ity of large-scale (i.e., larger than ten-billion scale)
language models (Brown et al., 2020; Black et al.,
2021; Chowdhery et al., 2022; Zhang et al., 2022a;
Hoffmann et al., 2022b) has paved way for a new
era in the NLP scene, where few-shot learning and
the parameter-efficient adaptation for downstream
tasks will be more important (He et al., 2021). The
quantization (that we discuss in detail in the next
section) is an effective approach to fundamentally
overcome the space and time complexities of the
large-scale language models (Zafrir et al., 2019;
Bondarenko et al., 2021), but existing methods are
only applicable to limited domains and task adapt-
ability under the quantized state.

Parameter-Efficient Adaptation of LMs Adapt-
ing language models efficiently for a task and
domain-specific data has been at the center of the
community’s interests since the emergence of large-
scale language models. One promising approach
is in-context learning (ICL) (Brown et al., 2020),
in which the language model learns and predicts
from the given prompt patterns. As the technique
elicits reasonable few-shot performances from the
large-scale language models without parameter-
tuning, a plethora of works (Zhao et al., 2021; Lu
et al., 2022; Reynolds and McDonell, 2021; Min
et al., 2022) have investigated the underlying mech-
anism and proposed various methods to further
exploit this approach. Another class of techniques
is to adopt external or partially internal parameters
such as continuous prompt embeddings to enable
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parameter-efficient LM adaptation, which is based
on the intuition that specific prompt prefixes may
better elicit certain LM behaviors. Earlier works ex-
plored the discrete prompt token space (Shin et al.,
2020), but later work showed that optimizing on
the continuous word embedding space yielded bet-
ter results (Liu et al., 2021b; Li and Liang, 2021;
Gu et al., 2022), even performing on par with full
fine-tuning (Lester et al., 2021; Vu et al., 2022).
Another similar line of works explored introduc-
ing new parameters within the Transformer blocks
or partially training existing parameters (Houlsby
et al., 2019; Zhang et al., 2020; Karimi Mahabadi
et al., 2021; Hu et al., 2022). Finally, some works
have suggested unifying all existing approaches re-
lated to parameter-efficient fine-tuning (He et al.,
2021; Zhang et al., 2022b).

3 Quantization for AlphaTuning

Enterprise-scale LMs, such as 175B GPT-3, face
challenges in the prohibitive cost of massive de-
ployment mainly resulting from their huge parame-
ter size. To facilitate cost-effective LMs by allevi-
ating memory requirements without noticeable per-
formance degradation, we can consider compres-
sion techniques, such as quantization (Jacob et al.,
2018), pruning (Frankle et al., 2020a), and low-rank
approximation (N. Sainath et al., 2013). Memory
reduction by model compression is also useful to
reduce latency because memory-bound operations
dominate the overall performance of LMs with a
small batch size (Park et al., 2022). In addition,
model compression can save the number of GPUs
for inference because GPUs present highly limited
memory capacity (Shoeybi et al., 2019; Narayanan
et al., 2021). In this work, we choose quantization
as a practical compression technique because of
its high compression ratio, simple representation
format, and the capability to accelerate memory-
bound workloads (Chung et al., 2020).

Let us discuss our quantization strategy for LMs
(see more details in Appendix C). We choose non-
uniform quantization since uniform quantization
demands aggressive activation quantization (to ex-
ploit integer arithmetic units) which is challenged
by highly non-linear operations (such as softmax
and layer normalization) of the Transformers (Bon-
darenko et al., 2021). Even though uniform quan-
tization can mitigate performance degradation by
frequent activation quantization/dequantization pro-
cedures (Bhandare et al., 2019) or additional high-
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Figure 2: BCQ examples with g = 4 and different q
values. As q increases, the MSE between the original
weight and the quantized weight decreases.

precision units (Kim et al., 2021b), such techniques
are slow and/or expensive. Among various non-
uniform quantization formats, we choose binary-
coding-quantization (BCQ) (Guo et al., 2017; Xu
et al., 2018) which is extended from binary neural
networks (Rastegari et al., 2016) because of high
compression ratio (Chung et al., 2020) and efficient
computations (Xu et al., 2018; Jeon et al., 2020).

BCQ Format Given a full-precision weight vec-
tor w ∈ Rg, BCQ format approximates w to be
w ≈∑q

i=1 αibi where q is the number of quantiza-
tion bits, α ∈ R is a scaling factor to be shared by
g weights, and b ∈ {−1,+1}g is a binary vector.
Note that g represents a group size or the number
of weights sharing a common scaling factor. Thus,
g is a hyper-parameter for quantization. When q=1,
α and b can be analytically determined to minimize
the mean squared error (MSE). If q > 1, however,
α and b need to be obtained by heuristic methods
such as greedy approximation (Guo et al., 2017)
and iterative fine-tuning method (Xu et al., 2018).

For a weight matrix W ∈ Rhout×hin , row-wise
quantization (i.e., g = hin) is a popular choice2

(Jeon et al., 2020; Xu et al., 2018) and can be ex-
pressed as follows:

W ≈
q∑

i=1

diag(αi) ·Bi, (1)

2On/off-chip memory bandwidth can be maximized by
contiguous memory allocation if row-wise quantization is
adopted. Additionally, for large LLMs (along with a large
hin), the amount of α becomes almost ignorable (i.e., α size
is 32/hin of B size) even assuming 32 bits to represent an α.
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Layer W Shape W Size
g

α ∈ R B ∈ {-1,+1} Quantized W Size (MB)
(hout, hin) (FP32) Shape Shape q = 1 q = 2 q = 3

ATT_qkv (3h, h) 12.58 MB h (q, 3h) (q, 3h, h) 0.41 0.81 1.22
ATT_output (h, h) 4.19 MB h (q, h) (q, h, h) 0.14 0.27 0.41
FFN_h_4h (4h, h) 16.78 MB h (q, 4h) (q, 4h, h) 0.54 1.08 1.62

FFN_4h_h (h, 4h) 16.78 MB
4h (q, h) (q, h, 4h) 0.52 1.06 1.56
h (q, 4h) (q, 4h, h) 0.54 1.08 1.62

0.5h (q, 8h) (q, 8h, h) 0.56 1.11 1.67

Table 1: BCQ scheme for q-bit quantization applied to linear layers of the Transformers and examples of BCQ
formats for GPT-2 medium model (hidden size h is 1024). Row-wise quantization is performed when g = hin.
Lower g results in slightly increased weight size after quantization.

