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Abstract

Pre-trained language models have demon-
strated impressive performance in both natu-
ral language processing and program under-
standing, which represent the input as a to-
ken sequence without explicitly modeling its
structure. Some prior works show that pre-
trained language models can capture the syn-
tactic rules of natural languages without fine-
tuning on syntax understanding tasks. How-
ever, there is limited understanding of how
well pre-trained models understand the code
structure so far. In this work, we perform
the first thorough benchmarking of the state-
of-the-art pre-trained models for identifying
the syntactic structures of programs. Specifi-
cally, we introduce CodeSyntax, a large-scale
dataset of programs annotated with the syn-
tactic relationships in their corresponding ab-
stract syntax trees. Our key observation is
that existing language models pretrained on
code still lack the understanding of code syn-
tax. In fact, these pre-trained programming
language models fail to match the performance
of simple baselines based on positional offsets
and keywords. We also present a natural lan-
guage benchmark to highlight the differences
between natural languages and programming
languages in terms of syntactic structure un-
derstanding. Our findings point out key limita-
tions of existing pre-training methods for pro-
gramming languages, and suggest the impor-
tance of modeling code syntactic structures.1

1 Introduction

Large-scale pre-training of language models has
become the de-facto paradigm for a variety of natu-
ral language processing tasks. Furthermore, recent
studies show that models pre-trained on a massive
amount of code also achieve competitive perfor-
mance on many tasks, e.g., code generation and
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1Our code and dataset are available at https://github.
com/dashends/CodeSyntax.
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Figure 1: Examples of syntactic relations for (a) natural
languages (NL) and (b) programming languages (PL).
Each relation is represented by an arrow. The relations
in PL represent the syntax of code in a way similar to
those in NL.
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Figure 2: A preview of the model performance com-
parison on NL and PL syntax understanding tasks. Pre-
trained models capture NL syntax relatively well, but
perform worse in understanding PL syntax. The Offset
baseline picks the token using a fixed positional offset.
We use BERT-large and RoBERTa-base configurations
(corresponding to the configurations of CuBERT and
CodeBERT). The plot shows top-1 scores. See Tables 3
and 4 for the full results.

code classification. These tasks are closely related
to natural language (NL) tasks in their problem
formulation. Nowadays, the common practice for
solving these coding tasks is to utilize the language
model architectures and training schemes that are
originally designed for NL. The design principle of
these neural language models is significantly differ-
ent from the classic rule-based program generation
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systems. Specifically, neural language models take
the program as a token sequence, while classic
program generation systems utilize the language
grammar and code structure. Despite the advanced
performance of pre-trained language models on
code understanding tasks, what these models have
learned from the code corpus remains unclear.

In this work, we investigate whether large-scale
pre-training is all we need for code representation
learning. In particular, we conduct the first system-
atic study to analyze how the pre-trained language
models understand the syntactic structures of pro-
grams. To this end, we introduce CodeSyntax, a
large-scale benchmark consisting of programs an-
notated with the syntactic relationships between
different tokens. The ground truth syntactic rela-
tionships are extracted from edges in the abstract
syntax trees (AST) of the programs. Figure 1
shows some examples. These syntactic relations
are function-wise similar to dependency relations
for NL, where prior work has demonstrated that
the attention heads of pre-trained language models
can help to identify NL relation types (Clark et al.,
2019; Raganato et al., 2018). To measure how well
the pre-trained language models capture the code
syntactic structures, we adopt the approach to the
PL domain. We focus on investigating the zero-
shot capability of existing pre-training methods in
our experiments, and we evaluate these pre-trained
models without finetuning them on our benchmark.

We evaluate the state-of-the-art pre-trained lan-
guage models for code representation learning, in-
cluding CuBERT (Kanade et al., 2020) and Code-
BERT (Feng et al., 2020). A common character-
istic of these models is that they share the same
Transformer-based architectural design as NL mod-
els (Vaswani et al., 2017; Devlin et al., 2019). This
allows us to directly compare their performance
in capturing the syntax structure. We present a
preview of our key results in Figure 2. Our main
observation is that pre-training is insufficient for
learning the syntactic relations in code. First, we
find that the models pre-trained on code do not al-
ways outperform models pre-trained on NL corpus
alone. Surprisingly, compared to CodeBERT which
is trained on both text and code corpora, RoBERTa
achieves better performance without training on
any code with identical model architecture. This
indicates that pre-training on programs as token
sequences does not help learn the syntactic rela-
tions. On the contrary, without dependency rela-

tions, pre-training still enables language models to
understand the NL syntax to some extent.

Moreover, for code syntax understanding, the
pre-trained models even perform worse than simple
baselines that pick the tokens with a fixed offset.
For example, always selecting the (p+2)-th token as
the p-th token’s dependency yields higher accuracy
than any attention head for several relation types.
On the other hand, the same model architectures
pre-trained on text corpora achieve decent accuracy
in identifying the dependency relations in the NL
domain, where the performance of the same simple
baselines is far behind.

Our analysis reveals several key differences be-
tween NL and PL that lead to different capabilities
of understanding the syntax for pre-trained mod-
els. First, programs are more structured than NL
sentences. Programs usually contain hierarchical
structures representing long-term dependencies be-
tween code tokens. Consequently, a large num-
ber of syntactic relation types are between distant
tokens, which can be difficult to recognize for at-
tention heads. On the contrary, the dependency
relations in NL sentences mostly connect nearby
token pairs, and in this case the attention heads are
more capable of identifying the correct relations.
Meanwhile, language models are good at recog-
nizing keyword-based relations, such as picking
the corresponding else keyword for an if token.
Interestingly, we find that the inclusion of tokens
such as newlines and semicolons notably affects
the performance in the code domain.

Our findings suggest that existing pre-trained
models perform quite differently in PL and NL do-
mains in terms of the ability to understand syntax.
Thus, directly applying training paradigms devel-
oped for NL could be suboptimal for program learn-
ing, and we consider designing better approaches
to model the code structure as future work.

