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Abstract

Embedding-based approaches for dialog re-
sponse retrieval embed the context-response
pairs as points in the embedding space. These
approaches are scalable, but fail to account
for the complex, many-to-many relationships
that exist between context-response pairs. On
the other end of the spectrum, there are ap-
proaches that feed the context-response pairs
jointly through multiple layers of neural net-
works. These approaches can model the com-
plex relationships between context-response
pairs, but fail to scale when the set of responses
is moderately large (>1000). In this paper, we
propose a scalable model that can learn com-
plex relationships between context-response
pairs. Specifically, the model maps the contexts
as well as responses to probability distributions
over the embedding space. We train the models
by optimizing the Kullback-Leibler divergence
between the distributions induced by context-
response pairs in the training data. We show
that the resultant model achieves better perfor-
mance as compared to other embedding-based
approaches on publicly available conversation
data.

1 Introduction

Retrieval-based response predictors (Ji et al., 2014;
Yan et al., 2016; Wu et al., 2017a; Bartl and
Spanakis, 2017; Whang et al., 2021; Xu et al., 2021;
Han et al., 2021; Su et al., 2021; Gu et al., 2020)
retrieve the response from a predefined set of re-
sponses given the dialog context. Such methods
find application in a variety of real-world dialog
modeling and collaborative human-agent tasks. For
instance, dialog modeling frameworks typically
utilize the notion of “intents” and “dialog flows”
which aim to model the “goal” of a user-utterance
(Aronsson et al., 2021). To make task of build-
ing and identifying such intents easier, some tools
mine conversation logs to identify responses that
are often associated with dialog contexts (intents)

Figure 1: An example of a context with multiple valid
responses. Note that each response contains different
information and hence must have embeddings that are
far way from each other. However, embedding-based ap-
proaches for retrieval attempt to bring all such responses
close to the context and hence, close to each other.

(Dhoolia et al., 2021) and then surface these re-
sponses for review by humans. These reviewed
responses are then modeled into the dialog flow
for different intents. Another instance, of human-
agent collaboration powered by system returned
responses is in ‘Agent Assist’ environments where
a system makes recommendations to a customer-
support or contact-center agent in real-time(Fadnis
et al., 2020).

The success of a good response retrieval system
lies in learning a good similarity function between
the context and the response. In addition, it also
needs to be scalable so that it can retrieve responses
from the universe of responses efficiently. These
two requirements present a trade-off between the
richness of scoring and scalability, as discussed
below.
Trade-off between Scoring and Scalability: Typ-
ically, in neural dialog retrieval models, the con-
texts and the responses in the conversation logs are
embedded as points in the embedding space (Lowe
et al., 2015). Approaches such as contrastive learn-
ing (Bromley et al., 1993) are then used to ensure
that the context is closer to the ground-truth re-
sponse than the other responses. Figure 1 shows

3273



a dialog context followed by multiple responses.
Despite the apparent diversity among responses, all
the responses are valid for the dialog context. Sim-
ilarly, a generic response may be a valid response
for several dialog contexts. A typical embedding-
based approach for retrieval would bring the embed-
ding of the dialog context close to the embedding of
all the valid responses (Karpukhin et al., 2020; Yu
et al., 2021; Xiong et al., 2021; Luan et al., 2021a).
However this has the undesirable effect of making
the valid, but diverse, responses gravitate towards
each other in the embedding space.

Thus, typical embedding-based approaches for
retrieval fail to capture the complex, many-to-many
relationships that exist in conversations. More com-
plex matching networks such as Sequential Match-
ing Networks (Wu et al., 2017a) and BERT (Chen
et al., 2021b) based cross-encoders jointly feed the
context-response pairs through multiple layers of
neural networks for generating the similarity score.
While these approaches have proven to be effec-
tive for response retrieval, they are very expensive
in terms of inference time. Specifically, if Nc is
the total number of dialog contexts and Nr is the
total number of responses available for retrieval
during inference, these methods have a time com-
plexity of O(NcNr). Hence, they can’t be used in
a real-world setting for retrieving from thousands
of responses.

Contributions: In this paper we present a scal-
able and efficient dialog-retrieval system that maps
the contexts as well as the responses to probability
distributions over the embedding space (instead of
points in the embedding space). To capture the
complex many-to-many relationships between the
context and response, we use multimodal distri-
butions such as Gaussian mixtures to model each
context and response. The resultant model is re-
ferred to as ‘Mix-and-Match’.

Intuitively, if a response is a valid response for
a given dialog context, we want the corresponding
probability distribution to be "close" to the con-
text distribution. We formalize this notion of close-
ness among distributions by using Kullback-Leibler
(KL) divergence. Specifically, we minimize the
Kullback-Leibler divergence between the context
distribution and the distribution of the ground-truth
response while maximizing the divergence from
the distributions of other negatively-samples re-
sponses. We derive approximate but closed-form
expressions for the KL divergence when the un-

derlying distributions are Gaussian mixtures. This
approximation significantly alleviates the compu-
tation cost of KL-divergence, thereby making it
suitable for use in real-world settings. We demon-
strate our work on two publicly available dialog
datasets – Ubuntu Dialog Corpus (v2)(Lowe et al.,
2015) and the Twitter Customer Support dataset1 as
well as on an internal real-world technical support
dataset. Using automated as well as human studies,
we demonstrate that Mix-and-Match outperforms
recent embedding-based retrieval methods. Due to
space limitations, we discuss a few related works
in the Appendix.

