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Abstract

With the popularity of online social me-
dia, massive-scale multimodal information has
brought new challenges to traditional Named
Entity Disambiguation (NED) tasks. Recently,
Multimodal Named Entity Disambiguation
(MNED) has been proposed to link ambiguous
mentions with the textual and visual contexts
to a predefined knowledge graph. Existing at-
tempts usually perform MNED by annotating
multimodal mentions and adding multimodal
features to traditional NED models. However,
these studies may suffer from 1) failing to
model multimodal information at the knowl-
edge level, and 2) lacking multimodal annota-
tion data against the large-scale unlabeled cor-
pus. In this paper, we explore a pioneer study
on leveraging multimodal knowledge learning
to address the MNED task. Specifically, we
first harvest multimodal knowledge in the Meta-
Learning way, which is much easier than col-
lecting ambiguous mention corpus. Then we
design a knowledge-guided transfer learning
strategy to extract unified representation from
different modalities. Finally, we propose an In-
teractive Multimodal Learning Network (IMN)
to fully utilize the multimodal information on
both the mention and knowledge sides. Ex-
tensive experiments conducted on two public
MNED datasets demonstrate that the proposed
method achieves improvements over the state-
of-the-art multimodal methods.

1 Introduction

Nowadays, online social media have become more
and more important in our daily life. The massive-
scale blogs posted on these social media hide valu-
able information that can be used to understand
users and distill user preferences. However, how
to extract valuable information is extremely chal-
lenging because the posts are always free-form,
especially the text. Named Entity Disambigua-
tion (NED) is such a critical task for extracting
structured information, aiming to map ambiguous

mentions from free-form texts to specific entities
in a predefined knowledge graph. NED can benefit
many downstream applications, such as informa-
tion retrieval (Chen et al., 2021), question answer-
ing (Kandasamy and Cherukuri, 2020), relation
extraction (Nguyen et al., 2017), etc.

Existing research on NED mainly focuses on
texts and has been proven to be successful for
well-formed texts. However, with the popularity
of incorporating a mix of text and images on so-
cial media platforms (e.g. Twitter1, Instargram2,
Snapchat3, etc.), more ambiguous mentions appear
in the short and noisy text. Due to the enormous
number of mentions arising from incomplete and
inconsistent expressions, the traditional text-only
NED methods are limited in dealing with cross-
modal ambiguity, making it difficult to link these
mentions accurately. For example, on one hand, it
is difficult to distinguish the mention Swift refers to
Taylor Swift or Ben Swift from the textual context
in Fig 1. On the other hand, due to the obstruction
of eyes, hats, and other objects, the target person
cannot be directly recognized from the image alone
through face recognition techniques. When multi-
modal contexts in the post, as well as the historical
knowledge, are combined, the correct entity Ben
Swift can be predicted from the candidates. That
is, the textual and visual features can complement
each other.

Although some recent methods have achieved
promising performance for the MNED task (Moon
et al., 2018; Adjali et al., 2020a,b), challenges still
exist. First, sufficient annotated corpus with texts
and images is required to train a multimodal model,
which is costly in practice (Abuczki and Ghazaleh,
2013). And lacking sufficient training data would
limit the performance of neural models. Second,
previous works mainly learn from the multimodal

1https://twitter.com/
2https://www.instagram.com/
3https://weibo.com/
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Figure 1: An example of named entity disambiguation. Because of the insufficiency of information, the mention
Swift is ambiguous only from the textual context. And the correct entity Ben Swift can be disambiguated by
considering multimodal contexts in the post and historical knowledge.

mention contexts and do not exploit available infor-
mation at the knowledge level, without harvesting
useful descriptions and historical data with visual
features.