𝐵
∈ {−1,+1}!×#×$

𝛼 ∈ ℝ(×*

𝑊 ∈ ℝ(×+

A weight matrix
in a pre-trained model

Scaling Factors
(ℝ,Trainable)

Binary Weights
({-1, +1},Frozen)

Non-uniform k-bit Quantization
(Post-training Quantization)

𝛼,

𝛼-

𝛼.

dataset1

dataset2

datasetk

Quantized
Linear (hà3h)

Quantized
Linear (hàh)

Quantized
Linear (hà4h)

Quantized 
Linear (4hàh)

Dot-product attention 

At
te

nt
io

n 
La

ye
r

Fe
ed

-fo
rw

ar
d 

 L
ay

er

Normalization

Normalization

Embedding

Tr
an

sf
or

m
er

 L
ay

er
 x

 N

𝛼

𝛼

𝛼

𝛼

B

B

B

B
bias

bias

bias

bias

Frozen 
Params

Trainable 
Params

A C D

AlphaTuning

task1𝐵
(fixed & shared)

𝐵
(fixed & shared)

𝐵
(fixed & shared)

task2

taskk

Figure 3: (Left): Quantized Transformer structure in which parameters are categorized into frozen ones and trainable
ones. (Right): Overview of AlphaTuning process that trains scaling factors only for adaptation.

where αi ∈ Rhout , Bi ∈ {−1,+1}hout×hin , and
diag(·) denotes the function of a vector that outputs
a zero-matrix except for the vector elements in its
diagonal. A linear operation of Y = X · (W )⊤,
then can be approximated as follows:

Y = X ·W⊤

≈ X ·
(

q∑

i=1

diag (αi) ·Bi

)⊤

=

q∑

i=1

(
(X ·B⊤

i ) · diag (αi)
)
,

(2)

where X ∈ Rnb×hin , and Y ∈ Rnb×hout . Note
that even though X is not quantized above, most
complicated floating-point operations are removed
due to binary values in B. Since the computational
advantages of BCQ have been introduced in the
literature (Hubara et al., 2016; Jeon et al., 2020), we
do not quantize activations in this work to improve
quantization quality.

Figure 2 describes the row-wise BCQ examples
based on greedy approximation (Guo et al., 2017)
when q varies. Note that increasing q and/or de-
creasing g can reduce the MSE after quantization

at the cost of a lower compression ratio.

Transformer Quantization Table 1 presents our
BCQ scheme applied to linear layers of the Trans-
formers while BCQ formats are illustrated for the
medium-sized GPT-2 model (that has a hidden size
(h) of 1024). Note that if g is large enough such that
each scaling factor is shared by many weights, the
amount of scaling factors is ignorable compared
to that of B. In Table 1, hence, 1-bit quantization
attains almost 32× compression ratio compared to
FP32 format while lower g slightly increases stor-
age overhead induced by additional scaling factors.

4 AlphaTuning: Efficient Fine-Tuning of
Quantized Models

4.1 AlphaTuning Principles
The key idea of AlphaTuning is identifying param-
eters presenting greater expressive power to mini-
mize the number of trainable parameters after PTQ.
Note that training affine parameters (that trans-
form the activations through operations such as
scaling, shifting, and rotating) reportedly achieves
reasonably high accuracy even when all the other
parameters are fixed to be random (Frankle et al.,
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Model Method q
Trainable Model Size Valid

Loss
BLEU (95% Confidence Interval)

Params CKPT Total Unseen Seen All

GPT-2
M

FT (Fine-Tuning) - 354.9M 1420MB 1420MB 0.79 32.7±.6 62.0±.4 48.4±.3

⇒ PTQ(WFT)1 3 - 327MB 327MB 2.03 25.0±2.5 58.7±1.0 43.2±3.3

LoRA - 0.35M 1.4MB 1420MB 0.81 45.5±.4 64.3±.2 55.8±.3

⇒ PTQ(W)+WLoRA
2 3 - 1.4MB 328MB 2.98 15.8±3.0 15.8±3.4 15.8±3.2

⇒ PTQ(W+WLoRA)3 3 - 327MB 327MB 3.36 12.6±4.1 16.6±6.7 13.6±7.5

AlphaTuning 3 0.22M 0.9MB 327MB 0.81 40.9±.5 63.2±.5 53.1±.4

AlphaTuning 2 0.22M 0.9MB 289MB 0.84 37.3±.5 62.6±.5 51.3±.5

GPT-2
L

FT (Fine-Tuning) - 774.0M 3096MB 3096MB 0.81 23.8±.3 60.8±.1 43.0±.3

⇒ PTQ(WFT) 3 - 535MB 535MB 1.90 23.2±.8 62.7±.2 43.7±.7

LoRA - 0.77M 3.1MB 3096MB 0.79 48.4±.3 64.0±.3 57.0±.1

⇒ PTQ(W)+WLoRA 3 - 3.1MB 538MB 1.97 20.1±5.2 27.8±4.1 24.1±4.5

⇒ PTQ(W+WLoRA) 3 - 535MB 535MB 1.97 14.0±7.2 26.6±11.5 25.8±13.0

AlphaTuning 3 0.42M 1.7MB 535MB 0.84 47.0±.6 62.2±.2 55.3±.3

AlphaTuning 2 0.42M 1.7MB 445MB 0.82 42.7±.4 62.9±.4 53.8±.1

AlphaTuning 1 0.42M 1.7MB 355MB 0.87 28.1±.3 62.3±.7 47.1±.4

1 Fully fine-tuned LMs are quantized by PTQ using the Alternating method.
2 For inference, quantized PLMs (by the Alternating method) are dequantized to be merged with trainable parameters for
LoRA. This method is parameter-efficient but we have low scores and dequantization overhead.
3 After LoRA, frozen weights and trainable weights are merged and then quantized (by the Alternating method). Since PTQ
is applied to the merged weights, each task needs to store the entire (quantized) model.

Table 2: Validation loss and test scores on WebNLG with various adaptation methods using GPT-2 models (see
Table 10 in Appendix for hyper-parameter selections and Table 8 in Appendix additional scores). For full fine-tuning
and LoRA, we explored learning rates and weight decay factors while the other hyper-parameters are from (Hu
et al., 2022). g is selected to be hin in each layer for row-wise quantization.