2 Mix-and-Match

We consider a dialog to be a sequence of utterances
(u1, . . . , un). At any time-step t, the set of utter-
ances prior to that time-step is referred to as the
context. The utterance that immediately follows
the context2 is referred to as the response. Instead
of modeling the context and response as point em-
beddings, we use probability distributions induced
by the context and the response on the embedding
space, denoted as pc(z) and pr(z)

3 respectively,
where z is any point in the embedding space Rd.

2.1 Overview

An overview of the model is shown in Figure 2.
The context and response are first encoded us-
ing a pre-trained BERT model. The model con-
sists of a Gaussian Mixture Parameter Generator,
π(X,K), which takes as input an encoded text
sequence X along with the number of Gaussian
Mixtures, K and then returns the means µk and
variance σ2

k for the every Gaussian mixture com-
ponent k ∈ {1, . . .K}, as its output. The encoded
representations of the context and response from
BERT are used to generate Gaussian Mixture dis-
tributions over the embedding space Rd using the
parameter generator π. We then compute the KL
divergence between the context and response distri-
butions and use contrastive loss to bring the context
closer to the ground-truth response as compared to
other, negatively-sampled responses.

1https://www.kaggle.com/thoughtvector/customer-
support-on-twitter

2We use the words context and dialog context interchange-
ably throughout the paper.

3Formally, these are densities induced by the correspond-
ing distributions
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Figure 2: An overview of our model - Mix-and-Match.

2.2 Text Encoder
The text encoder maps the raw text to a contextu-
alized embedding. Given a text sequence, we split
it into tokens using the BERT tokenizer (Devlin
et al., 2019). The BERT encoder (Devlin et al.,
2019) takes the tokens as input and outputs the con-
textualized embedding of each token at the output.
These embeddings are denoted as X (x1, . . . , xm),
where m is the number of tokens in the text se-
quence.

2.3 Parameter Generation of Gaussian
Mixtures

We use the parameter generator π with the inputs X
and K to generate the parameters µk(X), σ2

k(X)
for each component of the mixture k ∈ {1, . . .K}.
For simplicity, we assume a restricted form of Gaus-
sian mixture that assigns equal probability to each
Gaussian component. Further, we also assume that
Gaussian components are axis-aligned that is, their
covariance matrix is diagonal. Specifically, the
probability distribution over the embedding space
Rd induced by the input text embeddings X is as
follows:

pX(z) =
1

K

K∑

k=1

N (z;µk(X), σ2
k(X)) (1)

Given an input sequence of text X with token
embedding representations x1 . . . x|X|, we initial-
ize K trainable embeddings e1, . . . , eK with same
dimensions as xi. These trainable embeddings are
used to attend on X to get attended token repre-
sentations a1, . . . , aK . That is, ak =

∑m
i=1 αikxi,

where αik are the normalized attention weights and

are defined as follows:

αik =
exp(xTi ek)∑m
ī=1 exp(x

T
ī
ek)

, 1 ≤ k ≤ K (2)

Finally, the attended token embeddings are passed
through two linear maps in parallel to generate the
mean and log-variance of each Gaussian compo-
nent in the mixture. That is, µk = f1(ak) and
log(σ2

k)) = f2(ak), where f1 and f2 are linear
maps.

2.4 Context and Response Encodings

Given the dialog context c and response r, we gen-
erate the Gaussian Mixture representations pc(z)
(for context) and pr(z) (for response) using π, with
K and L components respectively. The Gaussian
components of the mixture are denoted as pc(z; k)
(for context) and pr(z; ℓ) (for response) and are
given by

pc(z; k) = N (z;µk(c), σ
2
k(c)) (3)

pr(z; ℓ) = N (z;µℓ(r), σ
2
ℓ (r)) (4)

where µk(c) and σ2
k(c) are the means and variances

of the kth Gaussian component for the context,
and µℓ(r) and σℓ(r) are the means and variances
of the ℓth Gaussian component of the response.
The parameters of the text encoders (BERT and π
module) for context and response are not shared.

2.5 Scoring Function

We want the context distribution to be ‘close’ to
the distribution of the ground-truth response while
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simultaneously being away from distributions in-
duced by other responses. We use the KL diver-
gence to quantify this degree of closeness. The KL
divergence between the distributions pr and pc over
the embedding space Rd is given by

KL(pr||pc) =
∫

z∈Rd

pr(z) log
pr(z)

pc(z)
dz (5)

This integral has a closed form expression if both
pr and pc are Gaussian. However, for Gaussian
mixtures, this integral needs to be approximated.
We derive the following approximation to the KL
divergence between two GMMs.

Theorem 1. Let pr and pc be two Gaussian mixture
distributions with L and K Gaussian components
respectively as defined in (3) and (4) respectively.
The KL divergence between the two GMMs can be
approximated by the following quantity

KL(pr||pc) ≈ log(K/L)+

1

L

L∑

ℓ=1

min
k∈{1,...,K}

KL(pr(.; ℓ)||pc(.; k)),
(6)

where pc(.; k) and pr(.; ℓ) are the kth and ℓth Gaus-
sian component of the context and response distri-
butions as defined in (3) and (4).

A detailed derivation of the above approximation
is provided in the Appendix. Note that the theorem
above holds even when the individual components
of the mixture are not Gaussian.