2 CodeSyntax: Benchmarking Code
Syntax Understanding

We construct the CodeSyntax benchmark to eval-
uate the performance of language models on code
syntax understanding. We focus on Python and
Java languages, on which the publicly released
model checkpoints of both CuBERT (Kanade et al.,
2020) and CodeBERT (Feng et al., 2020) are pre-
trained. We obtain the code samples from Code-
SearchNet (Husain et al., 2019), which is a large-
scale dataset consisting of code in different pro-
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Relation Count
Explanation

Code Example
head→dependent Python Java Python Java

Assign:
target→value

78,482 13,384 Assigning a value to a target
variable.

target = 10 int target = 10;

Call:
func→args

110,949 50,890 Calling a function with some
arguments.

function(arg) function(arg);

For:
for→body

8,704 1,864 A for loop repeatedly executes
the body block for some itera-
tions.

for target in iter:
body

for (initializers;
test; updaters) {
body;

}
If:
if→else

11,024 5,038 An if statement conditionally
executes a body based upon
some criteria. The dependent
is the else keyword.

if condition:
body1

else:
body2

if (condition) {
body1;

} else {
body2;

}
If:
if→body

34,250 22,392 An if statement. The depen-
dent is the body block.

if condition:
body1

else:
body2

if (condition) {
body1;

} else {
body2;

}
If:
body→orelse

11,024 4,976 An if statement. The head is
the body block and the depen-
dent is the body of the else
block.

if condition:
body1

else:
body2

if (condition) {
body1;

} else {
body2;

}
While:
test→body

743 975 The while loop repeatedly exe-
cutes the body block as long as
the specified condition is true.

while condition:
body

while (condition) {
body;

}

Table 1: Dataset statistics of selected relation types in CodeSyntax. For each relation type, we highlight the head
and dependent nodes in the examples in bold, with the head in blue and the dependent in red. We defer the full
statistics of all relation types to Table 8 in the appendix.

gramming languages. Its training set is also part
of the pre-training data of CodeBERT, so we re-
move the data samples that are included in the
pre-training data of either CuBERT or CodeBERT.
Thus, none of the programs in CodeSyntax has
been seen by CuBERT or CodeBERT in the pre-
training phase.

In total, CodeSyntax contains 18,701 code sam-
ples annotated with 1,342,050 relation edges in
43 relation types for Python, and 13,711 code
samples annotated with 864,411 relation edges
in 39 relation types for Java. Each code sam-
ple is an entire function consisting of multiple
statements, which is analogous to a paragraph
in NL. Each relation corresponds to an edge in
the program AST; specifically, we utilize the
Python ast module (Foundation, 2021) and the Java
org.eclipse.jdt.core.dom.ASTParser class (Contrib-
utors, 2014) to parse a code sample into an AST.
We present some examples of relation types in Ta-
ble 1, and we defer the description of all relation

types to Table 8 in the appendix. More details about
relation extraction are discussed in Appendix A.
Note that we can easily extend the dataset to cover
more languages since the workflow for extracting
relations is automated and AST parsers are avail-
able for most popular programming languages.

We observe several characteristics of relations
in CodeSyntax. First, the keywords in PL play an
important role in recognizing the code structure.
Specifically, some relation types have fixed key-
words as the edge nodes, such as the If:if→else
relation. Meanwhile, compared to the dependency
relations in NL, the relation edges in the program
AST tend to connect nodes that are much farther
away from each other. As shown in Figure 3, the
average offset between head and dependent nodes
is no more than 10 for dependency relations in NL,
while the average offset for a relation type can be
more than 100 tokens in programs. Specifically, in
CodeSyntax, there are 22 near dependency types
whose average offsets are less than 10, and 12 far
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Figure 3: Offset distribution of relation types in (a)
CodeSyntax and (b) NL corpus. The x axis is the av-
erage positional offset distance between heads and de-
pendents for each relation. The y axis is the number
of relations that has the average offset value. See Sec-
tion 3 for more details on the NL corpus.

dependency types whose average offsets are above
10.

3 Evaluation Setup

Do pre-trained language models capture the code
structure without direct supervision of the syntac-
tic information? To investigate this question, we
evaluate several pre-trained language models with-
out finetuning, and compare their performance in
understanding the syntax for NL and PL.

Natural language benchmark. To compare the
performance on CodeSyntax to NL syntax under-
standing, we construct the NL benchmark that
includes English and German. Specifically, we
use the English News Text Treebank: Penn Tree-
bank Revised (Bies et al., 2015) labeled with Stan-
ford Dependencies (de Marneffe and Manning,
2008a,b), and German Hamburg Dependency Tree-
bank (Foth et al., 2014) labeled with Universal De-
pendencies (de Marneffe et al., 2021). In total, the
English dataset has 48,883 sentences, 43 relation
types, and 1,147,526 relation edges; the German

dataset has 18,459 sentences, 35 relation types, and
307,791 relation edges.

Attention probing approach. Some prior
works demonstrate that a Transformer archi-
tecture (Vaswani et al., 2017) pre-trained on a
text corpus, such as BERT (Devlin et al., 2019),
contains attention heads that specialize in certain
dependency relations in NL (Raganato et al., 2018;
Clark et al., 2019). Specifically, in the Transformer
architecture, each vector ei for an input token
is transformed into the query and key vectors qi
and ki via some linear transformations, and the
transformations vary among different attention
heads. For the i-th token, the attention weight
assigned to the j-th token is

αi,j =
exp(qTi kj)∑
l exp(q

T
i kl)

The attention weight indicates how important
the j-th token is with respect to the i-th token.

Typically, different attention heads learn differ-
ent weights between input tokens. Therefore, to
measure the correctness of recognizing a relation
type r, for each edge <h, t, r> in the program
AST where h is the head node and t is the de-
pendent node, we enumerate all attention heads to
compute the attention weight αh,t. If an attention
head tends to assign high attention weights that
connect the pair of tokens belonging to the relation
type r, we consider the relation type to be captured.
We defer more implementation details of attention
map extraction to Appendix B.

Metrics. We use the unlabeled attachment score
(UAS) to measure the syntax understanding perfor-
mance, and we consider top-k scores with different
values of k. To compute top-k scores for language
models, for each attention head, given the head to-
ken h in a relation edge <h, t, r>, we compute
the attention weight over all tokens in the input
code, and we consider the prediction to be correct
if the attention weight over the dependent token
t is among the top-k tokens with the highest at-
tention weights. For each relation, we select the
best-performing attention head and use its score as
the model’s score for that relation. We calculate a
model’s average score over all relations as the final
score of the model.

In NL dependency parsing problems, the depen-
dent node t usually corresponds to a single word.
However, in PL, the dependent can be a block that
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contains multiple code tokens. For example, in the
If:if→body relation, the head is the keyword if,
while the dependent is the entire body block. There-
fore, we measure three metrics. First-token metric
and last-token metric: the prediction is deemed
correct if it successfully predicts the first and last
token of the dependent block, respectively; Any-
token metric: the prediction is considered correct
if it can predict any token within the dependent
block. While we agree that these are not perfect
metrics and one single metric may be incomplete,
we observe that our findings generally hold for all
the three metrics we evaluated. Note that the first-
token metric is stricter than the any-token metric by
design. Unless otherwise specified, we report the
top-k scores using the first-token metric by default.

Model architectures. Table 2 summarizes the
models evaluated in this work. For language
models over code, we consider CuBERT (Kanade
et al., 2020) and CodeBERT (Feng et al., 2020),
and we evaluate their released pre-trained check-
points. Both of them are based on architectures
initially designed for NL. Specifically, CuBERT
utilizes the BERT (Devlin et al., 2019) architec-
ture, and CodeBERT (Feng et al., 2020) utilizes
the RoBERTa (Liu et al., 2019) architecture. For
NL models, we also evaluate multilingual variants
of BERT and RoBERTa on the German dataset,
i.e., Multilingual BERT (Pires et al., 2019) and
XLM-RoBERTa (Conneau et al., 2020). Both of
the two code language models are cased, so we also
evaluate the cased versions of the NL models.