2020b). Interestingly, scaling factors obtained by
the BCQ format can be regarded as affine parame-
ters as shown in Eq. 2. Based on such observation,
Figure 3 presents the overview of AlphaTuning.
First, we quantize the weights of linear layers of
the Transformers that dominate the overall memory
footprint (Park et al., 2022). Then, the BCQ format
factorizes the quantized weights into scaling fac-
tors and binary values. Finally, the scaling factors
are trained for a given target task and all the other
parameters (e.g., biases, binary values B, and those
of the normalization layer and embedding layer)
are frozen regardless of downstream tasks.

Training Algorithm For a linear layer quantized
by Eq. 1, the forward propagation can be performed
without dequantizing W and be described as Eq. 2.
Similarly, the backward propagation can also be
computed in the quantized format and the gradients
of W and α with respect to Y (to conduct the
chain rule) are obtained as follows:

∂X = ∂Y ·
( q∑

i=1

diag(αi) ·Bi

)
(3)

∂αi =
(∂Y )⊤XB⊤

i · 1⊤

gL
(1 ≤ i ≤ q), (4)

where 1 is an hout-long all-ones vector and gL is
the group size of the layer L. Note that dividing

by gL is empirically introduced in Eq. 4 to prevent
excessively large α updates and to enhance the
stability of training. Even if gL ̸= hin (i.e., other
than row-wise quantization), we still can utilize the
same equations by using tiling-based approaches
(Jeon et al., 2020).

4.2 AlphaTuning for GPT-2

We apply AlphaTuning to GPT-2 medium and large
on WebNLG (Gardent et al., 2017) to explore a
hyper-parameter space and investigate the effects of
AlphaTuning as shown in Table 2. Note that in this
paper, we assume that parameters (including α) are
represented as 32-bit floating-point numbers (i.e.,
FP32 format) unless indicated to be compressed by
q-bit quantization.

Adaptation Details PTQ for AlphaTuning is per-
formed on the pre-trained GPT-2 by the Greedy
method (Guo et al., 2017). Then, for q-bit quanti-
zation, we train only α1 among α1 · · ·αq to max-
imize parameter-efficiency of adaptation because
training all α values provides only marginal gains
as shown in Table 3. Training α1 is performed by a
linear decay learning rate schedule without dropout.
For each hyper-parameter selection, test scores are
measured at the 5th epoch and averaged over 5 tri-
als (along with 5 random seeds which are fixed
for the experiments in Table 3 justifying our hyper-
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Hyper-Parameter Base Trial Loss Unseen Seen All
Trainable Params 0.22M (α1) 0.66M (α1,α2,α3) 0.76 40.6± .4 63.2± .2 53.1± .1
Dropout Rate 0.0 0.1 0.81 42.4± .3 61.2± .4 52.7± .2
PTQ Method Greedy Alternating 0.80 41.0± .6 63.0± .3 53.0± .3
LR Warm-up 0 steps 500 steps 0.81 41.0± .2 63.3± .1 53.3± .1
Epochs 5 epochs 3 epochs 0.82 42.2± .6 62.9± .4 53.6± .4
Epochs 5 epochs 10 epochs 0.82 38.5± .7 62.7± .5 51.9± .4

Base Hyper-Parameter Selection (Table 2) 0.81 40.9± .5 63.2± .5 53.1± .4

Table 3: Experimental results on WebNLG to investigate the impact of hyper-parameter selection for AlphaTuning
on GPT-2 medium quantized by PTQ using 3-bit quantization (i.e., q = 3). Test BLEU scores are averaged over 5
trials with the same learning rates and weight dacay fectors in Table 2.
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Figure 4: Training/validation loss on WebNLG by full
fine-tuning, LoRA, and AlphaTuning (q = 2 or 3).

parameter selections). For all adaptation methods
considered in Table 2, learning rates and weight
decay factors are explored to produce the best at
‘all’ category (see Table 11 for exploration results
on AlphaTuning).

Comparison with Fine-Tuning and LoRA We
compare AlphaTuning with full fine-tuning and
LoRA reproduced by using hyper-parameters (ex-
cept learning rates and weight decay factors) in
(Hu et al., 2022) for WebNLG. As shown in Ta-
ble 2, AlphaTuning provides BLUE scores which
are comparable to that of LoRA and better than that
of full fine-tuning, while both total memory foot-
print and checkpoint (CKPT)3 memory sizes are
significantly reduced. The different scores can be
partly explained by Figure 4 showing that the train-
ing process by AlphaTuning or LoRA converges

3Indicates dedicated storage for each downstream task.

g Params Loss Unseen Seen All
64 4.72M 0.78 42.7±.3 64.2±.2 54.5±.2

256 1.18M 0.77 41.7±.4 63.9±.3 54.0±.2

512 0.59M 0.77 41.2±.7 63.7±.1 53.7±.3

1K 0.30M 0.79 40.9±.6 63.6±.5 53.4±.3

hin 0.22M 0.81 40.9±.5 63.2±.5 53.1±.4

2K 0.15M 0.84 40.9±.4 62.5±.7 52.8±.4

Table 4: Impact of g (group size) when AlphaTuning
(q=3) is applied to GPT-2 medium on WebNLG. When
g = hin, row-wise quantization is indicated.

well while the full fine-tuning causes overfitting.
Interestingly, even though we train only α1 (and
hence, α2 and α3 are fixed for all tasks), increasing
q improves the validation loss and the test BLEU
scores. Note that as q increases, ‘Unseen’ scores
are enhanced rapidly while ‘Seen’ scores are not
affected noticeably. Overall, AlphaTuning with the
3-bit (i.e., q = 3) quantization can be a successful
parameter-efficient adaptation with a high compres-
sion ratio.

Comparison with A;C;D in Figure 1 As po-
tentially alternative methods of AlphaTuning, we
investigate the following three cases: 1) applying
PTQ to a fully fine-tuned model (i.e., PTQ(WFT)),
2) applying PTQ to a PLM and then LoRA parame-
ters are augmented (i.e., PTQ(W)+WLoRA), and 3)
a PLM and LoRA parameters are merged and then
quantized (i.e., PTQ(W+WLoRA)). Such three cases
induce various checkpoint sizes, total model sizes,
and the number of trainable parameters as shown
in Table 2. Note that the scores of PTQ(W)+WLoRA
and PTQ(W+WLoRA) are degraded significantly. In
other words, model compression techniques and
parameter-efficient adaptation methods may have
conflicting properties when combined in a straight-
forward manner. Even though PTQ(WFT) shows
better scores than the other two cases, the number
of trainable parameters remains to be the same as
that of full fine-tuning and checkpoint size for a
task is considerably larger than that of LoRA and
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Model Method q Trainable Params Valid Loss BLEU METEOR TER