In this paper, we focus on solving MNED tasks
at the knowledge level. To reduce the dependence
on annotated data and fully use the unsupervised
multimodal corpus, we firstly train a multimodal
feature extractor by implementing a knowledge-
guided transfer learning strategy. Then we enrich
multimodal information at the knowledge level us-
ing a Meta-Learning aggregation strategy, aiming
to obtain multimodal entities and mentions using
a small number of knowledge annotations. Fi-
nally, we design an Interactive Multimodal learn-
ing Network (IMN) to flexibly utilize the multi-
modal information from both mention contexts and
knowledge graph and integrate them.

The main contributions of this paper are summa-
rized as follows:

• We propose a Meta-Learning method to uti-
lize multimodal information at the knowledge
level, and perform a knowledge-guided pre-
training model to reduce the dependence on
annotated data. To the best of our knowledge,
this is the first work to introduce a multimodal
pre-training model in the MNED task.

• We design an Interactive Multimodal Learn-
ing Network (IMN) to fully utilize the mul-
timodal information on both the mention as
well as knowledge sides.

• Comparative experiments conducted on two
public MNED datasets show the proposed
method outperforms state-of-the-art MNED
methods.

The rest of the paper is organized as follows:
In Section 2, we summarize the related work. In
Section 3, we formulate the MNED task and in-
troduce the proposed method in detail. In Section
4, we conduct extensive experiments and analyses.
Finally, we conclude this work in Section 5.

2 Related Work

Multimodal Learning As an efficient mecha-
nism of leveraging contextual information from
multiple modalities in parallel, multimodal learning
has been applied in a wide range of tasks in recent
years (Elliott et al., 2015; Specia et al., 2016). In
previous works, representation of different modali-
ties was mostly obtained separately. For visual rep-
resentation, CNN-based models such as VGG (Si-
monyan and Zisserman, 2014) , Google Inception
(Szegedy et al., 2016), ResNet (He et al., 2016) are
widely adopted in many multimodal tasks. Textual
features are mostly represented by language models
such as GloVe (Pennington et al., 2014), GPT (Rad-
ford et al., 2018), XLNet (Yang et al., 2019) etc.
Recently, with the success of pre-training and self-
supervised learning (Misra et al., 2016; Xie et al.,
2017b), several multimodal transfer learning meth-
ods and architectures (Yu et al., 2021; Gao et al.,
2020; Lu et al., 2019b; Qi et al., 2020) have been
proposed, and have achieved state-of-the-art results
on various vision language tasks, including Visual
Question Answering, Visual Commonsense Rea-
soning, Region-to-Phrase Grounding, Image-text
Retrieval, etc. VideoBERT (Sun et al., 2019) learns
joint distributions over sequences of visual and
linguistic tokens as multimodal features. Vision-
and-Language BERTs (Lu et al., 2020, 2019a; Gao
et al., 2020) extend BERT architecture to adapt
multimodal input by extracting RoIs from images
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and regards as image tokens. Although these pre-
training models can learn unsupervised features
in unsupervised corpus, they still need further im-
provement in tasks that require additional knowl-
edge. And we argue that the self-supervised models
still requires guidance of knowledge.

Named Entity Disambiguation Traditional
NED methods mainly focus on text-only corpus
which can be divided into two categories, local
methods and global methods (Barrena et al., 2018;
Ganea and Hofmann, 2017). For local methods,
each mention is disambiguated separately via hand-
crafted features (Bunescu and Paşca, 2006; Mihal-
cea and Csomai, 2007) and contextual representa-
tions learned by neural networks (He et al., 2013;
Eshel et al., 2017). Global methods(Nguyen et al.,
2016; Le and Titov, 2018) jointly disambiguate
mentions by taking into account the topical coher-
ence among the referred entities in the same docu-
ment(Fang et al., 2019). For the MNED task, the
work from (Moon et al., 2018) is the first to uti-
lize multimodal mention contexts via weighting the
embeddings of images and words based on atten-
tion mechanism. The previous multimodal works
primarily depend on sufficient training data with
fully annotations on all mention modalities which
is costly in practice(Abuczki and Ghazaleh, 2013).
Although Moon et al. (2018) involve a zero-shot
layer in their model to allow for disambiguation of
unseen entities during training, the performance is
limited if the multimodal information is incomplete
in the training data. Inspired by recent success on
multimodal knowledge graph (Xie et al., 2017a;
Mousselly-Sergieh et al., 2018; Pezeshkpour et al.,
2018),we aim at handle MNED tasks at the knowl-
edge level, which is much easier than collecting
and annotating multimodal corpus.