When the components are Gaussian, the KL di-
vergence between the components can be tractably
computed using the following equation:

KL(pr(.; ℓ)||pc(.; k)) = −d/2+

1

2

d∑

j=1

[
log

σ2
kj(c)

σ2
ℓj(r)

+
σ2
ℓj(r) + (µℓj(r)− µkj(c))

2

σkj(c)2

]
,

(7)

where d is the dimension of the embedding space.
Using equations (6) and (7), we get a closed form
approximation to the Kullback-Leibler divergence
between context and response GMMs.

2.6 Loss Function
We use N -pair contrastive loss (Sohn, 2016) for

training the distributions induced by the context
and response. Intuitively, given a batch B of
context-response pairs, we minimize the KL di-
vergence between the context and the true response
while simultaneously maximizing the KL diver-
gence with respect to other randomly selected re-
sponses. The loss for a given context-response pair

(c, r) can be written as

loss = − log
exp(−KL(pr||pc))∑
r̄∈B exp(−KL(pr̄||pc))

(8)

We average this loss across all the context-response
pairs in the batch and minimize it during training.
The BERT encoders, the randomly initialized em-
beddings as well as the linear layers for computing
the means and variances, are trained in an end-to-
end manner.

2.7 Inference

During inference, we are provided a context and
a collection of responses to select from. We map
the context as well as the list of responses to their
corresponding probability distributions over the
embedding space. Next, we compute the KL di-
vergence between the distribution induced by the
context and every response in the list. Using the
equation derived in (6), this can be computed ef-
ficiently and involves standard matrix operations
only. We select the top-m responses that have the
least KL divergence, where m is specified during
evaluation.

3 Related Work

Our work is broadly related with two current areas
of research - response retrieval and probabilistic
embeddings.

3.1 Response Retrieval Systems

Depending on how the context and responses
are encoded for retrieval, response-retrieval ap-
proaches can be classified into methods that use:
(i) independent encodings (ii) joint encodings.
Independent Encodings: In these methods, the
contexts and the responses are encoded indepen-
dently and the resultant embeddings are fed to
a scoring function. A common architecture em-
ployed by neural methods for dialog retrieval is
a dual encoder. Here, the context and responses
are encoded using a shared architecture but in dif-
ferent parameter spaces. Early versions of such
methods employed LSTMs (Lowe et al., 2015) but
more recently, pre-trained models have been used
(Karpukhin et al., 2020; Lu et al., 2020; Reimers
and Gurevych, 2019; Liu et al., 2021). Models
such as DPR (Karpukhin et al., 2020), S-BERT
(Reimers and Gurevych, 2019) encode contexts and
responses using dual encoders based on the BERT
(Devlin et al., 2018) pre-trained model, and learn
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a scoring function using negative samples. Mod-
els such as Poly-Encoder (Humeau et al., 2019),
MEBERT (Luan et al., 2021b), ColBERT(Khattab
and Zaharia, 2020) use multiple representations for
dialog contexts instead of using a single represen-
tation.
Joint Encoding: In contrast to methods
that independently encode context and response
pairs, methods such as Sequential Matching Net-
works (Wu et al., 2017b), cross encoders using
BERT (Nogueira and Cho, 2019; Chen et al.,
2021b) jointly encode context and dialog responses.
However, such models are slow during inference
because all candidate responses need to be jointly
encoded with the dialog context for scoring at run-
time. This is in contrast to dual-encoder architec-
tures where response embeddings can be computed
offline and cached for efficient retrieval. Models
such as ConvRT (Vakili Tahami et al., 2020), Twin-
BERT (Lu et al., 2020) use distillation to train a
dual encoder from a cross encoder models to help
a train better dual-encoder model.

3.2 Probabilistic Embeddings

Probabilistic embeddings have been applied in
tasks for building better word representations (Qian
et al., 2021; Athiwaratkun et al., 2018), entity com-
parison (Contractor et al., 2016), facial recognition
(Chen et al., 2021a), pose estimation (Sun et al.,
2020), generating multimodal embeddings (Athi-
waratkun and Wilson, 2017; Chun et al., 2021), etc.
The motivation in some of these tasks is similar to
ours – for instance, Qian et al. (2021) use Gaussian
embeddings to represent words to better capture
meaning and ambiguity. However, to the best of our
knowledge, the problem of applying probabilistic
embeddings in dialog modeling tasks hasn’t been
explored. In this work, we represent dialog con-
texts as Mixture of Gaussians present approximate
closed form expressions for efficiently computing
KL-divergence based distance measures, thereby
making it suitable for use in real-world settings.

4 Experiments

We answer the following questions through our ex-
periments: (1) How does our model compare with
recent dual-encoder based retrieval systems for the
task of response retrieval? (2) Are the responses re-
trieved by our model more relevant and diverse? (3)
Do human users of our system notice a difference
in quality of response as compared to the recent,

ColBERT system?
Due to space limitations, we answer the follow-

ing questions in the Appendix: 1) Is the improve-
ment in retrieval performance a consequence of
the extra learnable parameters in Mix-and-Match?
2) How does the performance of Mix-and-Match
depend on the number of Gaussian components in
response and context GMM?

The model and training details are provided in
the Appendix.

4.1 Datasets

We conduct our experiments on two publicly avail-
able datasets – Ubuntu Dialogue Corpus (Lowe
et al., 2015)(v2.0)4 and the Twitter Customer Sup-
port Dataset5, and an internal technical support
dataset. The Ubuntu Dialog Corpus v2.0 contains
500K context-response pairs in the training set and
20K context-response pairs in the validation set
and test set respectively. The conversations deal
with technical support for issues faced by Ubuntu
users. The Twitter Customer Support Dataset con-
tains ∼ 1 million context-response pairs in the
training data and ∼ 120K context-response pairs
in validation and test sets. The conversations deal
with customer support provided by several compa-
nies on Twitter.