GPT-2
Medium

Fine-Tuning - 354.92M - 46.0±0.1 0.39 0.46
LoRA - 0.35M - 47.1±0.2 0.39 0.46
AlphaTuning 3 0.22M 1.13 46.6±0.2 0.38 0.48
AlphaTuning 2 0.22M 1.17 45.7±0.2 0.38 0.49

GPT-2
Large

FineTuning - 774.03M - 46.5±0.1 0.39 0.45
LoRA - 0.77M - 47.5±0.2 0.38 0.45
AlphaTuning 3 0.42M 1.08 47.8±0.2 0.39 0.47
AlphaTuning 2 0.42M 1.10 47.2±0.2 0.38 0.47

Table 5: Test scores on DART with various adaptation methods using GPT-2 models (see Table 10 in Appendix for
hyper-parameter selections). The checkpoint and weight sizes can be found in Table 2. The results of full fine-tuning
and LoRA are quoted from (Hu et al., 2022). g is selected to be hin in each layer for row-wise quantization. For all
METEOR and TER scores in the table, the variances are less than 0.01.

AlphaTuning. By contrast, AlphaTuning offers ac-
ceptable BLEU scores even with a smaller number
of trainable parameters and a smaller checkpoint
size than those three cases.

Hyper-Parameter Selection A few hyper-
parameters (such as dropout rate and the number
of epochs) are related to the trade-off between ‘Un-
seen’ score and ‘Seen’ score as described in Table 3.
In the case of PTQ method, even when the Alter-
nating method (Xu et al., 2018) is employed with
many iterations to further reduce MSE, the scores
become similar to that of the Greedy method after
adaptation. As such, we choose the Greedy method
for all tasks in this paper. The learning rate warm-
up seems to present random effects depending on
PLM, downstream task, and q selection. The group
size g provides the clear trade-off between the train-
able parameter size and test scores as shown in Ta-
ble 4. Unless stated otherwise, we choose g = hin
(i.e., row-wise quantization) in this paper.

5 Experimental Results

To extensively demonstrate the influence of Al-
phaTuning, we apply detailed adaptation tech-
niques and hyper-parameter selections that we ex-
plored by using GPT-2 models on WebNLG (in the
previous section) to additional downstream tasks
and OPT models (Zhang et al., 2022a).

5.1 GPT-2 Models on DART and E2E

Adaptations using full fine-tuning, LoRA, and Al-
phaTuning methods based on pre-trained GPT-2
medium/large are performed on DART (Nan et al.,
2021) and E2E (Novikova et al., 2017). As for
DART dataset, we observe (in Table 5) AlphaTun-
ing even with an extreme quantization (e.g., q = 2)
can maintain test scores to be similar to those of
LoRA and full fine-tuning, both of which do not

consider model compression. In the case of E2E
dataset (shown in Table 6), we find that 1) full fine-
tuning suffers from degraded test scores, 2) even
AlphaTuning with q = 1 is a reasonable choice
for GPT-2 large, and 3) quantizing a model (af-
ter being adapted by LoRA) destroys test scores.
All in all, when combined with pre-trained GPT-2
medium/large on various tasks, AlphaTuning turns
out to be effective for both a high compression ratio
and a massive reduction in the number of trainable
parameters.

5.2 OPT Models on MNLI and SAMSum
We utilize a pre-trained OPT 1.3B model to be
adapted through full fine-tuning or AlphaTuning
on GLUE-MNLI (Williams et al., 2018) and SAM-
Sum (Gliwa et al., 2019). For text classification
on MNLI, an LM head layer is added on top of
GPT-2 with randomly initialized weights (Radford
et al., 2019). As evidenced by Table 7, we find
the following results: 1) PTQ(WFT) sometimes re-
sults in severely impaired scores (e.g., on SAMSum
dataset) even when computations for PTQ are asso-
ciated with a lot of iterations; 2) AlphaTuning out-
performs PTQ(WFT) scheme (for the whole tasks
in this paper), and 3) decreasing g of AlphaTuning
can improve scores.

6 Discussion

Memory during Adaptation As a compression-
aware parameter-efficient adaptation technique, Al-
phaTuning reduces not only inference memory foot-
prints (by quantization) and also training memory
footprints during adaptation. Specifically, optimizer
states to be stored in GPU memory are derived
only by scaling factors that occupy less than 0.1%
of total weight size if g is large enough. Such re-
duced GPU memory requirements during training
correspond to increased batch size or a reduced
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Model Method q
Trainable Valid Test Scores
Params Loss BLEU NIST METEOR ROUGE_L CIDEr

GPT-2
M

Fine-Tuning - 354.92M 1.28 67.5±.2 8.60±.02 46.4±.2 70.8±.2 2.40±.01

⇒ PTQ(WFT) 3 - 1.19 67.5±.5 8.58±.04 46.3±.5 70.3±.1 2.39±.01

LoRA - 0.35M 1.16 70.2±.2 8.80±.04 46.8±.1 71.7±.4 2.53±.01

⇒ PTQ(W)+WLoRA 3 - 4.10 11.1±5.3 2.35±1.04 12.4±4.2 29.9±7.8 0.35±.18

⇒ PTQ(W+WLoRA) 3 - 4.38 7.5±3.2 1.31±.21 11.4±.8 29.8±3.0 0.29±.04

AlphaTuning 3 0.22M 1.18 69.9±.3 8.79±.05 46.7±.2 71.7±.3 2.51±.01

AlphaTuning 2 0.22M 1.20 70.0±.4 8.80±.05 46.7±.1 71.6±.5 2.51±.01

GPT-2
L

Fine-Tuning - 774.03M 1.31 67.2±.3 8.61±.05 46.3±.1 70.5±.3 2.37±.01

⇒ PTQ(WFT) 3 - 0.98 66.5±1.0 8.45±.10 45.7±.3 70.3±.5 2.37±.03

LoRA - 0.77M 1.13 69.8±.2 8.80±.03 46.6±.1 71.7±.1 2.51±.01

⇒ PTQ(W)+WLoRA 3 - 1.87 50.9±3.4 6.63±.32 38.7±1.9 60.6±1.9 1.30±.19

⇒ PTQ(W+WLoRA) 3 - 1.76 53.7±3.1 7.12±.37 40.0±1.5 61.7±1.1 1.5±.11

AlphaTuning 2 0.42M 1.14 69.7±.6 8.78±.08 46.6±.2 71.5±.3 2.51±.03

AlphaTuning 1 0.42M 1.18 69.7±.3 8.79±.03 46.6±.1 71.6±.2 2.51±.02

Table 6: Validation loss and test scores on E2E with various adaptation methods using GPT-2 models (see Table 10
in Appendix for hyper-parameter selections). The number of trainable parameters, checkpoint sizes, and weight
sizes are the same as in Table 2. For full fine-tuning and LoRA, we explored learning rates and weight decay factors
while the other hyper-parameters are quoted from (Hu et al., 2022). g is selected to be hin in each layer for row-wise
quantization.