3 Proposed Method

3.1 Task Definition

Formally, the inputs are a set of multimodal posts
P = {p(1), p(2), ..., p(n)} and a predefined knowl-
edge graph G = (E,R,H) that is composed of
the entity set E, the relation set R and historical
data of entities. Each input post p ∈ P is denoted
as p = {pm, pt, pv}, where pm is a mention that
needs to be disambiguated, pt is a sequence of
words surrounding the mention in the post, and pv
is an image associated in the post. Note that the
mention pm can be obtained by other tasks such as

Named Entity Recognition (Lample et al., 2016),
which is beyond the scope of this paper. Then the
target of MNED is to find the ground truth entity
e+ ∈ E that pm corresponds to.

3.2 Knowledge-Guided Pre-training Model

Before dealing with the input multimodal posts, we
firstly build a pre-trained model to capture the in-
herent relationship between images and texts which
is guided by the knowledge graph. In this trans-
fer learning way, the model can better understand
the content of different modalities and is helpful
to overcome insufficiency of annotated multimodal
corpus.

Knowledge Pre-training Architecture The pre-
training model is composed of five parts, textual
representation, visual representation, mention em-
bedding, transformer encoder and training with
adaptive loss. The multimodal inputs consist of tex-
tual and visual representation which is tokenized
into a token and patch sequence according to Word-
Pieces and Object Detection methods. We use the
standard BERT(Devlin et al., 2018) pre-process
method to get the textual sequence. Unlike tradi-
tional pipeline image representation techniques, we
use an end-to-end method to obtain the visual repre-
sentation. DEtection TRansformer(DETR)(Carion
et al., 2020) approaches object detection as a di-
rect set prediction problem which directly output
the final set of objects in parallel. Given an input
image, we take the fixed-length vector sequence
of the output layer of DETR decoder as the visual
representation. Each of the vectors corresponds to
one image patch, we regard each patch as an “patch
token”. Mention embedding is initialized by Glove
(Pennington et al., 2014).

The concatenation of the text token sequence,
mention embedding and image patch sequence con-
sists of the pre-training model inputs. Similar to
(Gao et al., 2020),we adopt a pre-trained standard
Transformer (Vaswani et al., 2017) as the match-
ing backbone network of the pre-training model.
The information of text tokens and image patches
thus interact freely in multiple self attention layers.
In order to ensure the multimodal comprehension
ability as well as sensitiveness at the knowledge of
the pre-training model, we mask mention tokens
with a probability of 85% instead of random word
masking.
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Figure 2: The overview of the IMN with hierarchical encoding network and co-attention network. The hierarchical
encoding network contains a Dilated CNN layer, a Transformer layer and a Conv1D layer which map multimodal
posts and entities to three levels of auxiliary spaces. Then a co-attention network is proposed to explicitly emphasize
the cross-modal interactive features between mentions and entities using collaborative attention mechanism. Finally,
a scorer function is applied to get similarity of mentions and entities.

3.3 Knowledge Prototype Construction

In spite of the multimodal mention contexts, we
believe that multi-modal information at the knowl-
edge level is potentially important for MNED tasks.
Different from the previous textual representation
methods, we prefer to establish multimodal repre-
sentation at the knowledge level. Given an entity
associated with many related historical posts con-
taining images and texts, we simply select a part
of the representative timeline tweets as the proto-
type. Specifically, we adopt three modalities rep-
resentations to depict an entity based on timeline
posts. The visual prototype of each entity ev is
acquired by aggregating the features of the k repre-
sentative corresponding images. And features of an
image can generated by many image identification
such as DETR (Carion et al., 2020). Similarly, the
textual prototype of each entity et is acquired by
pre-trained language models such as BERT (De-
vlin et al., 2018). Meanwhile, the joint prototype
of each entity eo can be acquired by the hidden
state of the knowledge-guided pre-training model
described in previous subsections.