Programming Languages Natural Languages

CuBERT
BERT
Multilingual BERT

CodeBERT
RoBERTa
XLM-RoBERTa

Table 2: Model architectures evaluated on PL and NL
benchmarks. Models in the same row share the same
architecture, but are pre-trained on different corpora.

Baselines. To examine how well the attention
performs through comparisons, we design a sim-
ple offset baseline and a simple keyword baseline.
The offset baseline with an offset value of i always
selects the token after i positions of the input to-
ken as its prediction when i > 0, and selects i
positions before the input token when i < 0. The
keyword baseline with a keyword of key always
predicts the next key token as its prediction. In our

experiments, we evaluate offset baselines with each
possible offset value between 0 and 512 for PL, and
-512 to 512 for NL. We use all Python and Java key-
words for the keyword baselines on Python and
Java datasets respectively, including tokens such
as if, for, in, etc. To evaluate the top-k scores
for baselines where k ≥ 2, we combine k simple
baselines with different offset (keyword) values to
give k predictions. To select k offset (keyword)
values, we repeatedly and greedily include the next
value that yields the highest performance increase
for the relation type under consideration.

4 Experiments

In this section, we present the results of pre-trained
language models for both PL and NL syntax un-
derstanding tasks, and discuss the key observations
that distinguish PL from NL.

4.1 Main Results

Language Model
Top-k Score
k=1 k=3 k=10 k=20

Python

Offset 43.6 63.7 87.3 94.9
Keyword 15.7 21.9 23.6 23.8
Combined 49.4 69.7 90.1 96.3
CuBERT 39.2 58.4 81.3 91.4
CodeBERT 33.1 51.8 78.6 89.2
RoBERTa 34.5 56.9 82.5 91.3

Diff (Model - Baseline) -10.2 -11.3 -8.8 -4.9

Java

Offset 52.7 71.5 87.1 94.3
Keyword 22.4 27.3 30.2 30.6
Combined 60.4 77.2 90.0 96.1
CuBERT 39.7 59.8 80.0 90.2
CodeBERT 36.3 57.1 78.3 88.8
RoBERTa 34.7 57.8 80.3 90.5

Diff (Model - Baseline) -20.7 -17.4 -10.0 -5.9

Table 3: Top-k scores for code syntax understanding.
For each language, the upper block contains the re-
sults of baselines, including: (1) Offset: always picking
the token with a fixed positional offset; (2) Keyword:
matching a fixed keyword nearby; and (3) Combined:
combining the best option from Offset and Keyword.
Score differences are calculated as the best attention
score - best baseline score for each language, where
a positive value indicates that the language model sur-
passes the baseline.

We present our main results to compare the per-
formance in syntactic relation understanding on PL
and NL in Tables 3 and 4, respectively. First, on
CodeSyntax, language models generally perform
worse than simple offset baseline and its combi-
nation with the keyword baseline, which indicates

3075



Language Model
Top-k Score
k=1 k=3 k=10 k=20

English
Offset 47.1 72.7 91.0 96.6
BERT-large 64.6 83.2 96.3 99.3
RoBERTa-base 62.7 84.3 96.9 99.4
CodeBERT 59.3 79.7 95.2 99.1

Diff (Model - Baseline) 17.5 11.6 5.9 2.8

German
Offset 36.3 58.0 83.1 95.1
Multilingual BERT 62.6 81.9 96.5 99.6
XLM-RoBERTa-base 67.4 85.5 97.1 99.7

Diff (Model - Baseline) 31.1 27.5 14.0 4.6

Table 4: Top-k scores for NL syntax understanding.
Note that BERT-large and CuBERT share the same
model configuration, and CodeBERT and RoBERTa-
base have the same model architecture. Unlike Table 3,
we exclude Keyword and Combined baselines because
they do not add upon the Offset baseline in terms of the
performance.

Language Model
Top-k Score (Any-token Metric)
k=1 k=3 k=10 k=20

Python

Offset 63.6 85.4 96.7 98.9
Keyword 22.2 31.3 34.9 35.2
Combined 66.8 88.4 98.2 99.6
CuBERT 64.3 82.7 96.1 99.2
CodeBERT 56.0 76.5 93.5 97.9
RoBERTa 49.4 74.7 94.4 98.5

Diff (Model - Baseline) -2.5 -5.7 -2.1 -0.4

Java

Offset 69.4 86.5 96.8 99.0
Keyword 40.9 44.9 46.7 47.0
Combined 75.7 90.0 98.2 99.6
CuBERT 72.1 87.4 97.5 99.5
CodeBERT 62.7 81.1 93.9 97.6
RoBERTa 59.8 81.4 94.9 98.4

Diff (Model - Baseline) -3.6 -2.6 -0.7 -0.1

Table 5: Top-k scores for code syntax understanding
using the any-token metric.

that the attention heads of PL pre-trained models do
not effectively capture the syntactic relations in pro-
grams. The comparison between CodeBERT and
RoBERTa further shows that pre-training on a large-
scale code corpus, in addition to the text corpus for
RoBERTa pre-training, does not yield a notably bet-
ter understanding of code syntax. In comparison,
language models substantially outperform offset
baselines in recognizing the dependency relations
in NL, demonstrating that the attention heads learn
to be specialized for different relation types via
large-scale pre-training on text.

Meanwhile, we present the any-token results on
CodeSyntax in Table 5. Although the best com-
bined baseline still outperforms language models,
the performance gap shrinks drastically. In par-

ticular, CuBERT achieves better scores than the
offset baseline, and the improvement on Java is
more notable. We defer the full results of different
top-k scores on both PL and NL benchmarks to
Appendix D. In the following sections, we discuss
the key factors that affect prediction performance.

4.2 Case Studies: The Effect of Keywords
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Figure 4: Top-k scores for Java syntax understanding
using the last-token metric.

To examine why the offset baseline outperforms
CodeBERT and CuBERT, and why the relative per-
formance differences get smaller when using the
any-token metric, we conducted case studies and
error analysis in Section 4.2 and Section 4.3, which
both quantitatively and qualitatively categorize the
error patterns.

Firstly, we investigate the most frequently at-
tended code tokens, and we observe that the atten-
tion heads tend to recognize the reserved tokens
and keywords in PL. For example, CuBERT and
CodeBERT get an improved score on Java because
the semicolon token is part of the ground truth de-
pendent node, which is a popular token attended
to by language models. Based on this observation,
we perform an ablation study on the presence of
the semicolon in ground truth annotations. When
the semicolon tokens are removed from ground
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truth dependent nodes, we also disable the lan-
guage models to attend to semicolons in the in-
put code. Since the semicolon appears at the end
of each Java statement, here we compute the last-
token score which may be significantly affected by
semicolons. As shown in Figure 4, CuBERT sub-
stantially outperforms baselines when semicolons
are included in the ground truth labels. On the other
hand, CuBERT reaches lower scores than baselines
when semicolons are excluded from ground truth
labels and predictions. The comparison suggests
that attention heads are more capable of identifying
frequent keywords in the model input. We defer
the full ablation study on both Python and Java to
Appendix F.