We also conduct our experiments on an internal
real-world technical support dataset with ∼ 127K
conversations. We will refer to this dataset as ‘Tech
Support dataset’ in the rest of the paper. The Tech
Support dataset contains conversations pertaining
to an employee seeking assistance from an agent
(technical support) — to resolve problems such
as password reset, software installation/licensing,
and wireless access. In contrast to Ubuntu dataset,
which used user forums to construct the data, this
dataset has clearly two distinct users — employee
and agent. In all our experiments, we model the
agent response turns only.

For each conversation in the Tech Support
dataset, we sample context and response pairs.
Note that multiple context-response pairs can be
generated from a single conversation. We create
validation pairs by selecting 5000 conversations
randomly and sampling their context response pairs.
Similarly, we create test pairs from a different sub-
set of 5000 conversations. The remaining conver-

4https://github.com/rkadlec/ubuntu-ranking-dataset-
creator

5https://www.kaggle.com/thoughtvector/customer-
support-on-twitter
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sations are used to create training context-response
pairs.

4.2 Baselines

We compare our proposed model against two scal-
able baselines - SBERT (Reimers and Gurevych,
2019) and ColBERT (Khattab and Zaharia, 2020)
– a recent state-of-the-art retrieval model. Similar
to Mix-and-Match, both the baselines use indepen-
dent encoders (dual-encoders to encode the con-
texts and responses. Hence, these baselines can be
used for large-scale retrieval at an acceptable cost.

4.2.1 SBERT
SBERT (Reimers and Gurevych, 2019) uses two
BERT encoders for embedding the inputs (context
and response). We pass the contextualized embed-
dings at the last layer of BERT through the ReLU
non-linearity followed by a linear layer to project
it to a d-dimensional space. The projected em-
beddings are average-pooled to generate fixed size
embeddings for context and response. Since con-
text and response are from two different domains,
we found that it is crucial that the context and re-
sponse encoders do not share the parameters. We
use inner-product between the context and response
embeddings as the similarity measure and train the
two encoders via contrastive loss.

4.2.2 ColBERT
Just like SBERT, ColBERT (Khattab and Zaharia,
2020) uses two BERT encoders to encode the in-
puts and pass the output through a linear layer to
generate d-dimensional embeddings. However, in-
stead of pooling the output through the linear layer,
a late interaction is computed between all the con-
textualized token embeddings of the context and
response. Unlike the original implementation of
ColBERT, we do not enforce the context and re-
sponse encoders to share parameters. This is es-
sential for achieving reasonable performance for
dialogs. The model is trained via contrastive loss.
Please refer to the appendix for additional details
about training and hyperparameter settings.

4.3 Response Retrieval

In this setting, each context is paired with 5000
randomly selected responses along with the ground
truth response for the given context. The list of
5000 responses are randomly selected from the test
data for each instance. Hence, the response uni-
verse associated with each dialog-context may be

different. The task then is to retrieve the ground
truth response given the context. For efficient
computation, all the responses in the test data are
encoded once and stored. Note that this is only
possible for dual-encoder architectures (such as
Mix-and-Match, SBERT, ColBERT); the major per-
formance bottleneck in cross-encoder approaches
arises from this step where the response encodings
are dependent on the context and hence need to be
encoded each time for every new dialog context.

For Mix-and-Match, the response encoder out-
puts the means and variances of the GMM induced
by the response in the embedding space. We use a
batch-size of 50 to encode the responses and cache
the generated parameters (mean and variance) of
the response-GMMs.

Similarly, the context is encoded by the context
encoder to output the means and variances of the
components of context-GMM. We compute the KL
divergence between the context distribution and dis-
tribution of each response in the associated list of
5000 responses using the expressions derived in (6)
and (7). The values are sorted in ascending order
and the top-k responses are selected for evaluation.

A similar setting is used for SBERT and Col-
BERT with the exception that the embeddings are
stored instead of means and variances. Moreover,
we sort the responses based on SBERT and Col-
BERT similarity in descending order.

4.3.1 Results
We use MRR and Recall@k for evaluating the var-
ious models. For evaluating MRR, we sort the
associated set of 5000 responses with each context,
based on KL divergence in ascending order. For
Recall@k, we pick the top-k responses with the
least KL divergence. The percentage of contexts
for which the ground truth response is present in
the top-k responses is referred to as Recall@k. The
results are shown in Table 1. For Mix-and-Match,
we discovered that the optimal recall occurs when
the number of Gaussian components in the GMM
is small. The variation of performance with the
number of Gaussian components is given in the
appendix.