To select most representative support set from
a large number of historical data, we build a sim-
ilarity graph for each modality. The vertexes of
the similarity graph are feature vectors obtained
in previous steps. And the edges are the cosine

similarity between the vertexes. Then top-k rep-
resentative results are acquired by calculating the
PageRank score (Page et al., 1999) of each vertex
in the similarity graph. The multimodal prototypes
of an entity can be acquired by the top-k PageRank
vertexes, and we perform L2 regularization on each
prototype. Finally, each entity is represented to
three different modalities e = {ev, et, eo} with the
fixed length k.

For the multimodal posts, three different feature
extractors is applied to obtain mention embeddings.
For each post p = {pm, pt, pv}, the visual embed-
ding mv and textual embedding mt is generated
by the same method used in entity representation
process. The joint embedding mj of the mention
pm is acquired by pre-trained model in section 3.2.
Thus, each mention is embedded to three modali-
ties m = {mv,mt,mo}.

3.4 Interactive Meta Learning Network
The architecture of IMN is shown in Figure 2. Be-
cause of the huge semantic gap between different
modalities, it is challenging to disambiguate en-
tities in a high level embedding space (Liu et al.,
2021). We first construct a hierarchical encoding
network for mentions and entities, and design some
unified auxiliary spaces, which are mapped by the
outputs of encoders at different levels. Then a co-
attention network is utilized to explicitly emphasize
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the cross-modal features between mentions and en-
tities.

3.4.1 Hierarchical Encoding Network
The inputs of IMN include two parts: mention con-
texts and the candidate entity prototypes. Each
part of inputs contains vector sequences of mul-
tiple modalities. The Hierarchical Encoding Net-
work component is utilized to capture the inherent
relationship between mention contexts and entity
prototypes at different unified auxiliary space on
multiple levels.

For mention contexts, each modality is encoded
in a parallel way m′ = {m′

1,m
′
2, ...,m

′
s}. We uti-

lize a Dilated CNN (Yu and Koltun, 2015) layer to
extract local features as for the first level embed-
ding, we utilize a simple attention layer to aggre-
gate the original embedding.

g = DilatedCNN(m′) = {g1, g2, ..., gs} (1)

s1m =
∑

i

α1
i gi, αi =

exp(W 1
s gi)

s∑
j=1

exp(W 1
s gj)

(2)

where W 1
s is learnable weight matrix, s1m de-

notes the encoding output at the first level. In order
to represent mention and entity in a unified auxil-
iary space, s1m is further mapped to a unified space
embedding aux1m by a full connected layer and a
batch normalization layer after concatenation.

aux1
m = BN(W 1

a s
1
m + b1a), (3)

where W 1
a and b1a are weight matrix and bias of

the full connected layer.
In order to get higher level representation, we

utilize a transformer layer (Vaswani et al., 2017) in
which multimodal embeddings can be fully inter-
acted through multiple attention architecture.

t = Transformer(g) = {t1, t2, ..., ts} (4)

The embedding of the second level space is ag-
gregated by mean pooling, we utilize the similar
full connected and batch normalization layers to
generate auxiliary space embedding:

aux2
m = BN(W 2

a MeanPooling(t) + b2a), (5)

The last layer is max pooling CNN(Conv1D).
We utilize four Conv1D blocks with kernel size k
= 2, 3, 4, 5. Finally, we concatenate the features

generated from different CNN blocks as the output
of last level encoder to obtain the embedding in the
final unified auxiliary space.

ck = MaxPooling(ReLU(Conv1Dk(t))), (6)

c = [c2; c3, c4, c5], (7)

aux3
m = BN(W 3

a c+ b3a), (8)

Similarly, we can get the entity representations
[aux1e, aux

2
e, aux

3
e] in the unified auxiliary space.