Method q g
MNLI SAMSum

Trainable Wight Accuracy Trainable Weight R1 / R2 / RLParams Size (%) Params Size
Fine-Tuning - - 1315.76M 5.26GB 83.6 1315.75M 5.26GB 49.4 / 25.3 / 40.5
⇒ PTQ(WFT) 4 h - 1.04GB 76.7 - 1.04GB 13.0 / 5.5 / 11.4
AlphaTuning 4 0.5h 1.19M 1.05GB 82.7 1.18M 1.05GB 47.5 / 24.1 / 38.9
AlphaTuning 4 h 0.60M 1.04GB 82.3 0.59M 1.04GB 47.3 / 23.2 / 38.4
AlphaTuning 3 0.5h 1.19M 0.90GB 82.4 1.18M 0.90GB 47.4 / 24.2 / 39.0
AlphaTuning 3 h 0.60M 0.89GB 82.4 0.59M 0.89GB 46.5 / 22.8 / 37.8

Table 7: Validation scores on MNLI dataset and test scores on SAMSum dataset with full fine-tuning and AlphaTun-
ing using OPT 1.3B model for which hidden size h is 2048 (see Appendix B for experimental details).

minimum number of GPUs performing adaptation.

Embedding Layers In this work, we considered
linear layers of the Transformers to be quantized
by BCQ while embedding layers remain to be of
full precision. The rationale behind this choice is
that as the model scales with a larger hidden size
(h), the relative size of embedding layers becomes
smaller. To be more specific, the space complexi-
ties of linear layers and embedding layers follow
O(h2) and O(h), respectively. As such, for large-
scale LMs, we expect quantizing embedding layers
to produce only marginal improvements on a com-
pression ratio while test scores might be degraded.

Inference Speed As described in Eq. 2, BCQ for-
mat enables unique computations for matrix mul-
tiplications even when activations are not quan-
tized. Recent works (Jeon et al., 2020; Park et al.,
2022) show that matrix multiplications based on
BCQ format can be expedited by the following
operations: 1) compute all possible computations
(combining partial activations and B) in advance

and store them in look-up tables (LUTs) and 2) let
LUT retrievals (using B values as indices) replace
floating-point additions in Eq. 2. The major reasons
for fast computations are due to byte-level accesses
of LUTs and increased LUT reuse by increased h
(Jeon et al., 2020; Park et al., 2022). Such LUT-
based matrix multiplications can lead to latency
improvement as much as a memory reduction ratio.

7 Conclusion

In this paper, we proposed AlphaTuning as the first
successful compression-aware parameter-efficient
adaptation method for large-scale LMs. Through a
few representative generative LMs (such as GPT-2),
we demonstrated that once linear layers are quan-
tized by BCQ format, training only scaling factors
can obtain reasonably high scores. We also empir-
ically proved that quantizing an already adapted
LMs would degrade scores significantly. Incorpo-
rating various model compression techniques and
parameter-efficient adaptation methods would be
an interesting research topic in the future.
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Limitations

We believe that the major contributions in this pa-
per would become more convincing as the size of
the PLM increases, whereas the models used for ex-
periments in this paper (i.e., GPT-2 and 1.3B OPT)
may not be large enough compared to the large-
scale LMs recently announced (e.g., OPT 175B).
Considering a few reports that larger models tend
to be compressed by a higher compression ratio
along with less performance degradation (Li et al.,
2020b), we expect AlphaTuning to be effective as
well even for larger models, to say, of more than
10 billion of parameters.

The performance of AlphaTuning on 1.3B OPT
becomes better than that of PTQ(WFT), but infe-
rior to that of the full fine-tuning. We suspect such
results might result from insufficient search of an
appropriate training recipe for AlphaTuning. Corre-
spondingly, exploring learning hyper-parameters of
AlphaTuning using larger LMs and more datasets
would be required to yield general claims on the
characteristics of AlphaTuning.

Ethics Statement

Large language models (LMs) such as GPT-
3 (Brown et al., 2020), Gopher (Rae et al., 2021),
PaLM (Chowdhery et al., 2022), and Hyper-
CLOVA (Kim et al., 2021a) have shown surpris-
ing capabilities and performances for natural lan-
guage understanding and generation, in particular,
an in-context zero or few-shot manner. They can
provide innovative applications such as code gen-
eration (Chen et al., 2021) and text-to-image gen-
eration (Ramesh et al., 2021) via fine-tuning with
additional data dedicated to each task. Despite their
astonishing advantages, it is well known that large
LMs have severe and challenging limitations for
deployment to user applications, such as biased
and toxic expression, hallucination, too heavy en-
ergy consumption, and carbon emission (Weidinger
et al., 2021). Our work aims to address the energy
issue of large LMs in terms of inference and de-
ployment. We expect that our method can alleviate
energy consumption by reducing practical memory
footprints and latency when the large LMs are de-
ployed to various user applications. We might need
to address the other ethical issues through further
research for safer and better contributions of the
large LMs.
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Figure 5: Training/validation loss on E2E by full fine-
tuning, LoRA, and AlphaTuning (q=1, 2, or 3)

A Experimental Details on GPT-2 Models

For all the adaptation experiments, we utilize the
pre-trained GPT-2 Medium4/Large5 models pro-
vided by HuggingFace (Wolf et al., 2020). GPT-2
Medium consists of 24 Transformer layers with a
hidden size (h) of 1024 and GPT-2 Large is com-
posed of 36 Transformer layers with a hidden size
of 1280. Table 1 includes the types of sublayers
embedded into a GPT-2 layer.

A.1 Dataset

WebNLG Challenge 2017(Gardent et al., 2017)
consists of 25,298 (data,text) pairs with 14 cate-
gories, which can be divided into nine “Seen” cate-
gories and five “Unseen” categories. The model
takes Resource Description Framework (RDF)
triples as inputs and generates natural text descrip-
tions to perform data-to-text generation task. Since
the gradients during adaptation processes are cal-
culated with only the “Seen” categories, the mea-
sured scores from “Unseen” categories are impor-
tant for evaluating the generation performance of
models. In this paper, we represent three types
of scores, ‘Unseen’(U), ‘Seen’(S), and ‘All’(A).