As can be observed, SBERT that uses a single
embedding to represent the entire context as well
as response, achieves the lowest recall. By us-
ing all the token embeddings to represent the con-
text and response, ColBERT achieves better per-
formance than SBERT. Finally, by using Gaussian
mixture probability distributions to represent con-

3278



Dataset Model Recall@1 Recall@2 Recall@5 Recall@10 MRR
SBERT 6.24 8.44 13.26 18.26 0.099

Ubuntu (v2) ColBERT 7.48 10.93 16.37 21.33 0.123
Mix-and-Match (K=L=2) 9.47 13.55 19.89 25.93 0.151

SBERT 6.87 9.82 19.08 29.64 0.135
Twitter ColBERT 8.43 12.62 20.36 34.82 0.137

Mix-and-Match (K=L=2) 11.88 18.78 32.12 44.58 0.222
SBERT 5.88 7.71 12.69 22.67 0.119

Tech Support ColBERT 6.32 8.82 14.97 23.91 0.125
Mix-and-Match (K=L=2) 6.73 9.67 15.68 26.47 0.133

Table 1: Comparison of Mix-and-Match against baselines on retrieval tasks. Given a context, the task involves
retrieving from a set of 5000 responses that also contains the ground truth response. The number of Gaussian
components in the GMM are provided in paranthesis.

Model Recall@5 MRR
SBERT+cross-encoder 20.91 0.155

ColBERT+cross-encoder 22.40 0.170
Mix-and-Match+cross-encoder 24.40 0.192

Table 2: Comparison of Mix-and-Match against base-
lines when coupled with cross-encoder on Ubuntu
dataset.

text and response, Mix-and-Match achieves sub-
stantial improvement in Recall@k and MRR on
all the datasets as compared to SBERT and Col-
BERT. Thus, richer the representation of context
and response, better is the recall. In the appendix,
we also include performance comparisons when
the embedding size for SBERT and ColBERT is
doubled. Note that the relative improvement is less
in Tech Support, as there is less diversity among
the responses in the training data of Tech Support.
The agents are trained to handle calls in specific
way that reduces the diversity.
Re-ranking with cross-encoder Instead of us-
ing the models above (SBERT, ColBERT, Mix-
and-Match) for selecting a response, one may use
these models to filter a subset of responses. The
filtered responses can then be re-ranked using a
more powerful, albeit slow models such as cross-
encoders. In Table 2, we use a BERT-based cross-
encoder (Nogueira and Cho, 2019; Chen et al.,
2021b) for re-ranking the top-100 responses re-
trieved by each of the models on Ubuntu dataset.
As can be observed, the scores of all the models
improve significantly after re-ranking with cross-
encoder. Moreover, the scores achieved by Mix-
and-Match are significantly higher than the other
baselines.

4.4 Response Recommendation

The response retrieval setting described in the pre-
vious section is unrealistic since it assumes that
the ground truth response is also present in a set
of 5000 responses. In reality, when a response

retrieval model such as (Fadnis et al., 2020) is de-
ployed for response recommendation, it must re-
trieve from a large set of all the responses present
in the training data (often running into hundreds of
thousands of responses).

To deal with the large set of responses present
in the training data, we encode them offline using
the response encoder of Mix-and-Match. As in
the previous section, we use a batch-size of 50 for
encoding the responses. After the means and vari-
ances of all the Gaussian components of response
GMMs have been generated, we save them to a file
along with the corresponding responses. To ensure
faster retrieval, we use Faiss (Johnson et al., 2019)
for indexing the means of the Gaussian components
of response GMMs. Faiss is a library for comput-
ing fast vector-similarities and has been used for
vector-based searching in huge sets. We use the
IVFPQ index of faiss (Inverted File with Product
Quantization) that discretizes the embedding space
into a finite number of cells. This allows for faster
search computations.

We flatten the tensor of means of Gaussian com-
ponents of all response GMMs to a matrix of mean
vectors. The matrix of mean vectors is added to
the IVFPQ index. A pointer is maintained from
the mean of each Gaussian component to the corre-
sponding response as well as the means and vari-
ances of its Gaussian components.

When a new context arrives, we compute the
means and variances of its Gaussian components.
For each Gaussian component, we retrieve the top-
10 responses by using the mean of the Gaussian
component as the search query. After retrieving
the top-10 responses for each Gaussian component,
we load the corresponding means and variance. Fi-
nally, we compute the KL divergence between the
context GMM and the GMMs of all the retrieved
responses. The values are sorted in ascending order
and the top-k responses are selected for evaluation.
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Dataset Model BLEU-2 BLEU-4 Diversity
(BERTDist.)

SBERT 5.86 0.49 2.33
Ubuntu (v2) ColBERT 6.66 0.58 3.19

Mix-and-Match 7.16 0.64 3.60
SBERT 19.84 10.3 1.76

Twitter ColBERT 20.67 11.09 2.17
Mix-and-Match 22.83 12.62 2.60

SBERT 12.09 5.82 1.49
Tech Support ColBERT 16.57 8.58 2.55

Mix-and-Match 18.82 10.57 3.02

Table 3: Comparison of Mix-and-Match against base-
lines for the response recommendation task. Given a
context, the task involves retrieving from the set of all
responses in the training data. The computation of di-
versity is discussed in detail in Section 4.4

Language Generation Quality: Since the ground
truth response may not be present verbatim in the
set, metrics such as recall and MRR cannot be
computed in this setting. We therefore use the
BLEU metric (Papineni et al., 2002) for evaluating
the quality of the responses. As can be observed
from the table, the BLEU scores are quite low for
Ubuntu dataset, suggesting that most retrieved re-
sponses have very little overlap with the ground
truth response. As in the previous section, SBERT
is outperformed by ColBERT in terms of BLEU-2
and BLEU-4. Finally, Mix-and-Match outperforms
both the models on all three datasets. This suggests
that the responses retrieved by Mix-and-Match are
relevant to the dialog context.
Diversity of Responses: The primary strength of
the Mix-and-Match system is its capability to as-
sociate multiple diverse responses with the same
context. To capture the diversity among the top-k
responses retrieved for a given context, we measure
the distance between every pair of responses and
average it across all pairs. Thus, if R is the set of
retrieved responses for a given context, the BERT
distance among the responses in R is given by