3.4.2 Co-attention Network
The Co-attention component implements a bidirec-
tional interaction which can deal with the effect of
different modalities from mention contexts to the
knowledge graph and vice versa. We denote the
two directions of effect as entity-to-mention and
mention-to-entity, respectively.

The mention-to-entity attention is employed to
compute the attention weights of entity embeddings
in multiple unified auxiliary space with respect to
mention embeddings. We employ the attention
pooling mechanism as the aggregation strategy, the
representation of the mention is an attentive combi-
nation of all entity representations.

bi,j = auxi
mReLu(W 1

c auxi
m +W 2

c auxj
e + bc), (9)

βi,j = Softmax(bi,j) =
exp(bi,j)∑
j

exp(bi,j)
(10)

ui
m =

∑

j

βi,j aux
j
e (11)

um = MeanPooling(ui
m) (12)

3.4.3 Training
Given a set of multimodal posts which contain men-
tions and their corresponding entities, the training
process is to minimize the ranking loss between the
positive and negative pairs. Intuitively, the model is
trained to produce a higher score between the rep-
resentations of multimodal mention contexts and
the ground-truth entity. Then the loss function is
defined as:

L(m, e+, e−) =
∑

e−∈E

max(γ + f(m, e+)− f(m, e−), 0)

(13)
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Lfusion = τ1L(aux
1
m, aux1,+e , aux1,−e )

+τ2L(aux
2
m, aux2,+e , aux2,−e )

+τ3L(aux
3
m, aux3,+e , aux3,−e )

+τ4L(um, u+e , u
−
e )

(14)

where f is cosine similarity, e+ is the ground-
truth corresponding entity of mention contexts m
and e− is the incorrect entity. γ is a margin param-
eter, τ1, τ2, τ3 and τ4 are the weights of the triplet
losses in different levels.

We implement two learning tasks: knowledge
learning and task learning. We match posts in sup-
port set, which usually have no mention, with can-
didate users and we can get the initialization param-
eters of the IMN on a specific task. The support
set for knowledge learning is constructed manually
with a few representative examples of an entity in
practice. In this paper, we simply select a part of
the representative timeline tweets as the support set
using PageRank Network in Section 3.3. In task
learning we fine tune model parameters through
the MNED task.

In the inference stage, we only use the fusion
space embedding f(um, ue) to calculate the simi-
larity between mentions and entities without using
any auxiliary spaces.

4 Experiments

4.1 Datasets

Measurement Tweets-MEL Weibo-MEL

# multimodal input posts 85K 25.6K
# distinct mentions in posts 1678 509
# entities in the knowledge graph 68K 501
# timeline tweets in the knowledge graph 2M 61.2k
avg.# length of posts 20.59 193.84
avg.# mentions in a post 1.15 1.23
avg.# candidate entities for each mention 17.24 500
avg.# timeline tweets of an entity 121 122.36

Table 1: Key statistics of the MNED dataset.

We conduct comparative experiments on two
public multimodal entity disambiguation dataset
(Adjali et al., 2020a; Zhou et al., 2021). Tweets-
MEL collects text and images to jointly build a
corpus of tweets with ambiguous mentions along
with a Twitter KB defining the entities. The entities
in the corpus are composed of popular twitter users
including people, companies, and organizations.
Weibo-MEL is a MNED corpus based on the so-
cial media Weibo, and including five construction

stages: multimodal information extraction, men-
tion extraction, entity extraction, triple construction
and dataset construction. The overall statistics can
be seen in Table 1.

4.2 Experimental Settings
Hyperparameters For the pre-training model,
We use the default parameters of FationBert (Gao
et al., 2020) and feature extractor parameters adopt
the default configuration of original feature extrac-
tion model. For IMN, τ1, τ2, τ3 and τ4 is 0.5,0.5,0.5
and 1.0, the margin of the loss function is 0.2 and
the epoch is 100 with a validation set for early
stopping. We update the parameters using Adam
optimizer (Kingma and Ba, 2014) with an initial
learning rate of 0.001, the dropout rate is 0.2.