We further discuss the breakdown results with
respect to relation types, and we select some rep-
resentative relations for Python that highlight the
performance differences between CuBERT and the
offset baseline in Table 6. First, the attention is
highly capable of performing keyword matching,
which leads to decent accuracy on relations that
connect popular keywords, such as If:if→else.
However, when the head and dependent tokens
are diverse, it becomes challenging for the lan-
guage model to recognize the relation. For ex-
ample, in relation types Assign:target→value
and Call:func→args, both head and dependent
nodes can take various identifier names defined by
different programmers. In particular, CuBERT can
not effectively utilize the relative positions of to-
kens to learn the relations, even if the dependent
node is near the head node. In such situations, the
offset baseline with a fixed offset value of 2 already
surpasses the pre-trained model. The full break-
down results of all relation types on both Python
and Java can be found in Appendix G.

Relation
Score

Offset Diff
CuBERT Offset

If:if→else 92.7 5.7 17 87.1
If:body→orelse 29.2 7.1 12 22.0
If:if→body 31.5 23.1 7 8.4
For:for→body 30.4 32.7 7 -2.3
Assign:target→value 39.8 71.2 2 -31.4
While:test→body 16.2 48.5 4 -32.4
Call:func→args 59.3 93.2 2 -33.9

Table 6: The comparison of top-1 first-token scores
between CuBERT and the offset baseline with the
best fixed offset for selected relation types on Python
dataset.

4.3 Error Analysis

Relation Error Situation
Count

Python Java

If:
if→else

Nested if statements or multiple
if statements close to each other.

34 42

Predicts other keywords inside
body block, e.g., if and while.

11 4

Other. 5 4

If:
body→orelse

Predicts another token with the
same name as head token itself.

38 21

Predicts keywords inside body
block, e.g., if, ; and while.

0 14

Predicts a long string or doc-
string.

7 7

Other. 5 8

If:
if→body

Predicts blank space or tab. 32 0
Predicts { or }. 0 27
Predicts return. 0 19
Predicts \n or :. 15 0
Other. 3 4

For:
for→body

Predicts blank space or tab. 46 0
Predicts { or }. 0 29
Other. 4 21

Assign:
target→value

Predicts a token that comes be-
fore =, e.g. a[0] and a.b

16 30

Predicts =. 22 5
Other. 12 15

While:
test→body

Predicts a token in the test block. 48 36
Other. 2 14

Call:
func→args

Predicts ( or ). 45 37
Predicts another token with the
same name as head token itself.

0 10

Other. 5 3

Table 7: Error analysis using CuBERT.

To categorize the wrong predictions of the at-
tention, we manually examine 50 error cases for
each relation selected in Table 6, and present the
error situations in Table 7. Again, we observe that
the attention often incorrectly selects frequently
occurring tokens such as brackets. Moreover, the
model has difficulty capturing the hierarchical code
structure, thus it often attends to nearby keywords
regardless of logical code blocks.

Take the relation If:if→else as an example,
on which the language model generally achieves
the best performance. Shown in Figure 5 are two
sample if-statements, where the first one does not
contain nested flow control blocks while the second
one contains a keyword while inside the if-body.
"..." denotes that some code is omitted. Visualiz-
ing their corresponding attention weights of the
attention head that performs the best on the relation
If:if→else, we observe that the attention head
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(a) Python code.

'if' 'if'
'e' 'e'
'.' '.'

'errno' 'errno'
'==' '=='

'errno' 'errno'
'.' '.'

'EEXIST' 'EEXIST'
':' ':'

'\n' '\n'
'            ' '            '

'pass' 'pass'
'\n' '\n'

'' ''
'else' 'else'

':' ':'
'\n' '\n'

'if' 'if'
'(' '('

'len' 'len'
'(' '('

'self' 'self'
'.' '.'

'stack' 'stack'
')' ')'

'>' '>'
'0' '0'
')' ')'
':' ':'

'\n' '\n'
'            ' '            '

'while' 'while'
'...' '...'

'else' 'else'
':' ':'

(b) Attention weights.

Figure 5: Two sample cases for the relation
If:if→else and corresponding attention weights of
CuBERT’s head 17-2.

correctly attends to the else token in the first ex-
ample, while it wrongly attends to the while token
inside the if-body in the second example. More
examples like these can be found in Appendix E.

5 Related Work

Transformer-based language models have been
widely used for natural language processing (De-
vlin et al., 2019; Liu et al., 2019; Wang et al., 2020,
2021; Shen et al., 2022; Wang et al., 2022). Hewitt
and Manning (2019) show that syntax trees are im-
plicitly embedded in BERT’s word representation
space via a structural probe. Another line of work
studies what is learned by the attention in language
models (Clark et al., 2019; Raganato et al., 2018;
Voita et al., 2019; Michel et al., 2019; Vig, 2019;
Burns et al., 2018; Marecek and Rosa, 2018; Voita
et al., 2018). In particular, Clark et al. (2019) eval-
uate the attention heads of BERT on dependency
parsing tasks using the English Penn Treebank cor-
pus, where the attention significantly outperforms
offset baselines. On the contrary, we demonstrate
that attention-based models largely perform worse
than offset baselines on code syntax understanding.

The success of Transformer-based models for
natural language processing leads to their applica-
tion in the PL domain (Kanade et al., 2020; Feng

et al., 2020; Rozière et al., 2020, 2021; Clement
et al., 2020; Dehghani et al., 2019). Chen et al.
(2021) evaluate the model performance by mea-
suring the functional correctness on unit tests.
Chirkova and Troshin (2021) empirically shows
that Transformers can utilize syntactic information
to make predictions in some code processing tasks,
while we analyze attention’s ability to understand
syntactic relations. Karmakar and Robbes (2021)
probe pre-trained models on four code understand-
ing tasks. They focus more on code classification,
e.g., they train a classifier for predicting the AST
node tag and the code length. On the contrary,
we probe the attention heads for syntactic relation
understanding, and we aim to present a comprehen-
sive study of the differences between pre-trained
language models on NL and PL for capturing the
syntax structures.

There have been some efforts that try to take
code structure into account during pre-training
of Transformer-based models for code. For ex-
ample, GraphCodeBERT (Guo et al., 2021) uti-
lizes data flow for pretraining; i.e., the relation of
"where-the-value-comes-from" for variables. On
our Python benchmark, GraphCodeBERT achieves
a top-1 first-token score of 39.3, which is better
than 33.1 of CodeBERT, and comparable to 39.2 of
CuBERT. However, such a score is still worse than
43.6 of the offset baseline. This trend is consistent
when evaluating with other metrics. These results
show that pre-training on data flow helps improve
the model’s ability to understand code syntax, but
there is still large room for improvement.