BERTDistance(R) =
1

|R|2
∑

r∈R

∑

r̄∈R
||e(r)−e(r̄)||2 , (9)

where e(r̄) is the pooled BERT embedding of r.
The results are shown in Table 3. As can be

observed from the table, SBERT has the least di-
versity among the retrieved responses. This is ex-
pected since all the retrieved responses must be
close to the context embedding and hence, close
to each other. ColBERT fares better in terms of
diversity since it uses multiple embeddings to rep-
resent contexts and responses. Finally, Mix-and-
Match that uses GMMs to represent contexts and
responses achieves the best diversity. This sug-

ColBERT Win Mix and Match Win Tie
Response

Relevance @1 17% 40% 43%

Diversity 42% 58% NA

Table 4: The top-response returned by the Mix-and-
match model is found to be relevant more often (40% vs
17%) than ColBERT. In addition, the set of responses
returned by Mix-and-Match are also more diverse (58%
vs 42% for ColBERT).

ColBERT Mix and Match
Diversified-Relevance (DR) 0.25 0.35

Table 5: The Diversified-Relevance scores for ColBERT
and Mix-and-Match in our human study.

gests that having multiple or probabilistic embed-
dings helps in improving the diversity among the
retrieved responses.
Scalability: Next, we evaluate the time taken
by the Mix-and-Match model to retrieve from
the FAISS index as comapred to baselines. The
similarity/KL-divergence computations as well as
vector similarity searches for the FAISS index, are
performed on a single A100 GPU. Unsurprisingly,
SBERT achieves the lowest latency of 8.9 ms for
retrieval per dialog context. ColBERT achieves a
latency of 89.7 ms. The latency of Mix-and-Match
ranges from 36.7 ms (for 1 Gaussian component)
to 68.8 ms (for 32 Gaussian components) depend-
ing upon the number of Gaussian components in
the mixture. Note that, even in the worst case, the
latency is less than 0.01s, thus making the model
suitable for practical use in the real world.
Qualitative Study:Table 6 shows a sample with
a multi-turn dialog context where the user is com-
plaining about bad cellphone coverage. As before,
the responses retrieved by both ColBERT and Mix-
and-Match are presented. As can be seen, Mix-
and-Match returns a relevant response at the top
ranked position (highlighted in green) and related
responses at other positions. In contrast, ColBERT
retrieved generic or unrelated responses.
Human Evaluation: We also conducted a human
study comparing the output responses of ColBERT
and Mix-and-match. We used samples from the
Twitter data set for this study as it does not re-
quire domain expertise to assess the relevance of
responses. Three users were asked to review 30
twitter dialogs contexts along with the top-4 re-
sponses returned by each system,6 in a response
recommendation setting. Users were presented the

6a total of 360 independent context-response assessments.
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Dialog Context
User: the worst mobile serive in 2015 2017 cellphone badservice miami florida
Agent: hey send us a dm and we’ll ensure a great experience channeyt
User: tmobilehelp poor service low signal slow service it s miami

Responses Retrieved
ColBERT Mix-and-Match

(i) Our apologies , we are currently experiencing a system challenge
which we are working to resolve . kindly bear with us.

(i) how long has this been happening ? what type of phone
do you have ? please send us a dm so we can fix it . thank you

(ii) our sincere apologies for any inconveniences caused, we are
having a technical issue, resolution is underway

(ii) that ’ s not good at all ! please dm us with your zip code and
nearest streets intersection to check the coverage

(iii) it is not our intention to make you upset. please feel free
to reach out to us if you have already called back and still need further
assistance.

(iii) does this happen in specific locations ? when did you begin to
experience these issues with your connection ? are you having issues
making calls and sending text as well ?

Ground Truth Response: let ’ s flip thing around ! meet in the dms https://t.co/sbivwmm6x2

Table 6: Sample of a multi-turn dialog context - Mix-and-Match returns a relevant response at the top ranked
position and related responses at other positions. In contrast, ColBERT retrieved generic or unrelated responses.

outputs from each system in random order and they
were blind to the system returning the responses.
We asked our users the following:

1. Given the dialog context and the response
sets from two different systems, label each
response with a “yes” or “no’ depending on
whether the response is a relevant response
recommendation for the dialog context. Thus,
each response returned by both systems was
individually labeled by three human users.

2. Given the dialog context and the response
sets from two different systems, which of
the response set is more diverse? Thus, each
context-recommendation set was assessed by
three human users.

We count the number of votes received by the
top-ranked response for each system and report
percentage wins for each system. In addition, we
also report a head-to-head comparison in which
the two models were assessed for diversity (no
ties). Finally, to assess whether diversity is ac-
companied by relevance in the response set, we
define a metric called Diversified-Relevance (DR)
which weighs the diversity wins by the number of
relevant responses returned by each system. Specif-
ically, DRmodel, the Diversified-Relevance for a
model ∈ {ColBERT, Mix-and-Match} is given by:

DRmodel =

∑M
i

∑4
j 1{winmodel

i } ∗ 1{relevancemodel
ij }

4M
,

(10)

where M is the number of dialogs used in the study,
4, is the number of response recommendations per
dialog, 1{winmodel

i } is an indicator function that
takes the value 1 if model was voted as being
more diverse its responses to ith dialog context,
and 1{relevancemodel

ij }, is an indicator function

that takes the value 1 if the jth response recommen-
dation by model was voted as being relevant7.