Evaluation Metrics For evaluation, we use stan-
dard micro P@1 accuracy(Adjali et al., 2020b;
Moon et al., 2018) and R@3 (Moon et al., 2018)
recall as metrics in our experiments. P@1 can in-
tuitively reflect the precision of results. R@3 eval-
uates the matching quality by measuring whether
the ground-truth entity is highly ranked.

4.3 Results and Analysis
4.3.1 Baselines
We compare our IMN model with both machine
learning methods and multimodal deep learning
methods. These benchmark methods are intro-
duced as follows:

• ET (Adjali et al., 2020b): A feature-based
machine learning model use the combination
of multimodal features to build an Extra-Trees
classifier for MNED task. JMEL: extracts
the features of different modalities and learn
a joint representation of tweets with a fully
connected neural network.

• ARNN (Eshel et al., 2017): A text-only
method for short noisy text, which uses an
Attention RNN model to compute similarity
between words and entity embeddings to dis-
ambiguate among candidates. BERT replaces
the GRU layers with BERT

• DZMNED (Moon et al., 2018): The first
proposed method for MNED by considering
multimodal contexts, which adopts a CNN-
LSTM hybrid network with modality atten-
tion. DZMNED(BERT): replaces the Glove
pre-training model with BERT.
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4.3.2 Main Results
Table 2 shows the results of our model compared
with baselines. In general, our IMN model achieves
promising improvements over all the baselines on
both P@1 and R@3 with the multimodal datasets.
It can be observed that the pre-training methods are
at an absolute advantage in both P@1 and R@3,
which shows advantage of transfer learning and
the necessity of jointly representing multimodal
features for MNED task. Comparing to the multi-
modal method such as JMEL with traditional tex-
tual and visual representation methods, our model
achieves 2.2% absolute improvement on P@1. The
improvements indicate that the interaction between
multiple modalities also adds performance gain by
capturing the effect of different modalities from
both the posts and the knowledge graph. In ad-
dition, adding more multimodal features can still
supplement MNED tasks, even that the pre-trained
representation already contain multimodal informa-
tion. This affirms the advantage of IMN to capture
information of different modal.

Model
Tweets-MEL Weibo-MEL

P@1(%) R@3(%) P@1(%) R@10(%)
ET 67.1 - - -
JMEL 80.3 - - -
ARNN 80.4 93.2 41.3 53.4
BERT 81.1 93.3 42.4 54.9
DZMNED 80.1 94.2 40.6 54.3
DZMNED(BERT) 82.0 94.4 46.3 55.5
IMN 84.2 95.2 47.8 56.5

Table 2: Comparison results with baselines on the mul-
timodal dataset. The best performance is denoted with
bold text. To be consistent with previous works, we
use R@3 for Tweets-MET and R@10 for Weibo-Mel
respectively.

4.3.3 Meta Learning Analysis
To investigate the effectiveness of our model on
reducing training data by introducing multimodal
knowledge, we randomly selected part of training
data and compare our model with Zero-Shot model
DZMNED. In Figure 3, our IMN method achieves
the best overall performance, especially our method
is significantly effective dealing with insufficient
training data. This validates the advantage of in-
volving multimodal information at the knowledge
level.

4.3.4 Aggregating Statistics
In order to further study the dependency on anno-
tated knowledge of IMN and the effect of different

Figure 3: Performance comparison on part of training
data.

methods for entity support set construction, we
conduct comparative experiments using different
K values and two aggregation strategies and the
results are shown in Figure 4. We can observe that
the effect of PageRank performs better than ran-
dom method especially for a small number of K
values. It indicates that the features selected by the
PageRank method are more representative and the
influence of noise on the result is reduced to some
extent. On the other hand, the best result is ob-
tained when k = 10, the point can be inferred that
great results can be achieved by maintaining only a
small amount of high-quality data at the knowledge
level. In this way we can reduce the dependency
on annotated knowledge.