4Available at https://s3.amazonaws.com/models.
huggingface.co/bert/gpt2-medium-pytorch_model.
bin.

5Available at https://s3.amazonaws.com/models.
huggingface.co/bert/gpt2-large-pytorch_model.
bin.

Hyper-parameters are selected according to the best
’All’ score.

DART(DAta Record to Text, Nan et al. (2021))
is an open-domain text generation dataset with 82k
examples, which are extracted from several datasets
including WebNLG 2017 and Cleaned E2E.

E2E (Novikova et al., 2017) was proposed for
training end-to-end and data-driven natural lan-
guage generation task. It consists of about 50k
instances that provide meaning representations
(MRs) and references for inference in the restaurant
domain. Language models should perform data-to-
text generation using suggested MRs.

A.2 Adaptation Details

For all the reproduced experiments and AlphaTun-
ing experiments, AdamW (Loshchilov and Hutter,
2018) optimizer and linear-decaying learning rate
scheduler were used. The number of epochs for the
adaptation process is fixed to be 5 epochs and the
other hyper-parameters are the same as reported in
Li and Liang (2021); Hu et al. (2022). We did not
try to find the best results by evaluating and compar-
ing the checkpoint at every epoch or by adjusting
the number of epochs. Instead, we explore the best
results under varied learning rates and weight de-
cay based on the reported list of hyper-parameters
in Li and Liang (2021) and Hu et al. (2022) (the
readers are referred to Table 10).

To evaluate the performance of the GPT-2 mod-
els, we use the beam search algorithm with several
hyper-parameters listed in Table 9.

B Experimental Details on OPT models

To study performance on downstream tasks of Al-
phaTuning using larger PLMs (than GPT-2), we uti-
lize pre-trained OPT models (Zhang et al., 2022a)
on GLUE-MNLI and SAMSum datasets. Due to
the limitations on resources, our experiments are
restrained to 1.3B model6 with 24 layers (h=2048).
Fine-tuning and Alphatuning are performed under
the conditions that we describe in the following
subsections.

B.1 Dataset

MNLI(Williams et al., 2018)(Multi-Genre Natural
Language Inference) evaluates the sentence under-
standing performance. Given a pair of premise and

6Available at https://huggingface.co/facebook/
opt-1.3b
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Size Method q
BLEU METEOR TER

U S A U S A U S A

GPT
M

FT(Fine-Tuning) - 32.7±.6 62.0±.4 48.4±.3 .32 .45 .39 .63 .33 .47
⇒ PTQ(WFT) 3 25.0±2.5 58.7±1.0 43.2±3.3 .28 .43 .36 .87 .37 .60
LoRA - 45.5±.4 64.3±.2 55.8±.3 .38 .45 .42 .47 .32 .39
⇒ PTQ(W)+WLoRA 3 15.8±3.0 15.8±3.4 15.8±3.2 .20 .21 .21 1.03 1.20 1.12
⇒ PTQ(W+WLoRA) 3 12.6±4.1 16.6±6.7 13.6±7.5 .17 .18 .18 .72 .70 .68
AlphaTuning 3 40.9±.5 63.2±.5 53.1±.4 .35 .44 .40 .51 .33 .42
AlphaTuning 2 37.3±.5 62.6±.5 51.3±.5 .33 .44 .39 .55 .33 .43

GPT
L

FT(Fine-Tuning) - 23.8±.3 60.8±.1 43.0±.3 .27 .45 .36 .77 .34 .54
⇒ PTQ(WFT) 3 23.2±.8 62.7±.2 43.7±.7 .27 .45 .36 .77 .33 .54
LoRA - 48.4±.3 64.0±.3 57.0±.1 .39 .45 .42 .45 .32 .38
⇒ PTQ(W)+WLoRA 3 20.1±5.2 27.8±4.1 24.1±4.5 .21 .25 .23 .99 .84 .91
⇒ PTQ(W+WLoRA) 3 14.0±7.2 26.6±11.5 25.8±13.0 .16 .23 .23 1.24 .76 .79
AlphaTuning 3 47.0±.6 62.2±.2 55.3±.3 .38 .43 .41 .46 .33 .39
AlphaTuning 2 42.7±.4 62.9±.4 53.8±.1 .36 .44 .40 .49 .33 .41
AlphaTuning 1 28.1±.3 62.3±.7 47.1±.4 .29 .44 .36 .66 .33 .49

Table 8: Additional scores on WebNLG using GPT-2 (Extended results of Table 2) including METEOR and TER
scores (U: Unseen, S:Seen, A: All). Lower TER score indicates better generation capability while other scores are
to be higher for better capability. For METEOR and TAR scores, the variances of all the cases are less than 0.01.

FT/LoRA AlphaTuning
Beam size 10 10
Batch size 16 16
No repeat ngram size 4 4
Length penalty 0.9 0.8

Table 9: Hyper-parameters for beam search decoding

hypothesis, the main task is to classify the relation-
ship between the two sentences into one of entail-
ment, contradiction, and neutral. A linear classifier
head with three output logits is attached on top
of the language model and fine-tuned along with
the model. The addition of a linear layer slightly
increases the overall parameter, unlike other Al-
phaTuning experiments that only learn α.

SAMSum(Gliwa et al., 2019) is a conversation
dataset containing 16k summaries. Given a dialog,
the goal is to generate summarizations to evaluate
dialog understanding and natural language genera-
tion capabilities. For diversity, each conversation
style includes informal, semi-formal, and formal
types with slang words, emoticons, and typos.

B.2 Adaptation details

Experimental configurations for adaptation are pre-
sented in the Table 12. During the training and
evaluation of the SAMSum dataset, the beam size
is fixed to be 4 and the generation max length is
fixed to be 256 (the condition max length is fixed
to be 192 and the label max length to be 64). Due
to the decoder-only structure of OPT, the token se-
quence corresponding to the conditions above was
put into the input and learned together.