6 Conclusion

In this work, we introduce CodeSyntax, a large-
scale benchmark for measuring the performance of
code syntax understanding. Based on CodeSyntax,
we conduct the first comprehensive study to ana-
lyze the capability of pre-trained language models
on understanding the code syntactic structures with-
out further finetuning. We demonstrate that while
the attention heads of pre-trained language models
are able to identify dependency relations in NL to
some extent, they have difficulty recognizing the
syntactic relations in programs. Pre-trained models
even generally perform worse than simple offset
baselines, and they tend to attend to frequently
occurring nearby tokens without taking the hierar-
chical code structure into consideration.

We also analyze the differences between NL and
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PL from the perspectives of pre-trained models.
Our evaluation suggests that PL has unique char-
acteristics that distinguish them from NL, such as
the long-term dependency between code tokens,
and the hierarchy in the syntactic structures. There-
fore, simply taking a program as a token sequence
is insufficient for modeling the program structure,
which could eventually limit the potential of lan-
guage models for code understanding tasks. We
consider developing new model architectures and
pre-training algorithms to leverage and represent
the code structure and dependency graph as impor-
tant future work.

7 Limitations

For the limitations of our benchmark, the gold an-
notations are based on the AST parsers. Adding
new programming languages whose parsers are un-
available will require additional labeling efforts. A
limitation in our experimental setup is that we have
only benchmarked six models across two kinds
of natural languages and programming languages.
Finally, the main focus of our study is to probe
the language models for code understanding. As
a result, we have not proposed models that could
deal with the code syntax in natural language and
programming language applications. Future work
could include developing such models that capture
both semantics and structures.

8 Ethical Considerations

We hereby acknowledge that all of the co-authors of
this work are aware of the provided ACM Code of
Ethics and honor the code of conduct. The follow-
ings give the aspects of both our ethical considera-
tions and our potential impacts to the community.
This work creates a benchmark to test the code syn-
tax understanding of pre-trained language models.
Instead of natural language, the programming lan-
guage is used for pre-training. We do not anticipate
the production of harmful outputs after using our
benchmark and existing models, especially towards
vulnerable populations.

9 Environmental Considerations

We use several pre-trained language models. Ac-
cording to the estimation in (Strubell et al., 2019),
pre-training a model with a similar size as used in
the work costs 1,507 kWh·PUE and emits 1,438 lb
CO2. This work focuses on inference. Therefore,

our energy cost and CO2 emissions are relatively
small.
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A More Details on CodeSyntax
Construction

Since the code search net dataset does not come
with syntactic relation labels, we come up with
a way of extracting syntactic relations. We first
utilize python’s tokenize module and javalang mod-
ule to produce code tokens from source code, and
then label these code tokens with syntactic relations
by using AST parsers on source code. We utilize
Python ast module (Foundation, 2021) and Java
org.eclipse.jdt.core.dom.ASTParser class (Contrib-
utors, 2014) to parse source code into ast nodes.
The AST structure captures syntactical relations.
An AST node has children AST nodes and a name
that denotes its class. We use the class of the
node as label and children nodes as dependents
and heads when generating annotations. For exam-
ple, the source code A = B, which means assign-
ing value B to target variable A, is parsed into the
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Figure 6: PL Top-k Scores On Test Set
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Figure 7: English Top-k Scores
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Figure 8: German Top-k Scores

AST node Assign(targets=[Name(id=’A’)],
value=Name(id=’B’)). It gives us a syntactic rela-
tion whose head is A and dependent is B, annotated
with the relation type label Assign. Full statistics
of CodeSyntax are displayed in Table 8.

B More Details on Attention Map
Extraction for Code Language Models

Our experiments follow the work of Clark et al.
(2019). They evaluate the attention heads of BERT
on dependency parsing tasks on an English dataset,
while we extend the work to the PL domain. We
adopt and extend some of their code, such as the
functions for extracting attention from BERT and
plotting attention weights. The main differences
between our work and theirs are that we construct
a novel dataset for syntax understanding tasks for
PL and come up with related evaluation metrics to
accommodate the characteristics of PL.

B.1 Model Input

Each of our code samples is an entire Python or
Java function. To prepare the input to be fed to the
models, we run CuBERT and CodeBERT tokeniza-
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tion to obtain sequences of input ids for each code
sample. We insert a [CLS] token at the beginning
and append a [SEP] token at the end. If the input
length is longer than 512 tokens (the maximum
number of tokens allowed), we discard that code
sample. We never split a long code sample into
several input sentences because the span of some
dependency relations is very long within a function.
For example, for an if statement, the else block
may be far away from the keyword if. If we split
them into two input sentences, then attention will
not be able to understand and predict the relation
between them. To avoid uncommon data points,
we remove a code sample from both CuBERT and
CodeBERT’s input if it is longer than 512 tokens
after either one of CuBERT or CodeBERT’s tok-
enization.

B.2 Token Alignment And Word-level
Attention

BERT uses WordPiece tokenization (Wu et al.,
2016) and RoBERTa uses byte-level Byte-Pair En-
coding (BPE) (Sennrich et al., 2016), which may
split a word into several subtokens. Additionally,
CuBERT imposes some special rules when produc-
ing program vocabulary. However, our dataset’s
labels use code tokens generated by the tokenize
module and the javalang module. Therefore, there
exists a need to align CuBERT/CodeBERT subto-
kens with code tokens in order to evaluate the mod-
els on our dataset. We first generate such an align-
ment that maps each code token to a set of Cu-
BERT/CodeBERT subtokens, and then convert the
original subtoken-level attention to word-level at-
tention. We follow (Clark et al., 2019) to combine
the attention weights of subtokens, i.e., we sum up
their attention weights.

C More Reproducibility Information

Here we provide more information according to the
EMNLP 2022 Reproducibility Criteria.

• Train/validation/test splits for datasets used:
We do not finetune the pre-trained models
on our benchmark. The validation set of
CodeSyntax contains the code samples that
come from the validation set of CodeSearch-
Net, and our test set contains the samples from
CodeSearchNet’s test set. We use our test par-
tition to probe the pre-trained attention heads
while the validation set is not used.

• Number of parameters in each model: Cu-
bert and BERT-large have 340M parameters.
CodeBert and RoBERTa-base have 125M pa-
rameters. XLM-RoBERTa-base has 250M pa-
rameters. Multilingual BERT-base has 110M
parameters.

• The average runtime for each model or algo-
rithm: Running the pipeline to construct the
CodeSyntax dataset takes about four hours
assuming that dependencies and required
datasets have been downloaded. The algo-
rithm to probe a pre-trained model on one
programming language of CodeSyntax takes
about twelve hours on our machine using one
Nvidia 1080Ti GPU.

D More Results on Top-k Scores

PL top-k scores are plotted in figure 6. NL scores
are plotted in figure 7 (English) and figure 8 (Ger-
man).