As can be seen in Table 4, the top-ranked re-
sponse returned by Mix-and-Match received signif-
icantly higher number of votes (40%) in favour as
compared to ColBERT. In 43% of the cases there
was no-clear winner. Finally, in 58% of the di-
alogs, Mix-and-Match was found to present a more
diverse set of response recommendations.

In order to assess, if the diversity is accompanied
by relevance, we also report the DR scores in Table
5. As can be seen the DR scores for Mix-and-
Match is significantly higher than ColBERT (0.35
vs 0.25). Overall, the results from our human-study
indicate that Mix-and-Match returns more diverse
and relevant responses.

5 Conclusion

By modelling contexts and responses as multi-
modal distributions, we allow the network to be
more expressive without forcing the representations
of unrelated responses to move closer, as would
have been the case with traditional dual-encoder
learning objectives. We derived and presented a
closed form expressions for efficiently computing
the KL-divergence based distance measures and
showed its suitability for real-world settings. We
demonstrated the effectiveness of our retrieval sys-
tems on three different datasets - Ubuntu, Twitter
and an internal, real-world Tech support dataset.
Additional experiments for response relevance, in-
cluding a human study were performed on the pub-
licly available datasets. We found that not only is
our model able to retrieve more relevant responses
as compared to recent retrieval systems, it also pre-
sented more diverse results.

7As can be seen DR returns a score between 0 and 1.
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6 Limitations

Mix-and-Match relies heavily on the diversity of
responses for a given input for achieving good per-
formance. As a result, the model doesn’t achieve
significant performance boost when the diversity
isn’t significant. In our experiments, we observed
this trend for our internal Tech Support dataset
which had standard responses for most queries.

Moreover, it isn’t straightforward to store the
context and response GMMs in the nearest neigh-
bor index. In our experiments, we used a
workaround where we store the means of all the
Gaussian components in the nearest neighbor in-
dex. To retrieve, we used the L2 distance between
the means of the Gaussian components of response
and context GMMs. The retrieved results were then
reranked using the KL-divergence approximation
discussed in the paper. By ignoring the variance
term, we are forced to assume that the Gaussian
components in the GMMs are spherical.
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Supplementary material for Mix-and-Match: Scalable Dialog Response
Retrieval using Gaussian Mixture Embeddings

1 Proof of Theorem 1

Proof. The proof follows a similar line of reason-
ing as the proof provided in (Hershey and Olsen,
2007) The KL divergence between pr and pc can
be written as

KL(pr||pc) =
∫

pr(z) log pr(z)dz (1)

−
∫

pr(z) log pc(z)dz

= −H(pr) +H(pr, pc) (2)

The first term is the negative of entropy while the
second term is the cross entropy. We approximate
the cross entropy by expanding the GMM in terms
of its Gaussian components, and applying Jensen’s
inequality:

H(pr, pc)

= − 1

L

L∑

ℓ=1

∫
pr(z; ℓ) log

[
K∑

k=1

qℓ(k)
pc(z; k)

qℓ(k)K

]
dz

≤ − 1

L

L∑

ℓ=1

K∑

k=1

qℓ(k)

∫
pr(z; ℓ) log pc(z; k)dz

1

L

L∑

ℓ=1

K∑

k=1

qℓ(k) log qℓ(k) + logK

=
1

L

L∑

ℓ=1

K∑

k=1

qℓ(k)H(pr(.; ℓ), pc(.; k)) (3)

−H(qℓ) + logK (4)

Here, the first equality follows by multiplying and
dividing the terms within the log by the variational
distribution qℓ(k). The last inequality follows by
applying Jensen’s inequality. The above upper
bound holds for all choice of q. The bound can
be tightened by minimizing it with respect to qℓ(k).
We assume qℓ to be a one-hot vector which can
only be non-zero for one context component k. Ev-
ery one-hot qℓ has an entropy of 0 and hence, the

second term in the equation is always 0. For a one-
hot qℓ, the above equation is minimized when qℓ
assigns all its weights to the component of context
GMM with lowest cross-entropy. Using the opti-
mal one-hot q, the above equation can be written
as

H(pr, pc) ≤ (5)

1

L

L∑

ℓ=1

min
k∈{1,...,K}

H(pr(.; ℓ), pc(.; k)) + logK

(6)

The entropy of pr can be derived as a special
case of the above equation by replacing pc in the
above equation by pr. Thus, the entropy of a GMM
can be upper-bounded by

H(pr) ≤
1

L

L∑

ℓ=1

H(pr(.; ℓ)) + logL (7)

Finally, the KL divergence can be approximated by
replacing (6) and (7) in (2). Note that the resultant
quantity is neither an upper nor a lower bound, but
still a useful approximation.