C Details on BCQ Format

This section introduces two popular methods to
produce binary codes and scaling factors from full-
precision DNN weights. The common objective
is to minimize mean square error (MSE) between
original data and quantized data in heuristic manner.
As introduced in (Rastegari et al., 2016) (i.e.q=1),
a weight vector w is approximated to αb where α
is a full-precision scaling factor and b is a binary
vector (b ∈ {−1,+1}n). For one-bit quantization,
there is an analytic solution to minimize ∥w−αb∥2
as following:

b∗ = sign(w), α∗ =
w⊤b∗

n
. (5)

However, if we extend this equation to multi-bit
(q > 1) quantization, there is no analytic solution.

Greedy Approximation first produces α1 and
b1 as in Eq. 5, and then calculates αi and bi iter-
atively by minimizing the residual errors (∥w −∑i−1

j=1 αjbj∥2). Then, αi and bi are calculated as
follows:

b∗i = sign(w −
i−1∑

j=1

αjbj). (6)

α∗
i =

w −∑i−1
j=1 αjb

⊤
j b

∗
i

n
. (7)

Although this method is computationally simple,
it leads to higher MSE by quantization. In spite
of higher quantization error, AlphaTuning utilizes
this Greedy method only for the initial PTQ pro-
cess. We observe the adapted LMs with AlphaTun-
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Dataset Model Method Learning rate Weight decay

best range best range

WebNLG
(Table 2)

GPT
M

FT 1e-4 {1e-4, 2e-4, 5e-4} 0.01 {0.0, 0.01,
0.02}LoRA 5e-4 0.01

AlphaTuning(q=3) 1e-3 {1e-4, 2e-4, 5e-4,
1e-3, 2e-3}

0.05 {0.0, 0.01,
0.05, 0.1}AlphaTuning(q=2) 1e-3 0.0

GPT
L

FT 1e-4 {1e-4, 2e-4, 5e-4} 0.01 {0.0, 0.01,
0.02}LoRA 2e-4 0.02

AlphaTuning(q=3) 1e-4 {1e-4, 2e-4, 5e-4,
1e-3, 2e-3}

0.0 {0.0, 0.01,
0.05, 0.1}AlphaTuning(q=2) 1e-4 0.0

AlphaTuning(q=1) 1e-3 0.01

DART
(Table 5)

GPT
M

AlphaTuning(q=3) 1e-3 {1e-4, 2e-4, 5e-4,
1e-3, 2e-3}

0.01 {0.0, 0.01,
0.05, 0.1}AlphaTuning(q=2) 1e-3 0.05

GPT
L

AlphaTuning(q=3) 5e-4 {1e-4, 2e-4, 5e-4,
1e-3, 2e-3}

0.1 {0.0, 0.01,
0.05, 0.1}AlphaTuning(q=2) 1e-3 0.1

E2E
(Table 6)

GPT
M

FT 1e-4 {1e-4, 2e-4, 5e-4} 0.02 {0.0, 0.01,
0.02}LoRA 2e-4 0.01

AlphaTuning(q=3) 2e-3 {1e-4, 2e-4, 5e-4,
1e-3, 2e-3}

0.0 {0.0, 0.01,
0.05, 0.1}AlphaTuning(q=2) 5e-3 0.1

GPT
L

FT 5e-4 {1e-4, 2e-4, 5e-4} 0.01 {0.0, 0.01,
0.02}LoRA 2e-4 0.0

AlphaTuning(q=2) 1e-3 {1e-4, 2e-4, 5e-4,
1e-3, 2e-3}

0.1 {0.0, 0.01,
0.05, 0.1}AlphaTuning(q=1) 1e-3 0.1

Table 10: Selected hyper-parameters (learning rates and weight decay) for GPT-M/L results on this paper. We set
the hyper-parameter ranges according to the reported parameters in the previous papers (Li and Liang, 2021; Hu
et al., 2022). For each hyper-parameter selection, the test scores are measured at the last epoch and averaged over 5
trials, which are performed with fixed 5 random seeds.

Model q Learning rate Weight decay Loss Unseen Seen All

GPT-M

2

2e-3

0.00

0.84 36.7±0.9 62.7±0.6 51.05±0.6

1e-3 0.84 37.3±0.5 62.6±0.5 51.26±0.5

5e-4 0.87 37.8±0.5 61.9±0.5 51.08±0.3

2e-4 0.93 38.2±0.3 60.1±0.2 50.31±0.2

3

2e-3

0.05

0.80 40.1±0.6 63.6±0.2 53.1±0.4

1e-3 0.81 40.9±0.5 63.2±0.5 53.1±0.4

5e-4 0.83 41.2±0.4 62.7±0.3 53.0±0.3

2e-4 0.87 41.0±0.1 61.3±0.2 52.2±0.1

Table 11: BLEU scores of GPT2-M AlphaTuning on WebNLG dataset when the learning rates vary. Higher learning
rates lead to better ‘Seen’ scores, but lead to worse ‘Unseen’ scores (less generative capability). Reversely, lower
learning rates lead to better ‘Unseen’ scores.

MNLI SAMSum

Method FT AlphaT FT AlphaT
Learning Rate (LR) 5e-6 5e-5 6e-6 1e-4

Weight Decay 0.01 0.05 0.01 0.05
Optimizer AdamW Adafactor

Epoch 3 5
LR Scheduler Linear decay

Batch 32

Table 12: Hyper-parameter selection for the experiments
using OPT models

ing (along with Greedy approximation) can reach
the comparable scores of full fine-tuning or LoRA
while there is no noticeable improvement by using
the Alternating method, an advanced method that
we discuss next.

Alternating Method (Xu et al., 2018) adjusts

scaling factors and binary values iteratively after
producing the initial α1..q and b1..q obtained by
Greedy approximation method. From the initial
b1..q, α1..q can be refined as

[α1, ..., αq] =

((
B⊤

q Bq

)−1
B⊤

q w

)⊤
, (8)

where Bq = [b1, ..., bq] ∈ {−1,+1}n×q. From the
refined α1..q, the elements in b1..q can be further
refined using a binary search algorithm. As we
iterate the process of refining the scaling factor
and the binary vector repeatedly, the errors due
to quantization get reduced. When the amount of
error is reduced to become close enough to zero,
we can stop such iterative processes. It has been
known that an appropriate number of iterations is
approximately between 3 and 15 (Xu et al., 2018;
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Lee and Kim, 2018), and this paper set the number
of iterations as 15 when the Alternating method is
selected for PTQ process.