E Examples of Correct and Incorrect
Predictions

In this section, we present some visualization ex-
amples where attention correctly or incorrectly pre-
dicts the dependents. The heads chosen in these ex-
amples are the best-performing heads of CuBERT
evaluated using the first-token metric. We feed the
entire function as input to the transformer, however,
we only present relevant snippets here for simplic-
ity. In the source code displayed, "..." denotes that
the remaining part of the code is omitted. As a re-
sult, the attention from a token may not sum up to
one in these figures because the rest of the function
is omitted.

Relation Call: func → args. The correspond-
ing attention weights are visualized in Table 9 for
Python and 10 for Java.

• Python correct case.

n = len(x)
n_fft = len(win_sq)

Attention correctly predicts the arguments x
and win_sq, respectively.

• Python error case.

re.findall(pattern,text)

The function findall is called. The correct
prediction should be the first argument, which
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is pattern; however, attention incorrectly
predicts the parenthesis (.

• Java correct case.

subscriber.onError(ex);

The token ex has the largest weight in atten-
tion, which is a correct prediction.

• Java error case.

isBug(error)

The function isBug is called. The correct pre-
diction should be the argument, error; how-
ever, attention incorrectly predicts ).

'n' 'n'
'=' '='

'len' 'len'
'(' '('
'x' 'x'
')' ')'

'\n' '\n'
'n_fft' 'n_fft'

'=' '='
'len' 'len'

'(' '('
'win_sq' 'win_sq'

')' ')'

're' 're'
'.' '.'

'findall' 'findall'
'(' '('

'pattern' 'pattern'
',' ','

'text' 'text'
')' ')'

Figure 9: Python Head 15-11 Call: func→ args.

'subscriber' 'subscriber'
'.' '.'

'onError' 'onError'
'(' '('

'ex' 'ex'
')' ')'
';' ';'

'isBug' 'isBug'
'(' '('

'error' 'error'
')' ')'

Figure 10: Java Head 19-9 Call: func→ args

Relation Assign: target → value. The cor-
responding attention weights are visualized in Ta-
ble 11 for Python and 12 for Java.

• Python correct case.

value = round(value,
precision)

The assigned value round is correctly pre-
dicted.

• Python error case.

d["_text"] = r.text

The value assigned is r.text, but attention
incorrectly predicts [.

• Java correct case.

int p = parallelism();

Attention has the largest weight for the head
token parallelism, which correctly predicts
the relation.

• Java error case.

this.defaultProcessor
= processor;

The value assigned is processor, but atten-
tion incorrectly predicts ;.

'value' 'value'
'=' '='

'round' 'round'
'(' '('

'value' 'value'
',' ','

'precision' 'precision'
')' ')'

'\n' '\n'

'd' 'd'
'[' '['

'"_text"' '"_text"'
']' ']'

'=' '='
'r' 'r'
'.' '.'

'text' 'text'

Figure 11: Python Head 15-10 Assign: target→ value

'int' 'int'
'p' 'p'
'=' '='

'parallelism' 'parallelism'
'(' '('
')' ')'
';' ';'

'this' 'this'
'.' '.'

'defaultProcessor' 'defaultProcessor'
'=' '='

'processor' 'processor'
';' ';'

Figure 12: Java Head 20-10 Assign: target→ value

Relation If: if → else. The corresponding
attention weights are visualized in Table 13 for
Java.

• Java correct case.

if (t instanceof Error) {
throw (Error) t;

} else {
...

It correctly identifies the keyword else.
• Java error case.

if(error.addThrowable(ex)) {
if ...

} else {
...

There is another if statement inside the body
of the first if statement. The correct prediction
should be keyword else, but it predicts the
inner if.

Relation For: for → body. The corresponding
attention weights are visualized in Table 14 for
Python and 15 for Java.

• Python correct case.
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'if' 'if'
'(' '('
't' 't'

'instanceof' 'instanceof'
'Error' 'Error'

')' ')'
'{' '{'

'\n' '\n'
'throw' 'throw'

'(' '('
'Error' 'Error'

')' ')'
't' 't'
';' ';'

'\n' '\n'
'}' '}'

'else' 'else'
'{' '{'

'if' 'if'
'(' '('

'error' 'error'
'.' '.'

'addThrowable' 'addThrowable'
'(' '('

'ex' 'ex'
')' ')'
')' ')'
'{' '{'

'\n' '\n'
'if' 'if'

'...' '...'
'\n' '\n'
'}' '}'

'else' 'else'

Figure 13: Java Head 9-10 If: if→ else

for el in predictions:
if 0 in el:

...

• Python error case.

for pass_ in
self.working_list:

ret.append(...

The correct prediction should be the first to-
ken within the body, which is ret; however,
attention incorrectly predicts the blank space
" " before ret.

• Java correct case.

for(BehaviorSubscription<T>
s : array) {

if (...

• Java error case.

for (;;) {
CacheSubscription ...

The correct prediction should be the
first token within the body, which is
CacheSubscription; however, attention
incorrectly predicts {.

'for' 'for'
'el' 'el'
'in' 'in'

'predictions' 'predictions'
':' ':'

'\n' '\n'
'        ' '        '

'if' 'if'
'0' '0'
'in' 'in'
'el' 'el'
':' ':'

'\n' '\n'

'for' 'for'
'pass_' 'pass_'

'in' 'in'
'self' 'self'

'.' '.'
'working_list' 'working_list'

':' ':'
'\n' '\n'

'            ' '            '
'ret' 'ret'

'.' '.'
'append' 'append'

'(' '('

Figure 14: Python Head 18-4 For: for→ body

'for' 'for'
'(' '('

'BehaviorSubscription' 'BehaviorSubscription'
'<' '<'
'T' 'T'
'>' '>'
's' 's'
':' ':'

'array' 'array'
')' ')'
'{' '{'

'\n' '\n'
'if' 'if'
'(' '('

'for' 'for'
'(' '('
';' ';'
';' ';'
')' ')'
'{' '{'

'\n' '\n'
'CacheSubscription' 'CacheSubscription'

Figure 15: Java Head 16-5 For: for→ body

F More Results on the Ablation Study of
Delimiter Tokens

The ablation study on java dataset is shown in Fig-
ure 17 (any-token metric) and Figure 16 (last-token
metric). Results with first-token metric are not af-
fected at all because semicolons and newlines are
never used as the first token of dependents. We
found that attention performs very well with last-
token metric because it can find semicolons and
newlines.

The ablation study on python dataset is shown
in Figure 18 (any-token metric) and Figure 19 (last-
token metric).