KL(pr||pc) (8)

≈ 1

L

L∑

ℓ=1

min
k∈{1,...,K}

[H(pr(.; ℓ), pc(.; k))] (9)

+
1

L

L∑

ℓ=1

−H(pr(.; ℓ)) + log(K/L) (10)

=
1

L

L∑

ℓ=1

min
k∈{1,...,K}

KL(pr(.; ℓ)||pc(.; k)) (11)

+ log(K/L) (12)

2 Model and training details

We ran all our experiments on a single Nvidia A100
GPU. We use the pretrained ‘bert-base’ model pro-
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vided by Hugging Face1. The dimension of the em-
bedding space is fixed to be 128 for all the models.
The number of Gaussian components in the con-
text and response distributions is selected by cross-
validation from the set {1, 2, 4, 8, 16, 32}. We use
the ‘AdamW’ optimizer provided by Hugging Face
(Adam optimizer with a fixed weight decay) with
a learning rate of 1.5e− 5 for all our experiments.
A fixed batch size of 16 context-response pairs is
used. To prevent overfitting, we use early-stopping
with the loss function defined in Section 2.6 on val-
idation set as the stopping criteria. The time taken
by the various algorithms to reach convergence
on Ubuntu dataset is as follows: 37.5 hours for
SBERT, 38.5 hours for ColBERT and 38.8 hours
for Mix-and-Match with K = L = 2. The total
number of parameters in each model (including the
baseline) is approximately 219 million.

3 Ablation studies

In our ablation studies, we want to answer the fol-
lowing questions: 1) Is the improvement in re-
trieval performance a consequence of the extra
learnable parameters in Mix-and-Match? 2) How
does the performance of Mix-and-Match depend
on the number of Gaussian components in response
and context GMM?

3.1 Effect of the extra parameters in
Mix-and-Match

All the three models used in our experiments
(SBERT, ColBERT and Mix-and-Match) use the
same BERT architecture for encoding. However,
for SBERT and ColBERT, the BERT encodings are
passed through a single linear layer for generating
the final embeddings. Instead, for Mix-and-Match,
two parallel linear layers are used to generate the
means and log-variances of the Gaussian mixtures.
These layers are shared by all the Gaussian compo-
nents in the mixture.

To account for this extra linear layer, we double
the embedding size for SBERT and ColBERT. The
resultant retrieval scores are present in Table ??.
As can be observed from the table, the retrieval
performance of SBERT and ColBERT improves
by doubling the embedding layer. However, Mix-
and-Match with half the embedding size (size of
the mean vector) still outperforms these baselines
on Twitter and Tech support dataset. On Ubuntu

1https://huggingface.co/bert-base-uncased

dataset, the performance of the various models is
comparable.

3.2 Variation of retrieval accuracy with the
number of Gaussian components

Next, we plot the retrieval accuracy of Mix-and-
Match with the number of Gaussian components in
the GMM. We vary the number of Gaussian compo-
nents in the context and response GMM from 1 to
32 and compute the recall@5 on Ubuntu and Twit-
ter dataset. As can be observed from Figure ??,
the recall is high when the number of Gaussian
components is small but starts decreasing as we
increase the number of components. Overall, the
best performance occurs when K = L = 2 or
K = L = 4.

(a) Ubuntu (v2)

(b) Twitter

Figure 1: Variation of recall@5 with the number
of Gaussian components in the context and response
GMM.

3.3 Qualitative Study

Table 2 shows a sample with a single-turn dialog
context where the user is complaining about flight
boarding positions. The responses retrieved by
both ColBERT and Mix-and-Match are presented.
As can be seen, Mix-and-Match returns a relevant
response at the top ranked position (highlighted in
green) and another related response at the second
position. In contrast, ColBERT retrieved generic
or unrelated responses.
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Table 1: Comparison of Mix-and-Match against baselines with twice the embedding size on retrieval tasks. Given a
context, the task involves retrieving from a set of 5000 responses that also contains the ground truth response.

Dataset Model Recall@2 Recall@5 Recall@10 MRR
SBERT (256) 9.73 15.62 21.10 0.114

Ubuntu v2 ColBERT (256) 13.60 19.60 24.75 0.150
Mix-and-Match (128) 13.55 19.89 25.93 0.151

SBERT (256) 11.08 20.8 31.8 0.144
Twitter ColBERT (256) 12.98 21.94 35.78 0.149

Mix-and-Match (128) 18.78 32.12 44.58 0.222
SBERT (256) 8.11 13.43 23.86 0.123

Tech Support ColBERT (256) 9.53 15.42 25.17 0.131
Mix-and-Match (128) 9.67 15.68 26.47 0.133

Table 2: Sample of a single-turn dialog context - Mix-and-Match returns a relevant response at the top ranked
position and another related response at the second position. In contrast, ColBERT retrieved generic or unrelated
responses.

Dialog Context
User: @southwestair i’m bummed i paid 15 for early bird and still only got a b boarding position don t think i ll do that anymore notworthit

Responses Retrieved
ColBERT Mix-and-Match

(i)if you check your itinerary email, it ’ ll tell you what type of
fare you purchased.wanna get away fares are nonrefundable,
but anytime and business select fares can be refunded.
thanks for reaching out

(i) please know that earlybird offers the convenience
of automatic check - in, but does not guarantee a
specific boarding position . still, we apologize if you
were disappointed in the position you received &hope to
make it up to you while onboard

(ii) sorry if we’ve missed a chance to be of better service to you.
since we’re separate entities, we’re re unable to alter or change
the incorrect alamo car reservation

(ii) by law we ’ re required to let folks with specific boarding needs
or disabilities on the aircraft first, though we apologize for your
frustration this morning

(iii) oh no ! so sorry to hear that. please speak with our agents in the
airport about reaccommodations

(iii) sorry for any confusion, our agents know the proper
procedures and questions toask to determine the best boarding option

Ground Truth Response: apologies for any frustration, as the # of earlybird customers vary on each flt, you’re guaranteed automatic check in,
not a specific boarding position .
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