In practice, higher scores right after PTQ are
attainable by the Alternating quantization method
rather than the Greedy method. Thus, we try pre-
vious experiments using Alternating method as
shown in Table 13 and 14 on WebNLG and E2E
dataset. From those two tables, it should be noted
that even when the Alternating algorithm is chosen,
we can observe that post-training quantization still
leads to considerable performance degradation.

group-wise quantization While Eq. 5-7 are de-
scribed for a weight ‘vector’ (w) (for simplicity),
the target parameters to be quantized in this paper
are in the form of weight ‘matrices’ of LMs. We
extended the principles of weight vector quantiza-
tion to a row-wise quantization scheme of a weight
matrix (i.e.for each row, q of scaling factors are
produced) in Eq. 1. In this case, g should be set
to hin as described in Table 1. If we assign the g
to be h (i.e., a hidden size of a model), each row
will be divided into hin/h of vectors, and each di-
vided vector will produce its own scaling factors.
Although we did not explain implementation issues
of such a group-wise quantization, it has been also
shown that group-wise quantization has minimal
impact on inference latency (Park et al., 2022).
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Model Method q Loss Unseen Seen All

GPT
M

PTQ(WFT)
2 5.57 4.9±.8 13.9±2.1 10.1±1.7

3 2.03 25.0±2.5 58.7±1.0 43.2±3.3

4 1.70 30.6±.9 63.3±.3 47.8±.7

PTQ(W)+WLoRA
3 2.98 15.8±3.0 15.8±3.4 15.8±3.2

4 2.72 19.8±2.4 23.9±3.7 22.2±3.1

PTQ(W+WLoRA) 3 3.36 12.6±4.1 16.6±6.7 13.6±7.5

4 3.10 13.4±5.1 15.9±6.9 14.4±6.0

GPT
L

PTQ(WFT)
2 2.11 19.5±1.9 62.2±0.2 41.2±2.0

3 1.91 23.2±.8 62.7±.2 43.7±.7

4 1.87 23.7±.3 61.8±.4 43.6±.3

PTQ(W)+WLoRA
3 1.97 20.1±5.2 27.8±4.1 24.1±4.5

4 1.67 33.9±4.4 45.9±3.7 41.7±2.1

PTQ(W+WLoRA) 3 1.97 14.0±7.2 26.6±11.5 25.8±13.0

4 1.67 28.7±7.1 34.3±13.1 29.9±12.1

Table 13: BLEU scores on WebNLG dataset with post-training quantization. The fine-tuned models (with WFT) and
LoRA-tuned models (with frozen W and WLoRA) are quantized by Alternating method (Xu et al., 2018) without
gradient updates (post-training quantization).

Model Method q loss BLEU NIST METEOR ROUGE_L CIDEr

GPT
M

PTQ(WFT)
2 2.687 50.2±2.2 5.78±1.2 35.8±1.5 60.1±.9 1.42±.11

3 1.192 67.5±.5 8.58±.04 46.3±.5 70.3±.1 2.39±.01

4 0.992 67.2±.6 8.52±.07 46.4±.3 70.3±.4 2.38±.03

PTQ(W)+WLoRA
3 4.095 11.1±5.3 2.35±1.04 12.4±4.2 29.9±7.8 0.35±.1

4 1.916 48.3±3.8 3.65±1.16 32.3±.97 59.8±1.8 1.22±.14

PTQ(W+WLoRA) 3 4.377 7.5±3.2 1.31±.21 11.4±.8 29.8±3.0 0.29±.04

4 3.561 14.6±4.8 1.41±1.1 15.7±1.2 38.7±3.2 0.43±.03

GPT
L

PTQ(WFT)
2 0.998 66.1±1.0 8.40±.11 45.5±.4 70.0±.4 2.33±.03

3 0.979 66.5±1.0 8.45±.10 45.7±.3 70.3±.5 2.37±.03

4 0.976 66.6±1.0 8.47±.09 45.8±.2 70.3±.4 2.37±.01

PTQ(W)+WLoRA
3 1.868 50.9±3.4 6.63±.32 38.7±1.9 60.6±1.9 1.30±.19

4 1.398 65.4±2.0 8.46±0.19 44.9±.6 65.3±2.2 2.15±.11

PTQ(W+WLoRA) 3 4.377 7.5±3.2 1.31±.21 11.4±.8 29.8±3.0 0.29±.04

4 3.561 14.6±4.8 1.41±1.1 15.7±1.2 38.7±3.2 0.43±.03

Table 14: Test scores on E2E dataset after post-training quantization (q = 3) performed by Alternating method.

Method q Trainable
Params

GLUE
CoLA SST-2 MRPC STS-B QQP MNLI 1 MNLImm

2 QNLI RTE

B FT - 108.3M 52.1 93.5 88.9 85.8 71.2 84.6 83.4 90.5 66.4
AT 3 0.1M 51.0 91.4 91.4 87.4 84.2 80.8 81.1 89.4 69.3

L
FT - 333.6M 60.5 94.9 89.3 86.5 72.1 86.7 85.9 92.7 70.1
AT 2 0.3M 49.1 90.9 88.8 87.0 84.9 82.7 83.5 89.9 66.8
AT 3 0.3M 55.7 92.3 88.9 87.9 85.6 83.8 84.7 91.4 63.2

1 MNLI-matched
2 MNLI-mismatched

Table 15: BERT-base-cased (B) and BERT-large-cased (L) with full fine-tuning (FT) and AlphaTuning (AT).
Experiments were evaluated on the GLUE benchmark (Wang et al., 2018). The fine-tuning results used for
comparison refer to (Devlin et al., 2019). AlphaTuning follows the accuracy of full fine tuning. The results show
that AlphaTuning can be applied to the BERT architecture. Experimental details are in Table 16.
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Model Configuration GLUE
CoLA SST-2 MRPC STS-B QQP MNLI 1 MNLImm

2 QNLI RTE

Base Batch size 16 32 32 32 32 16 16 16 16
Learning rate 1e-4 1e-4 1e-4 2e-4 1e-4 5e-5 5e-5 5e-5 1e-4

Large
Batch size 32 16 16 16 32 16 16 16 16

Learning rate 1e-4 1e-4 1e-4 1e-4 5e-5 5e-5 5e-5 5e-5 1e-4
1 MNLI-matched
2 MNLI-mismatched

Table 16: Hyper-parameter selection for the experiments using BERT-base and BERT-large on GLUE benchmark.
For each experiment, the optimizer is selected to be AdamW with a linear decaying learning rate scheduler. The
number of epochs is fixed to be 3, and the weight decay is set to 0.01. The metrics used in the evaluation are
Matthew’s correlation for CoLA, Pearson correlation for STS-B, F1 score for QQP and MRPC and accuracy for the
other tasks.
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