G More Breakdown Results on Different
Relation Types

More results on comparisons of top-1 scores be-
tween CuBERT and the offset baseline are pre-
sented in Tables 9, 10, 11, and 12.
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Figure 16: Top-k scores for Java syntax understanding
using the last-token metric.
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Figure 17: Ablation Study (Java Any-Token Metric).
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Figure 18: Ablation Study (Python Any-Token Metric).
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Figure 19: Ablation Study (Python Last-Token Metric).
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Relation:head→dependent Count Explanation Code Example
Python Java Python Java

Assign:target→value 78482 13384 Assigning a value to a target
variable.

target = 10 int target = 10;

Attribute:value→attr 158797 84215
Accessing the attribute (member
field or member function) of an
value.

value.attribute line.setLength(2);

AugAssign:target→value 3150 /

An assignment augmented
with an operation. For Java,
this case is included in
Assign:target→value.

x += 2 /

BinOp:left→right 26035 / A binary operation. a + b /
BoolOp:value→value 5783 / A boolean operation True or False /
Call:args→keywords 9256 / Calling a function with some

arguments (and keywords). function(arg, key=1) function(arg);Call:func→args 110949 50890
Call:func→keywords 16274 /
Compare:left→comparator 25852 / A comparison between values. a < b /
Dict:key→value 7787 / Initializing a dictionary. {count : 10 } /
DictComp:key→generator 359 /
DictComp:key→value 359 / Dictionary comprehension. {i: 2*i for i in list} /
DictComp:value→generator 359 /
Do:body→test / 38 The do loop repeatedly executes

the body block as long as the
condition is true.

do
statement;

while (condition);
Do:do→body / 45 /
Do:do→test / 38
For:for→body 8704 1864

A for loop repeatedly executes
the body block for some
iterations.

for target in iter:
body

for (initializers;
test; updaters) {
body;

}

For:for→initializers / 1650
For:for→iter 8704 /
For:for→target 8704 /
For:for→test / 1296
For:for→updaters / 1682
For:initializers→body / 1781
For:initializers→test / 1286
For:initializers→updaters / 1670
For:iter→body 8704 /
For:target→body 8704 /
For:target→iter 8704 /
For:test→body / 1789
For:test→updaters / 1678
For:updaters→body / 1685
GeneratorExp:elt→generator 685 / A generator expression. (2*i for i in list) /
If:body→orelse 11024 4976

An if statement conditionally
executes a body based upon
some criteria.

if condition:
body1

else:
body2

if (condition) {
body1;

} else {
body2;

}

If:if→body 34250 22392
If:if→else 11024 5038
If:if→test 34250 19323
If:test→body 34250 22392
If:test→orelse 11024 5007
IfExp:body→orelse 1262 1173

An if expression (conditional
expression). x if condition else y (condition) ? x : yIfExp:body→test 1262 /

IfExp:test→body / 1218
IfExp:test→orelse 1262 1173
InfixExpr:left→right / 35170 Infix expression of the form

leftOperand InfixOperator right-
Operand.

/ a + b

InstanceofExpr:expr→type / 1367 Checking whether an expression
is some type.

/ input instanceof String

LabeledStatement:label→body / 10 A statement labeled with an
identifier.

/ Identifier : Statement

ListComp:elt→generator 2691 / List comprehension. [x for x in list1] /
SetComp:elt→generator 67 / Set comprehension. {x for x in list1} /
Slice:lower→upper 731 / A slice used in subscript of lists. A[2:6] /
Subscript:value→slice 39271 4555 Accessing parts of an array or

data structure through subscript.
A[2:6] A[0]

Continued on next page.
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Continued from previous page.

Relation:head→dependent Count Explanation Code Example
Python Java Python Java

Switch:expr→statement / 385 A switch statement chooses a
branch to execute based upon
conditions.

switch (inputExpr) {
Statement;

}
Switch:switch→expr / 320 /
Switch:switch→statement / 385
Try:body→finalbody 135 474

A try statement for handling
exceptions.

try:
body1

except Exception:
body2

else:
body3

finally:
body4

try {
body1;

} catch (Exception e) {
body2;

} finally {
body3;

}

Try:body→handler 3020 2011
Try:body→orelse 181 /
Try:handler→finalbody 48 186
Try:handler→orelse 181 /

While:test→body 743 975 The while loop repeatedly
executes the body block as long
as the condition is true.

while condition:
body

while (condition) {
body;

}

While:while→body 743 975
While:while→test 743 416

With:item→body 1239 / A with statement with built-in
context manager.

with open("file") as f:
content = f.read()

/

children:parent→child 652417 569499 Any pair of AST nodes that are
parent and child in the parse
tree.

/ /

comprehension:target→iter 3881 / A for clause to iterate over some
sequences.

[x for x in list1] /

Table 8: Full dataset statistics table of CodeSyntax. For each relation type, we highlight the head and dependent
nodes in the examples in bold, with the head in blue and the dependent in red. If a node can be either head or
dependent in different relations, we color it in green. For more explanation about the syntax, please refer to the
documentation of Python ast module (Foundation, 2021) and Java org.eclipse.jdt.core.dom.ASTParser (Contribu-
tors, 2014)
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Relation
Score

Offset Difference
CuBERT Offset

If:if→else 92.7 5.7 17 87.1
IfExp:body→orelse 46.4 13.6 6 32.8
Try:body→handler 39.1 7.9 8 31.3
If:body→orelse 29.2 7.1 12 22.0
BoolOp:value→value 33.3 22.4 2 10.9
Try:body→finalbody 20.5 10.3 7 10.3
If:if→body 31.5 23.1 7 8.4
Call:func→keywords 38.0 34.1 2 4.0
If:test→orelse 7.5 5.1 18 2.4
Compare:left→comparator 46.5 45.7 2 0.8
If:if→test 98.8 98.8 1 -0.0
For:for→target 99.4 99.4 1 0.0
While:while→test 99.3 99.3 1 0.0
Try:body→orelse 10.5 10.5 33 0.0
For:for→body 30.4 32.7 7 -2.3
Try:handler→orelse 13.2 15.8 16 -2.6
IfExp:test→orelse 23.2 26.7 2 -3.5
children:parent→child 26.3 30.7 2 -4.4
Attribute:value→attr 76.7 82.3 2 -5.6
For:target→body 26.4 32.7 6 -6.3
If:test→body 16.3 23.2 6 -6.9
Subscript:value→slice 59.4 66.4 2 -7.1
BinOp:left→right 31.5 45.2 2 -13.7
Try:handler→finalbody 8.3 25.0 21 -16.7
For:target→iter 58.3 77.4 2 -19.1
AugAssign:target→value 49.4 70.3 2 -21.0
For:iter→body 11.7 34.8 4 -23.1
IfExp:body→test 17.2 42.1 2 -24.9
While:while→body 22.1 48.5 5 -26.5
Assign:target→value 39.8 71.2 2 -31.4
While:test→body 16.2 48.5 4 -32.4
Call:func→args 59.3 93.2 2 -33.9
Call:args→keywords 20.6 54.9 2 -34.4
For:for→iter 34.1 77.4 3 -43.3