Figure 4: Results corresponding to different aggregation
strategies. The abscissa represents the final aggregated
number of entity historical data and the ordinate repre-
sents the corresponding precision.

4.3.5 Multimodalitiy Analysis
In this part, we perform a series of experiments
to evaluate the performance of our model on deal-
ing with the multimodal features on different input
sides. As shown in Table 3, the pre-trained features
outperform other single-modal features. Besides,
we enrich multimodal features on the mention side
and the entity side respectively. Results show that
adding multimodal features from both sides can im-
prove the model effect, and the multimodal features
on the entity side has a more obvious contribution
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Modal Side
Mention Modals Entity Modals Results

text image joint text image joint P@1(%) R@3(%)

Single Modal
✓ ✓ 81.08 93.03

✓ ✓ 77.56 90.93
✓ ✓ 82.19 93.85

Mention Side
✓ ✓ ✓ 82.38 94.16
✓ ✓ ✓ 82.38 94.14
✓ ✓ ✓ ✓ 82.70 95.00

Entity Side
✓ ✓ ✓ 83.10 95.06
✓ ✓ ✓ 83.19 95.11
✓ ✓ ✓ ✓ 83.21 95.11

Table 3: Results of the Multimodalitiy Analysis. Single Modal indicates the effect of different modals when used
alone. Mention Side and Entity Side refer to the enrichment means of multimodal information on the mention and
the knowledge side respectively.

to the improvement of results. This points out a
new direction for data annotating of MNED tasks:
we can put the focus of data annotation on the pro-
duction of multimodal knowledge, even if the input
mention does not have multimodal contexts. In this
way, the multimodal annotation dependence on the
mention side can be greatly reduced.

4.3.6 Ablation Study

Model
Results

P@1(%) R@3
IMN 84.2 95.2

- Knowledge Guided 83.5 95.1
- aux1 83.9 95.1
- aux1, aux2 83.5 94.8
- aux1, aux2, aux3 82.7 94.0

Table 4: Ablation tests for MNED. "-" means removing
corresponding component of the model.

To investigate the effect of each component in
our model, we conduct a set of ablation experi-
ments as shown in Table 4. IMN is the complete
proposed model. The notation ’-’ means removing
some part of the model. From the experimental re-
sults we can observe that the performance drops ob-
viously when auxiliary spaces are removed, which
demonstrates the effectiveness of our interactive
model. This proves the multimodal information
from both the posts and the entities is helpful for
the MNED task.

We also investigated the necessity of knowledge
guidance in the pre-training process. Firstly, We im-
plement the same mask strategy of Bert by treating
mentions as normal words. Then, negative exam-
ples of each case are randomly selected from all
tweets. We can observe that the overall accuracy

will be reduced to a certain extent in Table 3. The
result shows that the structure and historical infor-
mation in the knowledge graph can be learned by a
pre-training manner and is helpful to improve the
effect of the MNED task.

5 Conclusion

We propose to solve MNED task at the knowledge
level through multimodal Transfer Learning and
Meta Learning. With large-scale unsupervised data
and a small amount of annotated knowledge, our
model significantly outperforms the state-of-the-
art MNED methods. Experimental results show
that enrich multimodal features at the knowledge
level is more conducive to improving the effect of
MNED models compared with mention contexts
annotation.

There are still many points worth continuing to
explore. In particular, the structural information
in the knowledge graph which can be learned by
knowledge representation models such as transE
may also be useful. Besides, the prototype aggre-
gation method still needs further exploration with
graph learning models such as GCN etc.

6 Limitations

Our method requires additional multimodal knowl-
edge and a large amount of unsupervised data for
pre-training, which is additional burden to collect
in practice. Besides, the performance of our model
also depends on the feature extractors, how to com-
bine more feature extractors and utilize more uni-
fied auxiliary space is still worth continuing explo-
ration. Finally, our method does not consider the
situation of multiple images in one post and entities
lacking of multimodal knowledge .
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