Table 9: Attention vs. offset baseline with fixed offset for each relation on Python dataset using first-token metric.
In the score column, we present the accuracy score for CuBERT and offset baseline. In the offset column, the
chosen offset is shown. Score differences are calculated as CuBERT score - offset baseline score for each relation,
where a positive value indicates that the language model surpasses the baseline performance. Since CuBERT
always outperforms Codebert, we only include results for CuBERT.
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Relation
Score

Offset Difference
CuBERT Offset

If:if→else 92.7 5.7 17 87.1
IfExp:body→orelse 52.4 21.3 10 31.1
For:target→iter 98.8 77.4 2 21.4
For:target→body 97.2 81.4 14 15.8
If:if→body 77.0 61.8 11 15.2
If:body→orelse 60.7 48.7 18 12.0
For:for→body 93.2 81.3 15 11.8
Compare:left→comparator 56.4 45.7 2 10.7
Try:body→orelse 57.9 52.6 62 5.3
While:while→body 95.6 92.6 14 2.9
children:parent→child 45.3 42.6 2 2.7
If:if→test 100.0 98.8 1 1.1
BinOp:left→right 46.0 45.2 2 0.8
For:for→target 99.4 99.4 1 0.0
While:while→test 99.3 99.3 1 0.0
Try:body→finalbody 25.6 25.6 56 0.0
Assign:target→value 78.2 79.7 4 -1.5
Call:func→keywords 62.4 64.7 4 -2.3
If:test→body 59.2 61.7 10 -2.5
BoolOp:value→value 47.8 50.6 8 -2.8
AugAssign:target→value 66.8 70.3 2 -3.6
Subscript:value→slice 61.7 66.4 2 -4.8
For:for→iter 72.2 77.4 3 -5.2
Attribute:value→attr 76.7 82.3 2 -5.6
IfExp:body→test 34.8 42.1 2 -7.3
While:test→body 85.3 92.6 13 -7.4
If:test→orelse 36.5 44.9 31 -8.4
Try:body→handler 41.6 51.2 17 -9.7
IfExp:test→orelse 30.0 40.7 4 -10.7
Try:handler→orelse 31.6 47.4 25 -15.8
Call:func→args 75.3 93.2 2 -17.8
For:iter→body 63.6 83.5 12 -19.8
Call:args→keywords 49.2 74.4 4 -25.2
Try:handler→finalbody 16.7 58.3 21 -41.7

Table 10: Attention vs. offset baseline with fixed offset for each relation on Python dataset using any-token metric.
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Relation
Score

Offset Difference
CuBERT Offset

If:if→else 87.0 7.0 15 80.0
Switch:switch→statement 100.0 75.2 5 24.8
If:if→body 48.8 26.2 7 22.5
For:test→updaters 76.0 53.4 4 22.5
If:body→orelse 28.7 9.4 10 19.3
Try:body→handler 24.4 5.5 8 18.9
Do:body→test 13.3 6.7 74 6.7
Try:body→finalbody 7.0 4.3 9 2.6
Do:do→test 6.7 6.7 34 0.0
IfExp:test→orelse 24.3 24.5 7 -0.2
InstanceofExpr:expr→type 89.8 91.9 2 -2.1
For:for→initializers 97.5 100.0 2 -2.5
Attribute:value→attr 81.2 83.9 2 -2.7
children:parent→child 34.2 36.8 2 -2.7
If:test→orelse 2.6 6.8 15 -4.2
For:initializers→updaters 39.8 45.7 9 -6.0
Subscript:value→slice 72.3 78.8 2 -6.5
IfExp:body→orelse 44.2 52.5 2 -8.2
For:for→updaters 36.2 45.5 11 -9.3
Try:handler→finalbody 19.5 29.9 16 -10.4
InfixExpr:left→right 50.7 61.6 2 -10.9
Switch:switch→expr 89.0 100.0 2 -11.0
If:test→body 11.3 26.2 5 -14.9
IfExp:test→body 21.2 37.5 5 -16.3
For:initializers→body 21.0 37.5 13 -16.6
Switch:expr→statement 58.1 75.2 3 -17.1
For:for→body 16.1 36.0 15 -19.9
While:while→body 13.2 42.7 9 -29.6
While:test→body 9.4 42.7 7 -33.3
Assign:target→value 35.3 68.7 2 -33.4
Call:func→args 63.6 98.7 2 -35.1
For:test→body 13.9 49.2 8 -35.3
If:if→test 58.2 96.5 2 -38.3
While:while→test 41.9 82.0 2 -40.1
For:updaters→body 19.4 88.9 4 -69.5
For:initializers→test 15.1 85.4 5 -70.3
Do:do→body 26.7 100.0 2 -73.3
For:for→test 10.5 84.8 7 -74.3

Table 11: Attention vs. offset baseline with fixed offset for each relation on Java dataset using first-token metric.
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Relation
Score

Offset Difference
CuBERT Offset

If:if→else 87.0 7.0 15 80.0
For:test→updaters 86.9 53.6 5 33.3
If:if→body 79.6 62.1 11 17.5
If:body→orelse 69.1 52.1 16 17.0
While:while→test 98.8 82.0 2 16.9
Assign:target→value 81.4 68.7 2 12.6
Try:body→finalbody 20.0 13.0 37 7.0
IfExp:body→orelse 59.5 52.5 2 7.0
For:for→updaters 53.6 46.8 11 6.7
Do:body→test 33.3 26.7 81 6.7
Do:do→test 33.3 26.7 81 6.7
For:for→test 95.3 89.5 9 5.8
IfExp:test→orelse 45.9 42.4 10 3.5
While:while→body 91.4 89.0 17 2.4
If:if→test 98.7 96.5 2 2.3
children:parent→child 44.0 42.4 2 1.6
InstanceofExpr:expr→type 93.1 91.9 2 1.1
For:initializers→updaters 47.2 47.1 9 0.1
Switch:switch→statement 100.0 100.0 21 0.0
For:for→initializers 99.4 100.0 2 -0.6
Try:body→handler 44.0 44.7 25 -0.7
Subscript:value→slice 77.9 78.8 2 -0.9
Switch:switch→expr 99.0 100.0 2 -1.0
While:test→body 87.4 89.5 15 -2.2
Attribute:value→attr 81.2 83.9 2 -2.7
For:updaters→body 96.8 99.6 9 -2.8
Switch:expr→statement 96.6 100.0 12 -3.4
InfixExpr:left→right 58.2 61.6 2 -3.4
For:test→body 92.3 96.1 14 -3.9
If:test→body 57.4 62.1 9 -4.7
For:for→body 90.3 94.9 23 -4.7
If:test→orelse 42.3 47.7 27 -5.4
Do:do→body 93.3 100.0 2 -6.7
For:initializers→body 87.7 94.9 21 -7.2
Call:func→args 91.1 98.7 2 -7.6
For:initializers→test 74.5 90.2 7 -15.6
IfExp:test→body 25.9 50.0 5 -24.1
Try:handler→finalbody 26.0 53.2 20 -27.3

Table 12: Attention vs. offset baseline with fixed offset for each relation on Java dataset using any-token metric.
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